bssm: Bayesian Inference of Non-linear and
Non-Gaussian State Space Models in R

Jouni Helske*
Matti Vihola'

November 21, 2017

Introduction

The R (R Core Team 2016) package bssm is designed for Bayesian inference of general state space models with
non-Gaussian and/or non-linear observational and state equations. The package aims to provide easy-to-use
and efficient functions for fully Bayesian inference of common time series models such basic structural
time series model (BSM) (Harvey 1989) with exogenous covariates, simple stochastic volatility models, and
discretized diffusion models, making it straighforward and efficient to make predictions and other inference in
a Bayesian setting.

The motivation behind the bssm package is (Vihola, Helske, and Franks 2017) which suggests a new
computationally efficient, parallelisable approach for Bayesian inference of state space models. The core
methodology relies on Markov chain Monte Carlo (MCMC) approach with adaptive random walk Metropolis
updating, using RAM algorithm (Vihola 2012). In addition to the two-step procedure based on importance
sampling type correction introduced in (Vihola, Helske, and Franks 2017), pseudo-marginal MCMC based
on particle filtering, optionally with delayed acceptance, is also supported, as well as Kalman filter based
inference of linear-Gaussian models and Extended Kalman filter inference for general non-linear Gaussian
models.

In this vignette we will first introduce the basic state space modelling framework used in bssm, and the
relevant algorithms. We then give illustrations how to use bssm in practice.

State space models with linear-Gaussian dynamics

Denote a sequence of observations (yi,...,yr) as y1.7, and sequence of latent state variables (a1, ..., ar)
as a1.7. Note that in general both the observations and the states can be multivariate, but currently the
main algorithms of bssm support only univariate observations. A general state space model consists of two
parts: observation level densities g;(y:|c;) and latent state transition densities ps(ayy1|ay). In this vignette
we focus on case where the state transitions are linear-Gaussian:

opy1 = ¢ + Troy + Rymy,

where ¢; is known input vector (typically omitted), and T; and R; are a system matrices which can depend
on unknown parameters. Also, n; ~ N(0,I) and a3 ~ N(aq, P;) independently of each other. For non-linear
transition equations, see vignette growth_model. For observation level density g;, the bssm package currently
supports basic stochastic volatility model and general exponential family state space models.

For exponential family models, the observation equation has a general form

gt (yeldy + Zyow, 8, ¢, ur),

*Linképing University, Department of Science and Technology, Sweden, University of Jyvéskyld, Department of Mathematics
and Statistics, Finland
TUniversity of Jyviskyld, Department of Mathematics and Statistics, Finland

where d; is a again known input, z; contains the exogenous covariate values at time ¢, with 8 corresponding
to the regression coefficients. Parameter ¢ and the known vector u; are distribution specific and can be
omitted in some cases. Currently, following observational level distributions are supported:

o Gaussian distribution: g;(y:|Zron, z18) = 8 + Zioy + Hyep with €, ~ N(0, 1).

o Poisson distribution: g (y¢| Zivs, 2} 8, ur) = Poisson(us exp(a} 8+ Ziavy)), where uy is the known exposure
at time ¢.

o Binomial distribution: g;(y¢|Zras, x5, ut) = binomial(u, exp(x} S+ Zrow) /(1+exp(x} S+ Zray))), where
ug is the size and exp(a¢8 + Zray) /(1 + exp(z}8 + Ziaw)) is the probability of the success.

o Negative binomial distribution: g¢;(y:|Ziay, 28, ¢, us) = negative binomial(exp(z}8 + Ziay), ¢, ut),
where u; exp(z;8 + Ziay) is the expected value and ¢ is the dispersion parameter (u; is again exposure
term).

For stochastic volatility model, there are two possible parameterizations available. In general for we have
yr = o8 + o explay/2)e, € ~ N(0,1),

and
Qi1 = B+ p(at - M) + onny,

with a; ~ N(u, 07 /(1 — p?)). For identifiability purposes we must either choose o = 1 or y = 0. Although
analytically identical, the parameterization with p is often preferable in terms of computational efficiency.

Typically some of the model components such as 3, T; or R; depend on unknown parameter vector 6, so
gt(ye|ar) and py(agy1]|ar) depend implicitly on 6. Our goal is to perform Bayesian inference of the joint
posterior of ay.7 and 6.

MCMC for Gaussian state space models

Given the prior p(6), the joint posterior of § and «y.7 is given as

plavr, 0lyrr) < p(@)p(arr, yi.7|0) = p(@)p(y|0)p(ar.r|yi.T,)

where p(y1.7|0) is the marginal likelihood, and p(as.7|y1.7,0) is often referred as a smoothing distribution.
However, instead of targeting this joint posterior, it is more efficient to target the marginal posterior p(d|y),
and then given the sample {#?}" ; from this marginal posterior, simulate states ai., from the smoothing
distribution p(ay.7|yi.7,0%) for i =1... n.

For Gaussian models given the parameters 6, the marginal likelihood p(y1.7|60) can be computed using the
well known Kalman filter recursions, and there are several algorithms for simulating the states a;.7 from
the smoothing distribution p(aq.7|y1.7) (see for example Durbin and Koopman (2012)). Therefore we can
straightforwardly (at least in principle) apply standard MCMC algoritms. In bssm, we use an adaptive
random walk Metropolis algorithm based on RAM (Vihola 2012) where we fix the target acceptance rate
beforehand. The complete adaptive MCMC algorithm of bssm for Gaussian models is as follows.

Given the target acceptance rate a* (e.g. 0.234) and v € (0, 1] (the default 2/3 works well in practice), at
iteration ¢:

1. Compute the proposal ' = =1 + S;_ju’, where u; is simulated from the standard d-dimensional

Gaussian distribution and S;_; is a lower diagonal matrix with positive diagonal elements.
p(9)p(y1:710")

: > p(6' =)p(yrr]0 1)}

3. If the proposal ¢ is accepted, set §° = #’ and simulate a realization (or multiple realizations) of the
states ay.7 from p(ai.7|y1.7,0") using the simulation smoothing algorithm by Durbin and Koopman

(2002). Otherwise, set 6" = *~! and o}, = o'}

2. Accept the proposal with probability a’ := min{1

4. Compute (using Cholesky update or downdate algorithm) the Cholesky factor matrix S? satisfying the
equation

T . - i * uiu] T
S;S; =8i_1 (I + min{l,di7"}(a" — a") |u|72> Sy
(3
If the interest is in the posterior means and variances of the states, we can replace the simulation smoothing
in step 3 with standard fixed interval smoothing which gives the smoothed estimates (expected values and
variances) of the states given the data and the model parameters. From these, the posterior means and
variances of the states can be computed straightforwardly.

Non-Gaussian models

For non-linear /non-Gaussian models, the marginal likelihood p(y1.7|0) is typically not available in closed
form. Thus we need to resort to simulation methods, which leads to pseudo-marginal MCMC algorithm
(Lin, Liu, and Sloan 2000, Beaumont (2003), Andrieu and Roberts (2009)). The observational densities of
our non-linear/non-Gaussian models are all twice differentiable, so we can straightforwardly use the Laplace
approximation based on (Durbin and Koopman 2000). This gives us an approximating Gaussian model which
has the same mode of p(aq.7|y1.1,0) as the original model. Often this approximating Gaussian model works
well as such, and thus we can use it in MCMC scheme directly, which results in an approximate Bayesian
inference. We can also use the approximating model together with importance sampling or particle filtering,
which produces exact Bayesian inference on p(ay.1, 6|y1.7).

We will illustrate our approach using simple importance sampling. We can factor the likelihood of the
non-Gaussian model as (Durbin and Koopman 2012)

p(y1.7]0) = /9(041:T,y1:T\9)d0‘

= g(y1.7]0)E, {g(lelhoe)} 7

g(yr.r|or.r,0)
where G(y1.7|0) is the likelihood of the Gaussian approximating model and the expectation is taken with

respect to the Gaussian density g(aly,). Equivalently we can write

g(yl:Tlal:T79):|
lo 716) =1o 710) +log B, | DL)
g p(y1:7]0) g 9(y1.7]0) + log g|:g(y1:T|0¢1:T70)
9(y1:T\04a9)/9(y1:T\541:T,9)

9(y1rlarr, 0)/3(yr.r|da.r, 0)

g(y1.7|61.1, 0)
—1lo 70) + log DIELITLTH 7
g g(y1.7]0) 8 S rlanr 0)

= log g(y|0) + log & + log Eqw*

+log E, [

N
1
~ log g(y|0) + log W + log N ij,
j=1

where &7.7 is the conditional mode estimate obtained from the approximating Gaussian model. For approxi-

mating inference, we simply omit the term log % Z;V:1 w;.

In principle, when using the exact Bayesian inference we should simulate multiple realizations of the states
a1.7 in each iteration of MCMC in order to compute log % Zjvzl wj. Fortunately, we can use so called delayed
acceptance (DA) approach (Christen and Fox 2005; Banterle et al. 2015) which speeds up the computation
considerably. Instead of single acceptance step we use two-stage approach as follows.

p(yL.7]0")0’ }
> p(yrp|0F-)it [
2. If accepted, perform the importance sampling of the states ;.77 and make the delayed acceptance with

probability min{1, Zjvzl w;// Zj\’:1 w;"ifl}.

1. Make initial acceptance of the given proposal 6’ with probability min {1

3. If the delayed acceptance is successful, set § = ¢’ and sample one (or multiple) realization of the
previously simulated states with weights wi,j=1,...,N (with replacement in case of multiple samples
are stored). Otherwise, set #° = §°~! and similarly for the states.

If our approximation is good, then most of the times when we accept in the first stage we also accept in
seconds stage, and thus we often need to simulate the states only for each accepted state. Compared to
standard pseudo-marginal approach where we need to simulate the states for each proposal, DA can provide
substantial computational benefits.

However, the simple importance approach does not scale well with the data, leading to large variance in
importance weights. Thus it is more efficient to use particle filtering based simulation methods for the
marginal likelihood estimation and state simulation. Although bssm supports standard bootstrap particle
filter (Gordon, Salmond, and Smith 1993), we recommend using more efficient ¢-particle filter (Vihola, Helske,
and Franks 2017) which makes use of our approximating Gaussian model. With ¢-PF, we typically need
only a very few particles (say 10) for relatively accurate likelihood estimate, which again speeds up the
computations.

In addition to standard pseudo-marginal MCMC or its DA variant, bssm also supports the importance
sampling type correction method presented in Vihola, Helske, and Franks (2017). Here the MCMC algorithm
targets the approximating posterior (based on the Gaussian model), and the correction to actual target
posterior is made in offline fashion. This gives some additional computational benefits over DA we need
to run the particle filter only for each accepted value of the Markov chain (after burnin), and the weight
computations are straightforwardly parallelisable. For details, see Vihola, Helske, and Franks (2017).

For all MCMC algorithms, bssm uses so-called jump chain representation of the Markov chain Xi,...,X,,
where we only store each accepted X} and the number of steps we stayed on the same state. So for example if
X1, = (1,2,2,1,1,1), we present such chain as X = (1,2,1), N = (1,2, 3). This approach reduces the storage
space, and makes it more efficient to use importance sampling type correction algorithms. One drawback
of this approach is that the results from the MCMC runs correspond to weighted samples from the target
posterior, so some of the typical postprocessing tools need to be adjusted. Of course in case of other methods
than IS-correction, the simplest option is to just expand the samples using the stored counts N instead.

Example

Here is a short example. First we build our model using bsm function:

library("bssm")
set.seed(123)

init_sd <- 0.1 * sd(logl0(UKgas))

prior <- halfnormal(init_sd, 1)

model <- bsm(logl0(UKgas), sd_y = prior, sd_level = prior,
sd_slope = prior, sd_seasonal prior)

And run MCMC and print some summary statistics (there is also a summary method with similar output):

mcmc_out <- run_mcmc(model, n_iter = 1eb)
mcmc_out

##

Call:

run_mcmc.bsm(object = model, n_iter = 1e+05)
##

Iterations = 50001:1e+05

Thinning interval = 1

Length of the final jump chain = 11291

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

For plotting purposes, we’ll use bayesplot package for the figures after expanding our jump chain represen-

Acceptance rate after the burn-in period: 0.2258
Summary for theta:

Mean SD SE-IS
sd_y 0.016073395 0.0056807410 7.070012e-05
sd_level 0.004865526 0.0032608115 4.502577e-05
sd_slope 0.001220399 0.0005138239 6.005434e-06
sd_seasonal 0.026330607 0.0037082607 4.599510e-05

SE
sd_y 1.282584e-04
sd_level 8.077052e-05
sd_slope 1.111541e-05
sd_seasonal 8.139284e-05

Effective sample sizes for theta:

ESS-IS ESS-AR
sd_y 4603.733 2817.994
sd_level 4976.003 2364.674
sd_slope 4961.907 3017.761
sd_seasonal 5452.017 3049.556
Summary for alpha_108:

Mean SD SE-IS
level 2.835491603 0.013724092 1.791207e-04
slope 0.009820929 0.003681067 4.785604e-05
seasonal_1 0.061368491 0.018171776 2.479826e-04
seasonal_2 -0.295322705 0.015623010 2.179103e-04
seasonal_3 -0.034291421 0.014379982 1.978342e-04

Effective sample sizes for alpha:

ESS-IS ESS-AR
level 5400.632 5482.735
slope 4597.392 5149.880
seasonal_1 4999.257 5173.505

seasonal_2 5370.
seasonal_3 4608.

065 5139.674
127 5282.940

Run time:
user system elapsed
13.235 0.139 13.394

SE-AR

1.070126e-04
6.705638e-05
9.353450e-06
6.715092e-05

SE-AR
1.853468e-04
5.129502e-05
2.526416e-04
2.179199e-04
1.978429e-04

SE
2.577550e-04
7.015254e-05
3.540101e-04
3.081785e-04
2.797859e-04

tation. Note that the API of the expand_sample function is likely change in future.

theta <- expand_sample(mcmc_out, "theta") ## until bayesplot is updated
library("bayesplot")

##

This is bayesplot version 1.4.0

- Plotting theme set to bayesplot::theme_default()

- Online documentation at mc-stan.org/bayesplot

mcmc_areas (theta, bw = 0.001)

sd_yH

sd_leveH

sd_sloper

sd_seasonaq

0.00 0.01 0.02 0.03 0.04

level <- expand_sample(mcmc_out, "alpha", times = 101:108, states = 1)
mcmc_areas (level)

1014

1024

AN
/[\
/l\
AN

1044

1054

106, /I—\
107 /I\

2.70 2.75 2.80 2.85 2.90

1084

posterior mode estimates
mcmc_out$theta[which.max (mcme_out$posterior),]

sd_y sd_level sd_slope sd_seasonal
0.0194289573 0.0006960524 0.0011850336 0.0242828038

Smoothed trend:

level <- expand_sample(mcmc_out, "alpha", states = 1)

or using summary method:

sumr <- summary(mcmc_out)

level <- sumr$states$Mean[, 1]

lur <- level - 1.96 * sumr$states$SD[, 1]

upr <- level + 1.96 * sumr$states$SD[, 1]

ts.plot(model$y, cbind(level, lwr, upr), col = c(1, 2, 2, 2), 1ty = c(1, 1, 2, 2))

For prediction intervals, we first build a model for the future time points, and then use the previously obtained
posterior samples for the prediction:

future_model <- model
future_model$y <- ts(rep(NA, 24), start = end(model$y) + c(0, 1), frequency = 4)
pred <- predict(mcmc_out, future_model, probs = c(0.025, 0.1, 0.9, 0.975))
ts.plot(logl0(UKgas), pred$mean, pred$intervals[, -3],

col = c(1, 2, c(3, 4, 4, 3)), 1ty = c(1, 1, rep(2, 4)))

Now same with ggplot2:

35

3.0

25

2.0

1960 1965 1970 1975 1980 1985

Time

Figure 2: Mean predictions and prediction intervals.

3.5

3.0

mean

2.51

2.04

1960 1970 1980 1990
time

Figure 3: Prediction plots with ggplot2.

require("ggplot2")

Loading required package: ggplot2

level_fit <- ts(colMeans(expand_sample(mcmc_out, "alpha")$level), start = start(model$y),
frequency = 4)

autoplot(pred, y = model$y, fit = level_fit, interval_color = "red", alpha_fill = 0.2)

We can also obtain predictions in terms of individual components of the state vector:

pred_state <- predict(mcmc_out, future_model, probs = c(0.025, 0.1, 0.9, 0.975), type = "state")
ts.plot(loglO(UKgas), level_fit, pred_state$mean[,"level"], pred_state$intervals$level[, -3],
col = c(1, 2, 2, c(3, 4, 4, 3)), 1ty = c(1, 1, 1, rep(2, 4)))

References

Andrieu, Christophe, and Gareth O. Roberts. 2009. “The Pseudo-Marginal Approach for Efficient Monte
Carlo Computations.” Annstat 37 (2): 697-725.

Banterle, M., C. Grazian, A. Lee, and C. P. Robert. 2015. “Accelerating Metropolis-Hastings algorithms by

10

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1960

1965 1970 1975 1980 1985

Time

Figure 4: State prediction.

11

1990

Delayed Acceptance.” ArXiv E-Prints, March. http://arxiv.org/abs/1503.00996.

i

Beaumont, Mark A. 2003. “Estimation of Population Growth or Decline in Genetically Monitored Populations.
Genetics 164: 1139-60.

Christen, J. Andrés, and Colin Fox. 2005. “Markov Chain Monte Carlo Using an Approximation.” Journal
of Computational and Graphical Statistics 14 (4): 795-810. do0i:10.1198/106186005X76983.

Durbin, J., and S. J. Koopman. 2000. “Time Series Analysis of Non-Gaussian Observations Based on State
Space Models from Both Classical and Bayesian Perspectives.” Journal of Royal Statistical Society B 62:
3-56.

. 2002. “A Simple and Efficient Simulation Smoother for State Space Time Series Analysis.” Biometrika
89: 603-15.

. 2012. Time Series Analysis by State Space Methods. 2nd ed. New York: Oxford University Press.

Gordon, Neil J., D. J. Salmond, and A. F. M. Smith. 1993. “Novel Approach to Nonlinear /Non-Gaussian
Bayesian State Estimation.” IEE Proceedings-F 140 (2): 107-13.

Harvey, A. C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University
Press.

Lin, L., K.F. Liu, and J. Sloan. 2000. “A Noisy Monte Carlo Algorithm.” Physical Review D 61.

R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.R-project.org/.

Vihola, Matti. 2012. “Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate.” Statistics and
Computing 22 (5): 997-1008. doi:10.1007/s11222-011-9269-5.

Vihola, Matti, Jouni Helske, and Jordan Franks. 2017. “Importance Sampling Type Estimators Based on
Approximate Marginal Markov Chain Monte Carlo.” Preprint arXiv:1609.02541v3.

12

http://arxiv.org/abs/1503.00996
https://doi.org/10.1198/106186005X76983
https://www.R-project.org/
https://doi.org/10.1007/s11222-011-9269-5

	Introduction
	State space models with linear-Gaussian dynamics
	MCMC for Gaussian state space models

	Non-Gaussian models
	Example
	References

