A tutorial for blockcluster R package
Version 4

Parmeet Singh Bhatia* Serge Iovleff
November 29, 2016

Contents

(1 _Introduction|

2 Package details|

[2.1.1 The coclusterBinary tunction|
[2.1.2 The coclusterCategorical function|
2.1.3 The coclusterContinuous functionl,
[2.1.4 The coclusterContingency function|
[2.2 coclusterStrategy function| o
[2.2.1 Understanding various input parameters|

[2.3.1 Binary Models|
[2.3.2 Categorical Models|. o o
233 Continuous Modeldl
[2.3.4 Contingency Models| o o
2.4 Example using simulated Binary dataset|o

[3 Examples with real datasets|
3.1 Image segmentation| L
3.2 Document clustering]

4_Remarks|

Abstract

blockcluster is a newly developed R package for co-clustering of binary, contingency,
continuous and categorical data. The core library is written in C++ and blockcluster
APT acts as a bridge between C++ core library and R statistical computing environment.
The package is based on recently proposed [4], [2], [3] latent block models for simultaneous
clustering of rows and columns. This tutorial is based on the package version 4.

*Siemens, bhatia.parmeet@gmail.com
TINRIA-Lille, serge.iovleff@inria. fr

10
10
11

12

1 Introduction

Cluster analysis is an important tool in a variety of scientific areas such as pattern recognition,
information retrieval, micro-array, data mining, and so forth. Although many clustering pro-
cedures such as hierarchical clustering, k-means or self-organizing maps, aim to construct an
optimal partition of objects or, sometimes, of variables, there are other methods, called block
clustering methods, which consider simultaneously the two sets and organize the data into ho-
mogeneous blocks. Let x denotes a n x d data matrix defined by x = {(x;;);7 € I and j € J},
where I is a set of n objects (rows, observations, cases etc) and J is a set of d variables (columns,
attributes etc). The basic idea of these methods consists in making permutations of objects and
variables in order to draw a correspondence structure on I x J. For illustration, consider Figurel[]]

a b o

123 45¢%67 1 23 435¢6°7 1 435726

S

= n

mm g N

O umw=

I II

o

— -

Figure 1: Binary data set (a), data reorganized by a partition on I (b), by partitions on I and
J simultaneously (c) and summary matrix (d).

where a binary data set defined on set of n = 10 individuals I = A, B,C,D,E,F,G,H,I,J and
set of d = 7 binary variables J = 1,2,3,4,5,6,7 is re-organized into a set of 3 x 3 clusters by
permuting the rows and columns.

Owing to ever increasing importance of Co-clustering in variety of scientific areas, we have
recently developed a R package for the same called blockcluster. The R package block-
cluster allows to estimate the parameters of the co-clustering models [[4]] for binary, con-
tingency, continuous and categorical data. This package is unique from the point of view of
generative models it implements (latent block models), the used algorithms (BEM, BCEM)
and, apart from that, special attention has been given to design the library for handling
very huge data sets in reasonable time. The R package is already available on CRAN at
http://cran.r-project.org/web/packages/blockcluster/index.htmll

This aim of this tutorial is to elaborate the usage of R package blockcluster and to fa-
miliarize its users with its various capabilities. The rest of the article is organized as follows.
Section [2| gives various details of the package as well as demonstrate it’s usage on simulated
binary data-set. Section [3| provides two examples with real data-sets.

2 Package details

This package contains two main functions namely cocluster and coclusterStrategy to per-
form co-clustering and to set various input parameters respectively. The convenient functions
coclusterBinary, coclusterCategorical, coclusterContingency and coclusterContinu-
ous are specialized versions of the cocluster function. The package also contains two helper
functions namely summary and plot to get the summary of estimated model parameters and
to plot the results respectively. We will first go through the details of two main functions.

http://cran.r-project.org/web/packages/blockcluster/index.html

The helper functions are self-explanatory and I will use them in various examples for better
understanding.

2.1 cocluster function

Up to version 3, this is the main function of blockcluster package that performs Co-clustering
for binary, categorical, contingency and continuous data. The prototype of the function is as
follows:

cocluster (data, datatype, semisupervised = FALSE

, rowlabels = numeric(0), collabels = numeric (0)
, model = NULL, nbcocluster, strategy = coclusterStrategy())

The various inputs of cocluster functions are as follows:

e data: Input data as matrix (or list containing data matrix, numeric vector for row effects
and numeric vector column effects in case of contingency data with known row and column
effects.)

N

e datatype: This is the type of data which can be "binary”, "categorical”, "continuous” or
“contingency”.

e semisupervised: Boolean value specifying whether to perform semi-supervised co-clustering
or not. Make sure to provide row and/or column labels if specified value is true. The de-
fault value is false.

e rowlabels: Vector specifying the class of rows. The class number starts from zero.
Provide -1 for unknown row class.

e collabels: Vector specifying the class of columns. The class number starts from zero.
Provide -1 for unknown column class.

e model: This is the name of model. The various models that are available in package are

given in tables and

e nbcocluster: Integer vector specifying the number of row and column clusters respec-
tively.

e strategy: This input can be used to control various input parameters. It can be created
using the function coclusterStrategy as explained in Section

The only mandatory inputs to the function cocluster are data, datatype and nbcocluster.
The default model for each data-type is the most general model with free row and column propor-
tions and unequal dispersion/variance for each block. Furthermore we have default set of input
parameters which works well in most cases which are explained in further details in Section
The package also comes with OpenMP support (If supported by your Operating system and R).
You need to set the number of threads in you environment (export OMP_NUM_THREADS).

2.1.1 The coclusterBinary function

The coclusterBinary function is a specialization of the cocluster function for binary data.
The prototype of the function is as follows:

cocluster for bimnary data

coclusterBinary (data, semisupervised =
, rowlabels = numeric(0), collabels =
, model = NULL, nbcocluster, strategy =
, a=1, b=1)

FALSE
numeric (0)
coclusterStrategy ()

This function has two additional parameters a and b corresponding to the bayesian form of the
likelihood function. The default value correspond to the case "no prior”. The available binary
models are given in the table

Model Datatype | Proportions | Dispersion/Variance | Initialization
pik_rhol epsilonkl | binary unequal unequal CEM/EM
pik_rhol epsilon binary unequal equal CEM/EM
pi_rho_epsilonkl binary equal unequal CEM/EM
pi_rho_epsilon binary equal equal CEM/EM

Table 1: Binary models available in package blockcluster.

2.1.2 The coclusterCategorical function

The coclusterCategorical function is a specialization of the cocluster function for categor-
ical data. The prototype of the function is as follows:
cocluster for categorical data
coclusterCategorical (data, semisupervised = FALSE
, rowlabels = numeric(0), collabels = numeric (0)

, model = NULL, nbcocluster, strategy = coclusterStrategy()
, a=1, b=1)

This function has two additional parameters a and b corresponding to the bayesian form of
the likelihood function. The default value correspond to the case "no prior”. The availables
categorical models are given in the table

Model Datatype | Proportions | Dispersion/Variance | Initialization
pik_rhol_ multi | categorical unequal N.A Random
pirho_multi | categorical equal N.A Random

Table 2: Categorical models available in package blockcluster.

2.1.3 The coclusterContinuous function

The coclusterContinuous function is a specialization of the cocluster function for continuous
data. The prototype of the function is as follows:

cocluster for continuous data (Gaussian models)

coclusterContinuous (data, semisupervised = FALSE

, rowlabels = numeric(0), collabels = numeric (0)
, model = NULL, nbcocluster, strategy = coclusterStrategy())

The availables continuous models are given in the table

Model Datatype | Proportions | Dispersion/Variance | Initialization
pik_rhol sigma2kl | continuous unequal unequal CEM/EM
pik_rhol sigma continuous unequal equal CEM/EM
pi_rho_sigma2kl | continuous equal unequal CEM/EM
pi_rho_sigma?2 continuous equal equal CEM/EM

Table 3: Continuous models available in package blockcluster.

2.1.4 The coclusterContingency function

The coclusterContingency function is a specialization of the cocluster function for contin-

gency data. The prototype of the function is as follows:

cocluster for contingency data (Poisson models)
coclusterContingency (data, semisupervised = FALSE
, rowlabels = numeric(0), collabels = numeric (0)

, model = NULL, nbcocluster, strategy = coclusterStrategy())

The availables contingency models are given in the table

Model Datatype | Proportions | Dispersion/Variance | Initialization
pik_rhol unknown | contingency unequal N.A CEM/EM
pirho_unknown | contingency equal N.A CEM/EM
pik_rhol known contingency unequal N.A Random
pirho_known contingency equal N.A Random

Table 4: Contingency models available in package blockcluster.

2.2 coclusterStrategy function

In the package blockcluster, we have a function called coclusterStrategy which can be used

to set the values of various input parameters. The prototype of the function is as follows:

coclusterStrategy(algo = , initmethod = character ()
, stopcriteria = , semisupervised = FALSE
, nbiterationsxem = 50, nbiterationsXEM = 500
, nbinititerations = 10, initepsilon = 0.01
, nbiterations_int = 5, epsilon_int = 0.01
, epsilonxem = 1e-04, epsilonXEM = 1e-10, nbtry = 2

, nbxem = 5)

In the following example, we call the function coclusterStrategy without any arguments
and then we called the overloaded function summary to see default values of various input

parameters.

> defaultstrategy <- coclusterStrategy()
> summary (defaultstrategy)

sk ok sk sk sk sk sk sk sk sk sk s s o o ok sk sk ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk s s s ok sk sk sk ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok
Algorithm: BEM

Initialization method(There is no default value):

Stopping Criteria: Parameter

Various Iterations
sk sk ok sk ok ok sk ok ok sk ok ok ook ok ook ok

Number of global iterations while running initialization: 10
Number of iterations for internal E-step: 5

Number of EM iterations used during xem: 50

Number of EM iterations used during XEM: 500

Number of xem iteratiomns: 5

Number of tries: 2

Various epsilons
skskskok ok ok sk sk sk ok ok sk sk ok ok

Tolerance value used while initialization: 0.01
Tolerance value for internal E-step: 0.01
Tolerance value used during xem: 1le-04

Tolerance value used during XEM: 1e-10
sk sk sk ok e ok sk sksk ok e ok sk sk sk sk e sk sk sk sk e ok sksk sk sk ke ok sk sk sk sk ke ok sk sk sk sk ok ok sksk sk sk ke sksksk sk sk sk sksk ok sk ok sksk ok ok ok

One thing which is worth noting in the summary output (above) is that there is no de-
fault value for initialization method. It will be set automatically depending on the type of
input model. To set these input parameters, we have to pass appropriate arguments to func-
tion coclusterStrategy as shown in example below where we set nbtry, nbxem and algo
parameters.

> newstrategy <- coclusterStrategy(nbtry=5, nbxem=10, algo='BCEM')

The newstrategy object can then be passed to function cocluster to perform Co-clustering
using the newly set input parameters. The various input arguments for the function coclus-
terStrategy are as follows:

algo: The valid values for this parameter are "BEM” (Default), "BCEM”, "BSEM” and
"BGibbs” (only for Binary model) which are respectively Block EM, Block Classification
EM, Block Stochastic EM algorithms and Gibbs sampling.

stopcriteria: It specifies the stopping criteria. It can be based on either relative change
in parameters value (preferred) or relative change in log-likelihood. Valid criterion values
are "Parameter” and ”Likelihood”. Default criteria is "Parameter”.

initmethod: Method to initialize model parameters. The valid values are "cemInitStep”,
“emInitStep” and "randomlInit” depending on the data type (See previous Tables).

nbinititerations: Number of Global iterations used in initialization step. Default value
is 10.

initepsilon: Tolerance value used inside initialization. Default value is le-2.
nbiterations_int: Number of iterations for internal E step. Default value is 5.

epsilon_int: Tolerance value for relative change in Parameter/likelihood for internal E-
step. Default value is le-2.

nbtry: Number of tries (XEM steps). Default value is 2.

nbxem: Number of xem steps. Default value is 5.

e nbiterationsxem: Number of EM iterations used during xem step. Default value is 50.

e nbiterationsXEM: Number of EM iterations used during XEM step. Default value is
500.

e epsilonxem: Tolerance value used during xem step. Default value is le-4.
e epsilonXEM: Tolerance value used during XEM step. Default value is le-10.

To understand many of the above input parameters, we need to have some basic idea about
the algorithms and the way they run inside the package blockcluster, which is why there is a
separate dedicated section for the same.

2.2.1 Understanding various input parameters

You might be wondering why there are so many types of iterations and tolerances inside the
package. Well, to get some basic understanding about various input parameters, it is impor-
tant to know a bit about the algorithms. We will not go through full fledged theory of these
algorithms here but will provide enough details to make you understand the meaning of all the
input parameters. From now on everything will be explained using BEM but it is applicable
in same way to BCEM as well as to BSEM/BGibbs algorithm. The BEM algorithm can be
defined as follows in laymen language.

1. Run EM algorithm on rows.
2. Run EM algorithm on columns.
3. Iterate between above two steps until convergence.
The following strategy is employed to run various algorithms.

1. Run the BEM Algorithm for ’nbxem’ number of times (with high tolerance and low
number of iterations) and keep the best model parameters (based on likelihood) among
these runs. We call this step >xem’ step.

2. Starting with the best model parameters, run the algorithm again but this time with a
low value of epsilon (low tolerance) and a high number of iterations. We call this step
*XEM?’ step.

3. Repeat above two steps for 'nbtry’ number of times and keep the best model estimation.
With this background, the various input parameters are explained as follows.

e nbxem, nbtry: As explained above these numbers represents the number of time we run
’xem’ step and xem’+’XEM’ step respectively. The tuning of the values of nbxem’
and ’nbtry’ need to be done intuitively, and could have a substantial effect on final
results. A good way to set these values is to run co-clustering few number of times and
check if final log-likelihood is stable. If not, one may need to increase these values. In
practice, it is better to increment ’mbxem’ as it could lead to better (stable) results
without compromising too much the running time.

¢ nbiterationsxem, nbiterationsXEM: These are number of iterations for BEM algo-
rithm i.e the number of times we run EM on rows and EM on columns. As the name
suggests, they are respectively for >xem’ and "XEM? steps.

e nbiterations_int: This is the number of iterations for EM algorithm on rows/columns.

e epsilonxem, epsilonXEM: These are tolerance values for BEM algorithm during *xem’
and *XEM?’ step respectively.

e epsilon_int: This is the tolerance value for EM algorithm on rows/columns.

e initepsilon, nbinititerations: These are the tolerance value and number of iterations
respectively used during initialization of model parameters.

2.3 Model Parameters

When summary function is called on the output cocluster fuction, it gives the estimated
values of various model parameters. The parameters that are common among all the models
are row and column mixing proportions. The model parameter for various data-types are as
follows.

2.3.1 Binary Models

The parameters « of the underlying distribution of a binary data set is given by the matrix
p = (pke) where pgy €]0,1[{V k= 1,...,g and £ = 1,...,m and the probability distribution
fre(zij;p) = f(ij; pre) is the Bernoulli distribution

1—xz;;

f(@ijipre) = (Pre)™ (1 — pre)
we re-parameterize the model density as follows:
iz @) = (e4) 750 (1 = ey)l
where

{ are =0, €pe = pre if pre < 0.5
age =1, exg =1 —pre if ppe > 0.5.

Hence the parameters piy of the Bernoulli mixture model are replaced by the following
parameters:

e The binary value ayy, which acts as the center of the block k, ¢ and which gives, for each
block, the most frequent binary value,

e The value €x belonging to the set]0,1/2[that characterizes the dispersion of the block
k, ¢ and which is, for each block, represents the probability of having a different value than
the center.

2.3.2 Categorical Models

The idea behind categorical models is simple extension of binary models for more than 2 modal-
ities. Hence instead of Bernoulli distribution, we used Multinomial (categorical) distribution.
Hence the model parameters for each block k,[are oy = (azg)hzlj_m and), azé =1 where r
is the number of modalities.

2.3.3 Continuous Models

In this case, the continuous data is modeled using unidimensional normal distribution. Hence
the density for each block is given by:

1 1
Jre(xij;) = ———=exp —{272(5% — pke)?}
\/QWU%E Oke

The parameters of the model are o = (eq1, ..., 0gm) Where oy = (fiae, o*,%e) i.e the mean and
variance of block k, I.

2.3.4 Contingency Models

In this case, it is assumed that for each block k,/, the values z;; are distributed according to
Poisson distribution P(p;vjvke) where the Poisson parameter is split into p; and v; the effects
of the row ¢ and the column j respectively and -, the effect of the block k¢. Then, we have

e HiViVke (/le.yjrykg)fij
a:ij!

sz(l”z'j;a) =

where o = (p,v,y) with p = (p1,...,pn), v = (V1,...,1v4) and v = (y11,...,Ygm). The
row and column effects are either provided by the user for models pik rhol known and
pi_rho_known or estimated by the package itself for models pik_rhol_unknown and pi_rho_unknown.

2.4 Example using simulated Binary dataset

The various parameters used to simulate this binary data-set are given in Table The class
mean and dispersion are respectively represented by a and € whereas w and p represents row
and column proportions respectively. The data consist of 1000 rows (samples) and 100 columns
(variables) with two clusters on rows and three clusters on columns. The following R com-
mands shows how to load the library, process the data and visualize/summarize results using
blockcluster.

a, €

Table 5: Parameters for simulation of binary data.

> library(blockcluster)
> data("binarydata")
> out<-coclusterBinary(binarydata, nbcocluster=c(2,3))

Co-Clustering successfully terminated!
> summary (out)

sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk o o o sk sk sk ok ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk s e ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok o o k
Model Family : Bernoulli Latent block model

Model Name : pik_rhol_epsilonkl

Co-Clustering Type : Unsupervised

ICL value: -45557.07

Model Parameters..

Class Mean:

(,11 [,21 [,3]
[1,] FALSE TRUE FALSE
[2,] TRUE FALSE FALSE

Class Dispersion:

[,1] [,2] [,3]
[1,] 0.1006314 0.2003679 0.30176927
[2,] 0.1011803 0.3022391 0.09798014

Row proportions: 0.382 0.618

Column proportions: 0.34 0.37 0.29

Pseudo-likelihood: -0.4552043

hyperparam: 1 1

sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok sk s s ok o ok sk sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk s e o ok sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok o k

Note that you also get the explicit Integrated Complete Likelihood (ICL) value in case of
binary and categorical models, and asymptotic value otherwise. This value can be used for
model selection. The following R command is used to plot the original and co-clustered data
(Figure[2f(a)) with default value of asp which is 0 (FALSE). When asp is FALSE, R graphics will
optimize the output figure for the display, hence the original aspect ratio may not be conserved.
To conserve the original aspect ratio, set the value of asp as 1 or TRUE.

> plot(out, asp = 0)

To Plot various block distributions (Figure [2(b)), the following R command is used with
type argument of overloaded plot function set to ’distribution’ (type is ’cocluster’ by default
which plots the original and Co-clustered data as shown in (Figure 2fa))).

> plot(out, type = 'distribution')

3 Examples with real datasets

This section demonstrates the applicability of package on real data. Two examples are used:
one for Image segmentation and other for document (co-)clustering.

3.1 Image segmentation

Automatic image segmentation is an important technique and have numerous application espe-
cially in fields of Medical imaging. Here I present an interesting application of co-clustering (as
pre-processing step) for segmenting object(s) in image. I assume that the object pixels follows
Gaussian distribution. Hence I run the blockcluster package with Gaussian Family model
pik_rhol sigma2kl on image shown in Figure It can be clearly seen that the image got
nicely segmented into snake and insect in two different blocks.

10

Original Data CoLlustered Dat

Histogram/density for each block

Block({1,1) Block(1.2) Block({1.3) Mixture of row 1
5 o g B ;s 5 =
E 2 g g o
g 2 g 5 £ E°
=1 — “ o “ o e =
=1 c =1 c

0 1 0 1 0 1 0 1
Data values block (1,1 Data values block {1, 2 Data values block (1,3 Data values of row 1
Block({2,1) Block(2.2) Block(2,3) Mixture of row 2

Frequency
Frequency
Frequency
00 04 08
frequency

00 D3 08

X L
=1 =1

L

Data values block (2, 1

ﬂTD ?-?

Data values block (2, 3

i

Data values block (2, 2 Data values of row 2

Final mixture

1

0 1

Mixture of column Mixture of column

i

Data values of column 2

Mixture of column

@
a
- H
=1
= =
=1

0 1

Data values of column 1

Frequency
Frequency

0 02 04

Frequency
00 02 04

0

Frequency
00 03
L]

Data values of column 3

(b)

Figure 2: Original and co-clustered binary data (a), and distributions for each block along with
various mixture densities (b).

Data values

(a)

3.2 Document clustering

Document clustering is yet another data mining technique where co-clustering seems to be very
useful. Here we run our package on one of the datasets being used in [I] which is publicly avail-
able at ftp://ftp.cs.cornell.edu/pub/smart. We mix Medline (1033 medical abstracts)
and Cranfield (1398 aeronautical abstracts) making a total of 2431 documents. Furthermore,
we used all the words (excluding stop words) as features making a total of 9275 unique words.
The data matrix consist of words on the rows and documents on the columns with each entry
giving the term frequency, that is the number of occurrences of corresponding word in cor-
responding document. I assume that the term frequency follows Poisson distribution. Hence
we can apply the model pik_rhol unknown available in our package for contingency (Poisson
Family) datasets with unknown row and column effects. Table [6|shows the confusion matrix and
compare our results with classical bipartite spectral graph partitioning algorithm of [[1]] where
we have obtained 100 percent correct classification. Figure [4] depicts the 2 x 2 checkerboard
pattern in the data matrix, hence confirming the more frequent occurrence of particular set of
words in one document and vice-versa. Please note that the data matrix images are extremely
sparse (data points almost invisible) and have been processed using simple image processing
tools for visualization purpose only.

Medline | Cranfield Medline | Cranfield
Medline 1026 0 Medline 1033 0
Cranfield 7 1400 Cranfield 0 1398

(a)

(b)

Table 6: Confusion Matrix: Results reported in [I] (a), and Results using blockcluster (b).
The difference in number of Cranfield documents is because we made use of the already available
data extracted from the documents and there are two less documents data in the same.

11

ftp://ftp.cs.cornell.edu/pub/smart

Original Data CoLlustered Data Scale

Figure 3: Original and co-clustered (segmented) image.

wn wn
o o
— —
= =
[} [eb}
= =)
g g
= g
=))
— —
Documents Documents

(a) (b)

Figure 4: Original data matrix with words on rows and documents on columns (a), and checker-
board pattern in words by documents matrix obtained after performing co-clustering (b).

4 Remarks

This tutorial gives a brief introduction about the blockcluster R package. It demonstrates
the use of package using Binary data-set but the package can be used in similar fashion for
other types of data namely Contingency, Continuous and Categorical. Please note that
this tutorial is based on version 4. If you have any questions, suggestions or remarks, do not
hesitate to put it on public forum at https://gforge.inria.fr/forum/forum.php?forum_id=
11190&group_id=3679.

References

[1] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph parti-
tioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge

12

https://gforge.inria.fr/forum/forum.php?forum_id=11190&group_id=3679
https://gforge.inria.fr/forum/forum.php?forum_id=11190&group_id=3679

discovery and data mining, KDD 01, pages 269-274, New York, NY, USA, 2001. ACM.

[2] G. Govaert and M. Nadif. Block clustering with bernoulli mixture models: Comparison of
different approaches. Computational Statistics € Data Analysis, 52(6):3233-3245, 2008.

[3] G. Govaert and M. Nadif. Latent block model for contingency table. Communications in
Statistics - Theory and Methods, 39(3):416-425, 2010.

[4] Gérard Govaert and Mohamed Nadif. Clustering with block mixture models. Pattern Recog-
nition, 36(2):463 — 473, 2003.

13

	Introduction
	Package details
	cocluster function
	The coclusterBinary function
	The coclusterCategorical function
	The coclusterContinuous function
	The coclusterContingency function

	coclusterStrategy function
	Understanding various input parameters

	Model Parameters
	Binary Models
	Categorical Models
	Continuous Models
	Contingency Models

	Example using simulated Binary dataset

	Examples with real datasets
	Image segmentation
	Document clustering

	Remarks

