ATPOL grid was developed in late ’60s in Institute of Botany at Jagiellonian University in Kraków. The backgrounds and methodology is described in (Zając 1978a, 1978b). The extensive mathematical research and GIS implementation was done by Łukasz Komsta and Marek Verey (Komsta 2016; Verey 2017). Algorithms provided by Komsta on OpenATPOL are basis for implementation in atpolR package.
In our example we will take a published distribution map of Erigeron acris L. subsp. acris published in (Zając and Zając 2019). The image was scanned with resolution 150 dpi and georefenced using QGIS.
par(mar = c(0, 0, 0, 0))
<- system.file("extdata/eriacr.tif", package = "atpolR")
tif <- terra::rast(tif)
r ::plotRGB(r) terra
Erigeron acris L. subsp. acris distribution taken from (Zając and Zając 2019)
There is hundreds of records. To get all of them we will use
check_atpol_square()
function, which takes as the arguments
the POINT coordinates and a raster, and checks if the value of raster
cell corresponding to some arbitrary buffer around the POINT equals
zero. As the points are drawn in centers of ATPOL 10 km grid, we will
check the values of atpol10k() centroids with an buffer with default
radius of 1200 m. Depending of the quality of scan and precision of
georeferencing, it might be useful to adjust a buffer a bit.
Our raster usually consist of 3 layers, one for each R, G, B component. The difference between them are visible on Fig. @ref(fig:rgbraster).
R, G and B layers of a raster
Looking on scan shown on Fig. @ref(fig:eriacr) we can see a lot of green and blue components. For further analysis we will take the first layer only. Please note: depending of the scan quality and further image process, you may find other layer more useful.
The values of the layer are continuous, from 0 to 255. For
simplification and easier analysis we will classify the layer, just
assigning two values: 0 and 1. We will create a reclassification matrix
rclmat
and apply classify()
function form
terra package.
<- c(0,120, 0,
m 120,255, 1)
<- matrix(m, ncol=3, byrow=TRUE)
rclmat <- terra::classify(r[[1]], rclmat, include.lowest = TRUE) rc
Reclasiffied raster with 0 — as black and 1 — as white
Having the raster prepared we can load the package and apply the
check_atpol_square()
function for all 10k grids:
library(atpolR)
<- atpol10k()|>
eriacr ::mutate(a = mapply(function(x) check_atpol_square(x, rc), centroid)) |>
dplyr::filter(a == "YES") dplyr
Let’s display the results:
eriacr#> Simple feature collection with 709 features and 2 fields
#> Active geometry column: geometry
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 170032.6 ymin: 140353.6 xmax: 839912.3 ymax: 778164.1
#> Projected CRS: ETRS89 / Poland CS92
#> First 10 features:
#> Name geometry centroid a
#> 1 AB15 POLYGON ((220203.9 698774.2... POINT (225196.1 693780.2) YES
#> 2 AB21 POLYGON ((180184 688879.5, ... POINT (185177.4 683882.5) YES
#> 3 AB23 POLYGON ((200188.2 688840.5... POINT (205181.3 683844.9) YES
#> 4 AB73 POLYGON ((200121.5 638968.2... POINT (205117.5 633972.6) YES
#> 5 AB83 POLYGON ((200110.3 628991.5... POINT (205106.9 623996) YES
#> 6 AB94 POLYGON ((210103.7 619001, ... POINT (215100.6 614006.2) YES
#> 7 AB95 POLYGON ((220106.8 618988.3... POINT (225103.5 613994.1) YES
#> 8 AB96 POLYGON ((230109.2 618976, ... POINT (235105.7 613982.3) YES
#> 9 AC05 POLYGON ((220097.7 609011.9... POINT (225094.9 604017.7) YES
#> 10 AC06 POLYGON ((230100.4 609000.3... POINT (235097.4 604006.7) YES
There is 709 observations (grids) in data set.
Let’s have a closer look on BE square:
<- atpol100k() |>
BE subset(Name == "BE") |>
::st_bbox()
sfpar(pty = "s")
plot(NA, type = "n", xlim = c(BE[1], BE[3]), ylim = c(BE[2], BE[4]), axes = FALSE, xlab = "", ylab = "")
::plot(rc, legend = FALSE, add = TRUE)
terra
atpol100k() |>
subset(Name == "BE") |>
::st_cast("LINESTRING") |>
sf::plot(add = TRUE, col = "blue", lwd = 1.2)
terra
|>
eriacr subset(substr(Name, 1, 2) == "BE") |>
::st_set_geometry("centroid") |>
sf::plot(pch = 16, cex = 1.2, col = "blue", add = TRUE) terra
So far, so god. Our data set corresponds to published data. In next step we will extend it with our own observations.
Please note, that check_atpol_square()
function can give
false positive results in case of noisy scans. Also it doesn’t recognize
the different shapes used in original publications for different
Let’s assume, we want to extend the data set by adding own
observations. If we already know the grid name, we can simply filter out
the grid created by atpol10k()
function by the Name. If we
don’t have the grid, however we have coordinates, we can use
latlon_to_grid()
function. In below example we are using
both methods:
<- atpol10k() |>
myData ::filter(Name %in% c("BE68",
dplyrlatlon_to_grid(51.13619, 16.95069, 4))) |>
::mutate(a = "myData") dplyr
And let’s add them to above BE square plot:
|>
myData ::st_set_geometry("centroid") |>
sf::plot(pch = 16, cex = 1.8, col = "red", add = TRUE) terra
Data set extended with our observations in grids BE48 and BE68
atpolR package provides a function
plot_points_on_atpol()
which can be used to visualize the
data set. Let’s merge our two data sets (eriacr
and
myData
) and plot them together. For removing any duplicates
we can use unique.data.frame()
function from base R, or
distinct(Name)
from dplyr package.
<- eriacr |>
eriacr rbind(myData) |>
unique.data.frame()
And final plot.
plotPoitsOnAtpol(eriacr$centroid, main = "Erigeron acris subsp. acris", cex = 0.6)
Combined dataset drawn on ATPOL grid
Two basic functions latlon_to_grid()
and
grid_to_latlon()
allows to quickly convert geographical
coordinates (given in WGS 84 latitude and longitude degrees) to ATPOL
grid and from grid to coordinates respectively.
latlon_to_grid(51.01234, 17.23456, 4)
#> [1] "CE50"
latlon_to_grid(51.01234, 17.23456, 6)
#> [1] "CE5086"
The firs two arguments latlon_to_grid()
function are
latitude and longitude respectively. The third argument is the length of
returned grid; it might be even number between 2 and 12.
grid_to_latlon("CE50")
#> [1] 51.04487 17.21736
By default grid_to_latlon()
returns the center of grid
square. If you wish to get it’s corners, you can pass another 2
arguments to the function, which are X and Y offsets, like:
grid_to_latlon("CE50", xoffset = 1, yoffset = 1)
#> [1] 51.00114 17.29032
for bottom right corner.
ATPOL 10km x 10km and 100km x 100k grids are generated by
atpol10k()
and atpol100k()
functions
respectively. It returns set of simple features geometries with grids as
polygons:
atpol100k()
#> Simple feature collection with 44 features and 1 field
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 170009.4 ymin: 110297.1 xmax: 870031.4 ymax: 808651.9
#> Projected CRS: ETRS89 / Poland CS92
#> First 10 features:
#> Name geometry
#> 1 AB POLYGON ((170084 619056.2, ...
#> 2 AC POLYGON ((170014.5 519234.8...
#> 3 AD POLYGON ((170011.8 459334.6...
#> 4 AE POLYGON ((170072 359522.7, ...
#> 5 BA POLYGON ((270217.8 718621.1...
#> 6 BB POLYGON ((270112.1 618931.2...
#> 7 BC POLYGON ((270062.8 519180.9...
#> 8 BD POLYGON ((270060.2 459322.1...
#> 9 BE POLYGON ((270101.2 359577, ...
#> 10 BF POLYGON ((270198.4 259898.5...
For 10k grid it returns a centroids as well:
atpol10k()
#> Simple feature collection with 4400 features and 1 field
#> Active geometry column: geometry
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 170009.4 ymin: 110297.1 xmax: 870031.4 ymax: 808651.9
#> Projected CRS: ETRS89 / Poland CS92
#> First 10 features:
#> Name geometry centroid
#> 101 AB00 POLYGON ((170215.7 708847.7... POINT (175207.9 703850.1)
#> 102 AB01 POLYGON ((180217.9 708825.6... POINT (185210 703828.7)
#> 103 AB02 POLYGON ((190219.4 708804.1... POINT (195211.3 703808)
#> 104 AB03 POLYGON ((200220 708783.2, ... POINT (205211.9 703787.9)
#> 105 AB04 POLYGON ((210219.9 708763.1... POINT (215211.7 703768.4)
#> 106 AB05 POLYGON ((220219.1 708743.6... POINT (225210.8 703749.6)
#> 107 AB06 POLYGON ((230217.5 708724.8... POINT (235209.1 703731.5)
#> 108 AB07 POLYGON ((240215.3 708706.6... POINT (245206.8 703714)
#> 109 AB08 POLYGON ((250212.4 708689.1... POINT (255203.9 703697.2)
#> 110 AB09 POLYGON ((260208.9 708672.3... POINT (265200.3 703681.1)
Please note, that ATPOL grids are projected in EPSG:2180 coordinate reference system, commonly used in Poland.
Function atpol_div(grid, divider)
divides any given
grid
to smaller grids by 2, 4 or 5 as proposed in (Verey and Komsta 2018).
Division by 2, 4 and 5 with adopted naming convection d, c, p
par(mar = c(0, 0, 0, 0))
<- boundaryPL()
b plot(atpol100k()$geometry)
plot(b, col = "red", add = TRUE)
Boundary of Poland on ATPOL grid.