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Scope and Purpose of this Document

This document is a user manual for the R package apcluster [1]. It is only meant as a gentle
introduction into how to use the basic functions implemented in this package. Not all features of
the R package are described in full detail. Such details can be obtained from the documentation
enclosed in the R package. Further note the following: (1) this is neither an introduction to affin-
ity propagation nor to clustering in general; (2) this is not an introduction to R. If you lack the
background for understanding this manual, you first have to read introductory literature on these
subjects.
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1 Introduction

Affinity propagation (AP) is a relatively new clustering algorithm that has been introduced by
Brendan J. Frey and Delbert Dueck [5].1 The authors themselves describe affinity propagation as
follows:2

“An algorithm that identifies exemplars among data points and forms clusters of data
points around these exemplars. It operates by simultaneously considering all data
point as potential exemplars and exchanging messages between data points until a
good set of exemplars and clusters emerges.”

AP has been applied in various fields recently, among which bioinformatics is becoming in-
creasingly important. Frey and Dueck have made their algorithm available as Matlab code.1 Mat-
lab, however, is relatively uncommon in bioinformatics. Instead, the statistical computing platform
R has become a widely accepted standard in this field. In order to leverage affinity propagation
for bioinformatics applications, we have implemented affinity propagation as an R package. Note,
however, that the given package is in no way restricted to bioinformatics applications. It is as
generally applicable as Frey’s and Dueck’s original Matlab code.1

Starting with Version 1.1.0, the apcluster package also features exemplar-based agglomer-
ative clustering which can be used as a clustering method on its own or for creating a hierarchy
of clusters that have been computed previously by affinity propagation. Leveraged Affinity Prop-
agation, a variant of AP especially geared to applications involving large data sets, has first been
included in Version 1.3.0.

2 Installation

2.1 Installation via CRAN

The R package apcluster (current version: 1.3.0) is part of the Comprehensive R Archive Net-
work (CRAN)3. The simplest way to install the package, therefore, is to enter the following com-
mand into your R session:

> install.packages("apcluster")

2.2 Manual installation

If, for what reason ever, you prefer to install the package manually, download the package file
suitable for your computer system and copy it to your harddisk. Open the package’s page at
CRAN4 and then proceed as follows.

1http://www.psi.toronto.edu/affinitypropagation/
2quoted from http://www.psi.toronto.edu/affinitypropagation/faq.html#def
3http://cran.r-project.org/
4http://cran.r-project.org/web/packages/apcluster/index.html

http://www.psi.toronto.edu/affinitypropagation/
http://www.psi.toronto.edu/affinitypropagation/faq.html#def
http://cran.r-project.org/
http://cran.r-project.org/web/packages/apcluster/index.html
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Manual installation under Windows

1. Download apcluster_1.3.0.zip and save it to your harddisk

2. Open the R GUI and select the menu entry

Packages | Install package(s) from local zip files...

(if you use R in a different language, search for the analogous menu entry). In the file dialog
that opens, go to the folder where you placed apcluster_1.3.0.zip and select this file.
The package should be installed now.

Manual installation under Linux/UNIX/MacOS

1. Download apcluster_1.3.0.tar.gz and save it to your harddisk.

2. Open a shell window and change to the directory where you put apcluster_1.3.0.tar.gz.
Enter

R CMD INSTALL apcluster_1.3.0.tar.gz

to install the package.

2.3 Compatibility issues

Both the Windows and the Linux/UNIX/MacOS version available from CRAN have been built
using the latest version, R 2.15.2. However, the package should work without severe problems on
R versions ≥2.10.1.

3 Getting Started

To load the package, enter the following in your R session:

> library(apcluster)

If this command terminates without any error message or warning, you can be sure that the package
has been installed successfully. If so, the package is ready for use now and you can start clustering
your data with affinity propagation.

The package includes both a user manual (this document) and a reference manual (help pages
for each function). To view the user manual, enter

> vignette("apcluster")

Help pages can be viewed using the help command. It is recommended to start with

> help(apcluster)
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Affinity propagation does not require the data samples to be of any specific kind or structure.
AP only requires a similarity matrix, i.e., given l data samples, this is an l × l real-valued matrix
S, in which an entry Sij corresponds to a value measuring how similar sample i is to sample j.
AP does not require these values to be in a specific range. Values can be positive or negative. AP
does not even require the similarity matrix to be symmetric (although, in most applications, it will
be symmetric anyway). A value of −∞ is interpreted as “absolute dissimilarity”. The higher a
value, the more similar two samples are considered.

To get a first impression, let us create a random data set in R2 as the union of two “Gaussian
clouds”:

> cl1 <- cbind(rnorm(30, 0.3, 0.05), rnorm(30, 0.7, 0.04))

> cl2 <- cbind(rnorm(30, 0.7, 0.04), rnorm(30, 0.4, .05))

> x1 <- rbind(cl1, cl2)

> plot(x1, xlab="", ylab="", pch=19, cex=0.8)
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The package apcluster offers several different ways for clustering data. The simplest way is the
following:

> apres1a <- apcluster(negDistMat(r=2), x1)

In this example, the function apcluster() first computes a similarity matrix for the input data
x1 using the similarity function passed as first argument. The choice negDistMat(r=2) is the
standard similarity measure used in the papers of Frey and Dueck — negative squared distances.

Alternatively, one can compute the similarity matrix beforehand and call apcluster() for the
similarity matrix (for a more detailed description of the differences, see 9.1):

> s1 <- negDistMat(x1, r=2)

> apres1b <- apcluster(s1)
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The function apcluster() creates an object belonging to the S4 class APResult which is
defined by the present package. To get detailed information on which data are stored in such
objects, enter

> help(APResult)

The simplest thing we can do is to enter the name of the object (which implicitly calls show()) to
get a summary of the clustering result:

> apres1a

APResult object

Number of samples = 60

Number of iterations = 131

Input preference = -0.1416022

Sum of similarities = -0.1955119

Sum of preferences = -0.2832044

Net similarity = -0.4787163

Number of clusters = 2

Exemplars:

25 44

Clusters:

Cluster 1, exemplar 25:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30

Cluster 2, exemplar 44:

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60

For two-dimensional data sets, the apcluster package allows for plotting the original data set
along with a clustering result:

> plot(apres1a, x1)
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In this plot, each color corresponds to one cluster. The exemplar of each cluster is marked by a
box and all cluster members are connected to their exemplars with lines.

A heatmap is plotted with heatmap():

> heatmap(apres1a)
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In the heatmap, the samples are grouped according to clusters. The above heatmap confirms again
that there are two main clusters in the data. A heatmap can be plotted for the object apres1a be-
cause apcluster(), if called for data and a similarity function, by default includes the similarity
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matrix in the output object (unless it was called with the switch includeSim=FALSE). If the simi-
larity matrix is not included (which is the default if apcluster() has been called on a similarity
matrix directly), heatmap() must be called with the similarity matrix as second argument:

> heatmap(apres1b, s1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Suppose we want to have better insight into what the algorithm did in each iteration. For this
purpose, we can supply the option details=TRUE to apcluster():

> apres1c <- apcluster(s1, details=TRUE)

This option tells the algorithm to keep a detailed log about its progress. For example, this allows
us to plot the three performance measures that AP uses internally for each iteration:

> plot(apres1c)
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These performance measures are:

1. Sum of exemplar preferences

2. Sum of similarities of exemplars to their cluster members

3. Net fitness: sum of the two former

For details, the user is referred to the original affinity propagation paper [5] and the supplementary
material published on the affinity propagation Web page.1 We see from the above plot that the
algorithm has not made any change for the last 100 (of 131!) iterations. AP, through its parameter
convits, allows to control for how long AP waits for a change until it terminates (the default is
convits=100). If the user has the feeling that AP will probably converge quicker on his/her data
set, a lower value can be used:

> apres1c <- apcluster(s1, convits=15, details=TRUE)

> apres1c

APResult object

Number of samples = 60

Number of iterations = 46

Input preference = -0.1416022

Sum of similarities = -0.1955119

Sum of preferences = -0.2832044

Net similarity = -0.4787163

Number of clusters = 2

Exemplars:

25 44

Clusters:

Cluster 1, exemplar 25:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30

Cluster 2, exemplar 44:

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60

4 Adjusting Input Preferences

Apart from the similarity matrix itself, the most important input parameter of AP is the so-called
input preference which can be interpreted as the tendency of a data sample to become an exemplar
(see [5] and supplementary material on the AP homepage1 for a more detailed explanation). This
input preference can either be chosen individually for each data sample or it can be a single value
shared among all data samples. Input preferences largely determine the number of clusters, in
other words, how fine- or coarse-grained the clustering result will be.
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The input preferences one can specify for AP are roughly in the same range as the similarity
values, but they do not have a straightforward interpretation. Frey and Dueck have introduced the
following rule of thumb: “The shared value could be the median of the input similarities (resulting
in a moderate number of clusters) or their minimum (resulting in a small number of clusters).” [5]

Our AP implementation uses the median rule by default if the user does not supply a custom
value for the input preferences. In order to provide the user with a knob that is — at least to some
extent — interpretable, the function apcluster() provides an argument q that allows to set the
input preference to a certain quantile of the input similarities: resulting in the median for q=0.5
and in the minimum for q=0. As an example, let us add two more “clouds” to the data set from
above:

> cl3 <- cbind(rnorm(20, 0.50, 0.03), rnorm(20, 0.72, 0.03))

> cl4 <- cbind(rnorm(25, 0.50, 0.03), rnorm(25, 0.42, 0.04))

> x2 <- rbind(x1, cl3, cl4)

> plot(x2, xlab="", ylab="", pch=19, cex=0.8)
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For the default setting, we obtain the following result:

> apres2a <- apcluster(negDistMat(r=2), x2)

> plot(apres2a, x2)
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For the minimum of input similarities, we obtain the following result:

> apres2b <- apcluster(negDistMat(r=2), x2, q=0)

> plot(apres2b, x2)
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So we see that AP is quite robust against a reduction of input preferences in this example which
may be caused by the clear separation of the four clusters. If we increase input preferences,
however, we can force AP to split the four clusters into smaller sub-clusters:

> apres2c <- apcluster(negDistMat(r=2), x2, q=0.8)

> plot(apres2c, x2)
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Note that the input preference used by AP can be recovered from the output object (no matter
which method to adjust input preferences has been used). On the one hand, the value is printed if
the object is displayed (by show or by entering the output object’s name). On the other hand, the
value can be accessed directly via the slot p:

> apres2c@p

[1] -0.009144609

As noted above already, we can produce a heatmap by calling heatmap() for an APResult

object:

> heatmap(apres2c)
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The order in which the clusters are arranged in the heatmap is determined by means of joining the
cluster agglomeratively (see Section 5 below). Although the affinity propagation result contains
13 clusters, the heatmap indicates that there are actually four clusters which can be seen as very
brightly colored squares along the diagonal. We also see that there seem to be two pairs of adjacent
clusters, which can be seen from the fact that there are two relatively light-colored blocks along
the diagonal encompassing two of the four clusters in each case. If we look back at how the data
have been created (see also plots above), this is exactly what is to be expected.

The above example with q=0 demonstrates that setting input preferences to the minimum of
input similarities does not necessarily result in a very small number of clusters (like one or two).
This is due to the fact that input preferences need not necessarily be exactly in the range of the
similarities. To determine a meaningful range, an auxiliary function is available which, in line
with Frey’s and Dueck’s Matlab code,1 allows to compute a minimum value (for which one or at
most two clusters would be obtained) and a maximum value (for which as many clusters as data
samples would be obtained):

> preferenceRange(apres2b@sim)

[1] -5.136255e+00 -1.818538e-06

The function returns a two-element vector with the minimum value as first and the maximum value
as second entry. The computations are done approximately by default. If one is interested in exact
bounds, supply exact=TRUE (resulting in longer computation times).

Many clustering algorithms need to know a pre-defined number of clusters. This is often a
major nuisance, since the exact number of clusters is hard to know for non-trivial (in particular,
high-dimensional) data sets. AP avoids this problem. If, however, one still wants to require a fixed
number of clusters, this has to be accomplished by a search algorithm that adjusts input prefer-
ences in order to produce the desired number of clusters in the end. For convenience, this search
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algorithm is available as a function apclusterK() (analogous to Frey’s and Dueck’s Matlab im-
plementation1). We can use this function to force AP to produce only two clusters (merging the
two pairs of adjacent clouds into one cluster each). Analogously to apcluster(), apclusterK()
supports two variants — it can either be called for a similarity measure and data or on a similarity
matrix directly.

> apres2d <- apclusterK(negDistMat(r=2), x2, K=2, verbose=TRUE)

Trying p = -0.005138071

Number of clusters: 16

Trying p = -0.05136435

Number of clusters: 4

Trying p = -0.5136271

Number of clusters: 4

Trying p = -2.568128 (bisection step no. 1 )

Number of clusters: 2

Number of clusters: 2 for p = -2.568128

> plot(apres2d, x2)
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5 Exemplar-based Agglomerative Clustering

The function aggExCluster() realizes what can best be described as “exemplar-based agglom-
erative clustering”, i.e. agglomerative clustering whose merging objective is geared towards the
identification of meaningful exemplars. Analogously to apcluster(), aggExCluster() sup-
ports two variants — it can either be called for a similarity measure and data or on matrix of
pairwise similarities.
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5.1 Getting started

Let us start with a simple example:

> aggres1a <- aggExCluster(negDistMat(r=2), x1)

> aggres1a

AggExResult object

Number of samples = 60

Maximum number of clusters = 60

The output object aggres1a contains the complete cluster hierarchy. As obvious from the above
example, the show() method only displays the most basic information. Calling plot() on an
object that was the result of aggExCluster() (an object of class AggExResult), a dendrogram is
plotted:

> plot(aggres1a)

Cluster dendrogram
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The heights of the merges in the dendrogram correspond to the merging objective: the higher the
vertical bar of a merge, the less similar the two clusters have been. The dendrogram, therefore,
clearly indicates two clusters. Heatmaps can be produced analogously as for APResult objects
with the additional property that dendrograms are displayed on the top and on the left:

> heatmap(aggres1a, s1)
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Once we have confirmed the number of clusters, which is clearly 2 according to the dendro-
gram and the heatmap above, we can extract the level with two clusters from the cluster hierarchy.
In concordance with standard R terminology, the function for doing this is called cutree():

> cl1a <- cutree(aggres1a, k=2)

> cl1a

ExClust object

Number of samples = 60

Number of clusters = 2

Exemplars:

44 25

Clusters:

Cluster 1, exemplar 44:

50 55 45 52 57 47 42 32 34 35 37 33 43 49 51 56 40 41 48 31 38 46 59

58 44 54 36 39 53 60

Cluster 2, exemplar 25:

10 29 11 23 28 13 20 6 12 7 18 17 30 2 8 14 15 16 22 21 25 24 4 1 3

27 9 26 5 19

> plot(cl1a, x1)
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5.2 Merging clusters obtained from affinity propagation

The most important application of aggExCluster() (and the reason why it is part of the apcluster
package) is that it can be used for creating a hierarchy of clusters starting from a set of clusters
previously computed by affinity propagation. The examples in Section 4 indicate that it may some-
times be tricky to define the right input preference. Exemplar-based agglomerative clustering on
affinity propagation results provides an additional tool for finding the right number of clusters.

Let us revisit the four-cluster example from Section 4. We can apply aggExCluster() to
an affinity propagation result if we run it on the affinity propagation result supplied as second
argument x:

> aggres2a <- aggExCluster(x=apres2c)

> aggres2a

AggExResult object

Number of samples = 105

Maximum number of clusters = 13

The result apres2c had 13 clusters. aggExCluster() successively joins these clusters until only
one cluster is left. The dendrogram of this cluster hierarchy is given as follows:

> plot(aggres2a)
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Cluster dendrogram
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The following heatmap coincides with the one shown in Section 4 above. This is not surpris-
ing, since the heatmap plot for an affinity propagation result uses aggExCluster() internally to
arrange the clusters:

> heatmap(aggres2a)
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Once we are more or less sure about the number of clusters, we extract the right clustering
level from the hierarchy. For demonstation purposes, we do this for k = 5, . . . , 2 in the following
plots:
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> par(mfrow=c(2,2))

> for (k in 5:2)

+ plot(aggres2a, x2, k=k, main=paste(k, "clusters"))
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There is one obvious, but important, condition: applying aggExCluster() to an affinity prop-
agation result only makes sense if the number of clusters to start from is at least as large as the
number of true clusters in the data set. Clearly, if the number of clusters is already too small, then
merging will make the situation only worse.

5.3 Details on the merging objective

Like any other agglomerative clustering method (see, e.g., [6, 10, 12]), aggExCluster() merges
clusters until only one cluster containing all samples is obtained. In each step, two clusters
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are merged into one, i.e. the number of clusters is reduced by one. The only aspect in which
aggExCluster() differs from other methods is the merging objective.

Suppose we consider two clusters for possible merging, each of which is given by an index
set:

I = {i1, . . . , inI} and J = {j1, . . . , jnJ}

Then we first determine the potential joint exemplar ex(I, J) as the sample that maximizes the
average similarity to all samples in the joint cluster I ∪ J :

ex(I, J) = argmax
i∈I∪J

1

nI + nJ
·
∑

j∈I∪J
Sij

Recall that S denotes the similarity matrix and Sij corresponds to the similarity of the i-th and the
j-th sample. Then the merging objective is computed as

obj(I, J) =
1

2
·
( 1

nI
·
∑
j∈I

Sex(I,J)j +
1

nJ
·
∑
k∈J

Sex(I,J)k

)
,

which can be best described as “balanced average similarity to the joint exemplar”. In each step,
aggExCluster() considers all pairs of clusters in the current cluster set and joins that pair of
clusters whose merging objective is maximal. The rationale behind the merging objective is that
those two clusters should be joined that are best described by a joint exemplar.

6 Leveraged Affinity Propagation

Leveraged affinity propagation is based on the idea that, for large data sets with many samples, the
cluster structure is already visible on a subset of the samples. Instead of evaluating the similarity
matrix for all sample pairs, the similarities of all samples to a subset of samples are computed
— resulting in a non-square similarity matrix. Clustering is performed on this reduced similarity
matrix allowing for clustering large data sets more efficiently.

In this form of clustering, several rounds of affinity propagation are executed with different
sample subsets — iteratively improving the clustering result. The implementation is based on
the Matlab code of Frey and Dueck provided on the AP Web page1. Apart from dynamic im-
provements through reduced amount of distance calculations and faster clustering, the memory
consumption is also reduced not only in terms of the memory used for storing the similarity ma-
trix, but also in terms of memory used by the clustering algorithm internally.

The two main parameters controlling leveraged AP clustering are the fraction of data points
that should be selected for clustering (parameter frac) and the number of sweeps or repetitions
of individual clustering runs (parameter sweeps). Initially, a sample subset is selected randomly.
For the subsequent repetitions, the exemplars of the previous run are kept in the sample subset and
the other samples in the subset are chosen randomly again. The best result of all sweeps with the
highest net similarity is kept as final clustering result.

When called with a similarity measure and a dataset the function apclusterL() performs
both the calculation of similarities and leveraged affinity propagation. In the example below, we
use 10% of the samples and run 5 repetitions. The function implementing the similarity measure
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can either be passed as a function or as a function name (which must of course be resolvable
in the current environment). Additional parameters for the distance calculation can be passed to
apclusterL() which passes them on to the function implementing the similarity measure via the
... argument list. In any case, this function must be implemented such that it expects the data in
its first argument x (a subsettable data structure, such as, a vector, matrix, data frame, or list) and
that it takes the selection of “column objects” as a second argument sel which must be a set of
column indices. The functions negDistMat(), expSimMat(), linSimMat(), corSimMat(), and
linKernel() provided by the apcluster package also support the easy creation of parameter-
free similarity measures (in R terminology called “closures”). We recommend this variant, as it is
safer in terms of possible name conflicts between arguments of apclusterL() and arguments of
the similarity function.

Here is an example that makes use of a closure for defining the similarity measure:

> cl5 <- cbind(rnorm(100, 0.3, 0.05), rnorm(100, 0.7, 0.04))

> cl6 <- cbind(rnorm(100, 0.70, 0.04), rnorm(100, 0.4, 0.05))

> x3 <- rbind(cl5, cl6)

> apres3 <- apclusterL(s=negDistMat(r=2), x=x3, frac=0.1, sweeps=5, p=-0.2)

> apres3

APResult object

Number of samples = 200

Number of sel samples = 20 (10%)

Number of sweeps = 5

Number of iterations = 136

Input preference = -0.2

Sum of similarities = -0.6662571

Sum of preferences = -0.6

Net similarity = -1.266257

Number of clusters = 3

Exemplars:

46 99 155

Clusters:

Cluster 1, exemplar 46:

1 2 3 7 9 12 13 16 17 19 20 21 23 25 26 30 32 33 34 35 38 39 42 44

45 46 47 48 50 51 52 54 56 57 58 63 64 65 66 67 68 69 70 71 73 74 75

76 77 80 81 82 83 87 88 93 94 96 97 100

Cluster 2, exemplar 99:

4 5 6 8 10 11 14 15 18 22 24 27 28 29 31 36 37 40 41 43 49 53 55 59

60 61 62 72 78 79 84 85 86 89 90 91 92 95 98 99

Cluster 3, exemplar 155:

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
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169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

> plot(apres3, x3)
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The function apclusterL() creates a result object of S4 class APResult that contains the
same information as for standard AP. Additionally, the selected sample subset, the associated
rectangular similarity matrix for the best sweep (provided that includeSim=TRUE) and the net
similarities of all sweeps are returned in this object.

> dim(apres3@sim)

[1] 200 20

> apres3@sel

23 33 46 64 87 92 93 99 118 123 136 141 150 155 172 180 182 185

23 33 46 64 87 92 93 99 118 123 136 141 150 155 172 180 182 185

188 200

188 200

> apres3@netsimLev

[1] -1.292973 -1.288784 -1.271729 -1.266257 -1.269638
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The APResult object returned by apclusterL() also contains the slot sel with the selected
samples of the best run and the slot netsimLev which contains the net similarities of the individual
sweeps. These slots are not displayed by the show() method. The result returned by leveraged
affinity propagation can be used for further processing in the same way as a result object returned
from apcluster(), e.g., merging of clusters with agglomerative clustering can be performed.

For heatmap plotting either the parameter includeSim=TRUE must be set in apcluster() or
apclusterL() to make the similarity matrix available in the result object or the similarity matrix
must be passed as second parameter to heatmap() explicitly. The heatmap for leveraged AP looks
slightly different compared to the heatmap for affinity propagation because the number of samples
is different in both dimensions.

> heatmap(apres3)

11
8

12
3

13
6

14
1

15
0

15
5

17
2

18
0

18
2

18
5

18
8

20
0 23 33 46 64 87 93 92 99

99989592919089868584797872626160595553494341403736312928272422181514111086
54
10097969493888783828180777675747371706968676665646358575654525150484746454442393835343332302625232120191716131297
32
1200199198197196195194193192191190189188187186185184183182181180179178177176175174173172171170169168167166165164163162161160159158157156155154153152151150149148147146145144143142141140139138137136135134133132131130129128127126125124123122121120119118117116115114113112111110109108107106105104103102101

Often selected samples will be chosen as exemplars because, only for them, the full similarity
information is available. This means that the fraction of samples should be selected in a way such
that a considerable number of samples is available for each expected cluster. Please also note that
a data set of the size used in this example can easily be clustered with regular affinity propagation.
The data set was kept small to keep the package build time short and the amount of data output in
the manual reasonable.

For users requiring a higher degree of flexibility, e.g., for user-specific distance calculations
or user-specific selection of the sample subset apclusterL() called with a rectangular similiarity
matrix provides the possibility to perform affinity propagation on a rectangular similarity matrix.
See the source code of apclusterL() with signature s=function and x=any for an example how
to embed apclusterL() into a complete loop performing leveraged AP. The package-provided
functions for distance calculation support the generation of rectangular similarity matrices (see
Chapter 8).
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7 A Toy Example with Biological Sequences

As noted in the introduction above, one of the goals of this package is to leverage affinity propaga-
tion in bioinformatics applications. In order to demonstrate the usage of the package in a biological
application, we consider a small toy example here.

The package comes with a toy data set ch22Promoters that consists of sub-sequences of pro-
moter regions of 150 random genes from the human chromosome no. 22 (according to the human
genome assembly hg18). Each sequence consists of the 1000 bases upstream of the transcription
start site of each gene. Suppose we want to cluster these sequences in order to find out whether
groups of promoters can be identified on the basis of the sequence only and, if so, to identify
exemplars that are most typical for these groups.

> data(ch22Promoters)

> names(ch22Promoters)[1:5]

[1] "NM_001169111" "NM_012324" "NM_144704" "NM_002473"

[5] "NM_001184970"

> substr(ch22Promoters[1:5], 951, 1000)

NM_001169111

"GCACGCGCTGAGAGCCTGTCAGCGGCTGCGCCCGTGTGCGCATGCGCAGC"

NM_012324

"CCGCCTCCCCCGCCGCCCTCCCCGCGCCGCCGCGGAGTCCGGGCGAGGTG"

NM_144704

"GTGCTGGGCCCGCGGGCTCCCCGGCCGCAGTGCAAACGCAGCGCCAGACA"

NM_002473

"CAGGCTCCGCCCCGGAGCCGGCTCCCGGCTGGGAATGGTCCCGCGGCTCC"

NM_001184970

"GGGGCGGGGCTCGGTGTCCGGTAGCCAATGGACAGAGCCCAGCGGGAGCG"

Obviously, these are classical nucleotide sequences, each of which is identified by the RefSeq
identifier of the gene the promoter sequence stems from.

In order to compute a similarity matrix for this data set, we choose (without further justifica-
tion, just for demonstration purposes) the simple spectrum kernel [8] with a sub-sequence length
of k = 6. We use the implementation from the kernlab package [7] to compute the similarity
matrix in a convenient way:

> library(kernlab)

> promSim <- kernelMatrix(stringdot(length=6, type="spectrum"), ch22Promoters)

> rownames(promSim) <- names(ch22Promoters)

> colnames(promSim) <- names(ch22Promoters)

Now we run affinity propagation on this similarity matrix:
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> promAP <- apcluster(promSim, q=0)

> promAP

APResult object

Number of samples = 150

Number of iterations = 185

Input preference = 0.01367387

Sum of similarities = 57.76715

Sum of preferences = 0.109391

Net similarity = 57.87655

Number of clusters = 8

Exemplars:

NM_001199580 NM_022141 NM_152868 NM_001128633 NM_052945 NM_001099294

NM_152513 NM_080764

Clusters:

Cluster 1, exemplar NM_001199580:

NM_001169111 NM_012324 NM_144704 NM_002473 NM_005198 NM_004737

NM_007194 NM_014292 NM_001199580 NM_032758 NM_003325 NM_014876

NM_000407 NM_053004 NM_023004 NM_001130517 NM_002882 NM_001169110

NM_020831 NM_001195071 NM_031937 NM_001164502 NM_152299 NM_014509

NM_138433 NM_006487 NM_005984 NM_001085427 NM_013236

Cluster 2, exemplar NM_022141:

NM_001184970 NM_002883 NM_001051 NM_014460 NM_153615 NM_022141

NM_001137606 NM_001184971 NM_053006 NM_015367 NM_000395 NM_012143

NM_004147

Cluster 3, exemplar NM_152868:

NM_015140 NM_138415 NM_001195072 NM_001164501 NM_014339 NM_152868

NM_033257 NM_014941 NM_033386 NM_007311 NM_017911 NM_007098

NM_001670 NM_015653 NM_032775 NM_001172688 NM_001136029 NM_001024939

NM_002969 NM_052906 NM_152511 NM_001001479

Cluster 4, exemplar NM_001128633:

NM_001128633 NM_002133 NM_015672 NM_013378 NM_001128633 NM_000106

NM_152855

Cluster 5, exemplar NM_052945:

NM_001102371 NM_017829 NM_020243 NM_002305 NM_030882 NM_000496

NM_022720 NM_024053 NM_052945 NM_018006 NM_014433 NM_032561

NM_001142964 NM_181492 NM_003073 NM_015366 NM_005877 NM_148674

NM_005008 NM_017414 NM_000185 NM_001135911 NM_001199562 NM_003935

NM_003560 NM_001166242 NM_001165877

Cluster 6, exemplar NM_001099294:

NM_004900 NM_001097 NM_174975 NM_004377 NM_001099294 NM_004121

NM_001146288 NM_002415 NM_001159546 NM_004327 NM_152426 NM_004861

NM_001193414 NM_001145398 NM_015715 NM_021974 NM_001159554

NM_001171660 NM_015124 NM_006932 NM_152906 NM_001002034 NM_000754
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NM_145343

Cluster 7, exemplar NM_152513:

NM_001135772 NM_007128 NM_014227 NM_203377 NM_152267 NM_017590

NM_001098270 NM_138481 NM_012401 NM_014303 NM_001144931 NM_001098535

NM_000262 NM_152510 NM_003347 NM_001039141 NM_001014440 NM_152513

NM_015330 NM_138338 NM_032608

Cluster 8, exemplar NM_080764:

NM_175878 NM_003490 NM_001039366 NM_001010859 NM_014306 NM_080764

NM_001164104

So we obtain 8 clusters in total. The corresponding heatmap looks as follows (note that we have
to supply the similarity matrix, as it is not included by default if apcluster() is called with the
similarity matrix; the reason is that, for large data sets, it is more memory-efficient not to make
multiple copies of the similarity matrix; see also 9.1):

> heatmap(promAP, promSim)
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NM_145343NM_000754NM_001002034NM_152906NM_006932NM_015124NM_001171660NM_001159554NM_021974NM_015715NM_001145398NM_001193414NM_004861NM_152426NM_004327NM_001159546NM_002415NM_001146288NM_004121NM_001099294NM_004377NM_174975NM_001097NM_004900NM_001165877NM_001166242NM_003560NM_003935NM_001199562NM_001135911NM_000185NM_017414NM_005008NM_148674NM_005877NM_015366NM_003073NM_181492NM_001142964NM_032561NM_014433NM_018006NM_052945NM_024053NM_022720NM_000496NM_030882NM_002305NM_020243NM_017829NM_001102371NM_001001479NM_152511NM_052906NM_002969NM_001024939NM_001136029NM_001172688NM_032775NM_015653NM_001670NM_007098NM_017911NM_007311NM_033386NM_014941NM_033257NM_152868NM_014339NM_001164501NM_001195072NM_138415NM_015140NM_013236NM_001085427NM_005984NM_006487NM_138433NM_014509NM_152299NM_001164502NM_031937NM_001195071NM_020831NM_001169110NM_002882NM_001130517NM_023004NM_053004NM_000407NM_014876NM_003325NM_032758NM_001199580NM_014292NM_007194NM_004737NM_005198NM_002473NM_144704NM_012324NM_001169111NM_152855NM_000106NM_001128633NM_013378NM_015672NM_002133NM_001128633NM_004147NM_012143NM_000395NM_015367NM_053006NM_001184971NM_001137606NM_022141NM_153615NM_014460NM_001051NM_002883NM_001184970NM_032608NM_138338NM_015330NM_152513NM_001014440NM_001039141NM_003347NM_152510NM_000262NM_001098535NM_001144931NM_014303NM_012401NM_138481NM_001098270NM_017590NM_152267NM_203377NM_014227NM_007128NM_001135772NM_001164104NM_080764NM_014306NM_001010859NM_001039366NM_003490NM_175878

Let us now run agglomerative clustering to further join clusters.

> promAgg <- aggExCluster(promSim, promAP)

The resulting dendrogram is given as follows:

> plot(promAgg)



28 7 A Toy Example with Biological Sequences

Cluster dendrogram
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The dendrogram does not give a very clear indication about the best number of clusters. Let us
adopt the viewpoint for a moment that 5 clusters are reasonable.

> prom5 <- cutree(promAgg, k=5)

> prom5

ExClust object

Number of samples = 150

Number of clusters = 5

Exemplars:

NM_152513 NM_080764 NM_001128633 NM_001199580 NM_052945

Clusters:

Cluster 1, exemplar NM_152513:

NM_001135772 NM_007128 NM_014227 NM_203377 NM_152267 NM_017590

NM_001098270 NM_138481 NM_012401 NM_014303 NM_001144931 NM_001098535

NM_000262 NM_152510 NM_003347 NM_001039141 NM_001014440 NM_152513

NM_015330 NM_138338 NM_032608

Cluster 2, exemplar NM_080764:

NM_175878 NM_003490 NM_001039366 NM_001010859 NM_014306 NM_080764

NM_001164104

Cluster 3, exemplar NM_001128633:

NM_001184970 NM_002883 NM_001051 NM_014460 NM_153615 NM_022141

NM_001137606 NM_001184971 NM_053006 NM_015367 NM_000395 NM_012143

NM_004147 NM_001128633 NM_002133 NM_015672 NM_013378 NM_001128633

NM_000106 NM_152855

Cluster 4, exemplar NM_001199580:
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NM_001169111 NM_012324 NM_144704 NM_002473 NM_005198 NM_004737

NM_007194 NM_014292 NM_001199580 NM_032758 NM_003325 NM_014876

NM_000407 NM_053004 NM_023004 NM_001130517 NM_002882 NM_001169110

NM_020831 NM_001195071 NM_031937 NM_001164502 NM_152299 NM_014509

NM_138433 NM_006487 NM_005984 NM_001085427 NM_013236 NM_015140

NM_138415 NM_001195072 NM_001164501 NM_014339 NM_152868 NM_033257

NM_014941 NM_033386 NM_007311 NM_017911 NM_007098 NM_001670

NM_015653 NM_032775 NM_001172688 NM_001136029 NM_001024939 NM_002969

NM_052906 NM_152511 NM_001001479

Cluster 5, exemplar NM_052945:

NM_001102371 NM_017829 NM_020243 NM_002305 NM_030882 NM_000496

NM_022720 NM_024053 NM_052945 NM_018006 NM_014433 NM_032561

NM_001142964 NM_181492 NM_003073 NM_015366 NM_005877 NM_148674

NM_005008 NM_017414 NM_000185 NM_001135911 NM_001199562 NM_003935

NM_003560 NM_001166242 NM_001165877 NM_004900 NM_001097 NM_174975

NM_004377 NM_001099294 NM_004121 NM_001146288 NM_002415 NM_001159546

NM_004327 NM_152426 NM_004861 NM_001193414 NM_001145398 NM_015715

NM_021974 NM_001159554 NM_001171660 NM_015124 NM_006932 NM_152906

NM_001002034 NM_000754 NM_145343

The final heatmap looks as follows:

> heatmap(prom5, promSim)
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NM_145343NM_000754NM_001002034NM_152906NM_006932NM_015124NM_001171660NM_001159554NM_021974NM_015715NM_001145398NM_001193414NM_004861NM_152426NM_004327NM_001159546NM_002415NM_001146288NM_004121NM_001099294NM_004377NM_174975NM_001097NM_004900NM_001165877NM_001166242NM_003560NM_003935NM_001199562NM_001135911NM_000185NM_017414NM_005008NM_148674NM_005877NM_015366NM_003073NM_181492NM_001142964NM_032561NM_014433NM_018006NM_052945NM_024053NM_022720NM_000496NM_030882NM_002305NM_020243NM_017829NM_001102371NM_001001479NM_152511NM_052906NM_002969NM_001024939NM_001136029NM_001172688NM_032775NM_015653NM_001670NM_007098NM_017911NM_007311NM_033386NM_014941NM_033257NM_152868NM_014339NM_001164501NM_001195072NM_138415NM_015140NM_013236NM_001085427NM_005984NM_006487NM_138433NM_014509NM_152299NM_001164502NM_031937NM_001195071NM_020831NM_001169110NM_002882NM_001130517NM_023004NM_053004NM_000407NM_014876NM_003325NM_032758NM_001199580NM_014292NM_007194NM_004737NM_005198NM_002473NM_144704NM_012324NM_001169111NM_152855NM_000106NM_001128633NM_013378NM_015672NM_002133NM_001128633NM_004147NM_012143NM_000395NM_015367NM_053006NM_001184971NM_001137606NM_022141NM_153615NM_014460NM_001051NM_002883NM_001184970NM_032608NM_138338NM_015330NM_152513NM_001014440NM_001039141NM_003347NM_152510NM_000262NM_001098535NM_001144931NM_014303NM_012401NM_138481NM_001098270NM_017590NM_152267NM_203377NM_014227NM_007128NM_001135772NM_001164104NM_080764NM_014306NM_001010859NM_001039366NM_003490NM_175878

8 Similarity Matrices

Apart from the obvious monotonicity “the higher the value, the more similar two samples”, affin-
ity propagation does not make any specific assumption about the similarity measure. Negative



30 8 Similarity Matrices

squared distances must be used if one wants to minimize squared errors [5]. Apart from that, the
choice and implementation of the similarity measure is left to the user.

Our package offers a few more methods to obtain similarity matrices. The choice of the right
one (and, consequently, the objective function the algorithm optimizes) still has to be made by the
user.

All functions described in this section assume the input data matrix to be organized such that
each row corresponds to one sample and each column corresponds to one feature (in line with the
standard function dist). If a vector is supplied instead of a matrix, each single entry is interpreted
as a (one-dimensional) sample.

8.1 The function negDistMat()

The function negDistMat(), in line with Frey and Dueck, allows for computing negative dis-
tances for a given set of real-valued data samples. If called with the first argument x, a similarity
matrix with pairwise negative distances is returned:

> s <- negDistMat(x2)

The function negDistMat() is a simple wrapper around the standard function dist(), hence,
it allows for a lot more different similarity measures. The user can make use of all variants im-
plemented in dist() by using the options method (selects a distance measure) and p (specifies
the exponent for the Minkowski distance, otherwise it is void) that are passed on to dist().
Presently, dist() provides the following variants of computing the distance d(x,y) of two data
samples x = (x1, . . . , xn) and y = (y1, . . . , yn):

Euclidean:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2

use method="euclidean" or do not specify argument method (since this is the default);

Maximum:
d(x,y) =

n
max
i=1
|xi − yi|

use method="maximum";

Sum of absolute distances / Manhattan:

d(x,y) =

n∑
i=1

|xi − yi|

use method="manhattan";

Canberra:

d(x,y) =

n∑
i=1

|xi − yi|
|xi + yi|

summands with zero denominators are not taken into account; use method="canberra";
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Minkowski:

d(x,y) =

(
n∑

i=1

(xi − yi)
p

) 1
p

use method="minkowski" and specify p using the additional argument p (default is p=2,
resulting in the standard Euclidean distance);

We do not consider method="binary" here, since it is irrelevant for real-valued data.

The function negDistMat() takes the distances computed with one of the variants listed above
and returns −1 times the r-th power of it, i.e.,

s(x,y) = −d(x,y)r. (1)

The exponent r can be adjusted with the argument r. The default is r=1, hence, one has to supply
r=2 to obtain negative squared distances as in the examples in previous sections.

Here are some examples. We use the corners of the two-dimensional unit square and its middle
point (12 ,

1
2) as sample data:

> ex <- matrix(c(0, 0.5, 0.8, 1, 0, 0.2, 0.5, 0.7,

+ 0.1, 0, 1, 0.3, 1, 0.8, 0.2), 5, 3,byrow=TRUE)

> ex

[,1] [,2] [,3]

[1,] 0.0 0.5 0.8

[2,] 1.0 0.0 0.2

[3,] 0.5 0.7 0.1

[4,] 0.0 1.0 0.3

[5,] 1.0 0.8 0.2

Standard Euclidean distance:

> negDistMat(ex)

1 2 3 4 5

1 0.0000000 -1.2688578 -0.8831761 -0.7071068 -1.2041595

2 -1.2688578 0.0000000 -0.8660254 -1.4177447 -0.8000000

3 -0.8831761 -0.8660254 0.0000000 -0.6164414 -0.5196152

4 -0.7071068 -1.4177447 -0.6164414 0.0000000 -1.0246951

5 -1.2041595 -0.8000000 -0.5196152 -1.0246951 0.0000000

Squared Euclidean distance:

> negDistMat(ex, r=2)
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1 2 3 4 5

1 0.00 -1.61 -0.78 -0.50 -1.45

2 -1.61 0.00 -0.75 -2.01 -0.64

3 -0.78 -0.75 0.00 -0.38 -0.27

4 -0.50 -2.01 -0.38 0.00 -1.05

5 -1.45 -0.64 -0.27 -1.05 0.00

Maximum norm-based distance:

> negDistMat(ex, method="maximum")

1 2 3 4 5

1 0.0 -1.0 -0.7 -0.5 -1.0

2 -1.0 0.0 -0.7 -1.0 -0.8

3 -0.7 -0.7 0.0 -0.5 -0.5

4 -0.5 -1.0 -0.5 0.0 -1.0

5 -1.0 -0.8 -0.5 -1.0 0.0

Sum of absolute distances (aka Manhattan distance):

> negDistMat(ex,method="manhattan")

1 2 3 4 5

1 0.0 -2.1 -1.4 -1.0 -1.9

2 -2.1 0.0 -1.3 -2.1 -0.8

3 -1.4 -1.3 0.0 -1.0 -0.7

4 -1.0 -2.1 -1.0 0.0 -1.3

5 -1.9 -0.8 -0.7 -1.3 0.0

Canberra distance:

> negDistMat(ex,method="canberra")

1 2 3 4 5

1 0.000000 -2.600000 -1.9444444 -1.181818 -1.8307692

2 -2.600000 0.000000 -1.6666667 -2.200000 -1.0000000

3 -1.944444 -1.666667 0.0000000 -1.676471 -0.7333333

4 -1.181818 -2.200000 -1.6764706 0.000000 -1.3111111

5 -1.830769 -1.000000 -0.7333333 -1.311111 0.0000000

Minkowski distance for p = 3 (3-norm):

> negDistMat(ex, method="minkowski", p=3)
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1 2 3 4 5

1 0.0000000 -1.1027480 -0.7807925 -0.6299605 -1.0752028

2 -1.1027480 0.0000000 -0.7769462 -1.2601310 -0.8000000

3 -0.7807925 -0.7769462 0.0000000 -0.5428835 -0.5026526

4 -0.6299605 -1.2601310 -0.5428835 0.0000000 -1.0029910

5 -1.0752028 -0.8000000 -0.5026526 -1.0029910 0.0000000

If called without the data argument x, a function object is returned that can be supplied to
clustering functions — as in the majority of the above examples:

> sim <- negDistMat(r=2)

> is.function(sim)

[1] TRUE

> apcluster(sim, x1)

APResult object

Number of samples = 60

Number of iterations = 131

Input preference = -0.1416022

Sum of similarities = -0.1955119

Sum of preferences = -0.2832044

Net similarity = -0.4787163

Number of clusters = 2

Exemplars:

25 44

Clusters:

Cluster 1, exemplar 25:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30

Cluster 2, exemplar 44:

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60

8.2 Other similarity measures

The package apcluster offers four more functions for creating similarity matrices for real-valued
data:

Exponential transformation of distances: the function expSimMat() is another wrapper around
the standard function dist(). The difference is that, instead of the transformation (1), it
uses the following transformation:

s(x,y) = exp

(
−
(
d(x,y)

w

)r)
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Here the default is r=2. It is clear that r=2 in conjunction with method="euclidean"

results in the well-known Gaussian kernel / RBF kernel [4, 9, 11], whereas r=1 in conjunc-
tion with method="euclidean" results in the similarity measure that is sometimes called
Laplace kernel [4, 9]. Both variants (for non-Euclidean distances as well) can also be inter-
preted as fuzzy equality/similarity relations [2].

Linear scaling of distances with truncation: the function linSimMat() uses the transforma-
tion

s(x,y) = max

(
1− d(x,y)

w
, 0

)
which is also often interpreted as a fuzzy equality/similarity relation [2].

Correlation: the function corSimMat() interprets the rows of its argument x (matrix or data
frame) as multivariate observations and computes similarities as pairwise correlations. The
function corSimMat() is actually a wrapper around the standard function cor(). Con-
sequently, the method argument allows for selecting the type of correlation to compute
(Pearson, Spearman, or Kendall).

Linear kernel: scalar products can also be interpreted as similarity measures, a view that is often
adopted by kernel methods in machine learning. In order to provide the user with this option
as well, the function linKernel() is available. For two data samples x = (x1, . . . , xn) and
y = (y1, . . . , yn), it computes the similarity as

s(x,y) =

n∑
i=1

xi · yi.

The function has one additional argument, normalize (by default FALSE). If normalize=TRUE,
values are normalized to the range [−1,+1] in the following way:

s(x,y) =

∑n
i=1 xi · yi√(∑n

i=1 x
2
i

)
·
(∑n

i=1 y
2
i

)
Entries for which at least one of the two factors in the denominator is zero are set to zero
(however, the user should be aware that this should be avoided anyway).

For the same example data as above, we obtain the following for the RBF kernel:

> expSimMat(ex)

1 2 3 4 5

1 1.0000000 0.1998876 0.4584060 0.6065307 0.2345703

2 0.1998876 1.0000000 0.4723666 0.1339887 0.5272924

3 0.4584060 0.4723666 1.0000000 0.6838614 0.7633795

4 0.6065307 0.1339887 0.6838614 1.0000000 0.3499377

5 0.2345703 0.5272924 0.7633795 0.3499377 1.0000000

Laplace kernel:
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> expSimMat(ex, r=1)

1 2 3 4 5

1 1.0000000 0.2811526 0.4134676 0.4930687 0.2999440

2 0.2811526 1.0000000 0.4206200 0.2422598 0.4493290

3 0.4134676 0.4206200 1.0000000 0.5398622 0.5947493

4 0.4930687 0.2422598 0.5398622 1.0000000 0.3589059

5 0.2999440 0.4493290 0.5947493 0.3589059 1.0000000

Pearson correlation coefficient:

> corSimMat(ex, method="pearson")

1 2 3 4 5

1 1.0000000 -8.416976e-01 -5.399492e-01 0.42592613 -0.91129318

2 -0.8416976 1.000000e+00 4.007290e-17 -0.84702436 0.54470478

3 -0.5399492 4.007290e-17 1.000000e+00 0.53155407 0.83862787

4 0.4259261 -8.470244e-01 5.315541e-01 1.00000000 -0.01560216

5 -0.9112932 5.447048e-01 8.386279e-01 -0.01560216 1.00000000

Spearman rank correlation coefficient:

> corSimMat(ex, method="spearman")

1 2 3 4 5

1 1.0 -0.5 -0.5 0.5 -1.0

2 -0.5 1.0 -0.5 -1.0 0.5

3 -0.5 -0.5 1.0 0.5 0.5

4 0.5 -1.0 0.5 1.0 -0.5

5 -1.0 0.5 0.5 -0.5 1.0

Linear scaling of distances with truncation:

> linSimMat(ex, w=1.2)

1 2 3 4 5

1 1.0000000 0.0000000 0.2640199 0.4107443 0.0000000

2 0.0000000 1.0000000 0.2783122 0.0000000 0.3333333

3 0.2640199 0.2783122 1.0000000 0.4862988 0.5669873

4 0.4107443 0.0000000 0.4862988 1.0000000 0.1460874

5 0.0000000 0.3333333 0.5669873 0.1460874 1.0000000

Linear kernel:

> linKernel(ex[2:5,])
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1 2 3 4

1 1.04 0.52 0.06 1.04

2 0.52 0.75 0.73 1.08

3 0.06 0.73 1.09 0.86

4 1.04 1.08 0.86 1.68

Normalized linear kernel:

> linKernel(ex[2:5,], normalize=TRUE)

1 2 3 4

1 1.00000000 0.5887841 0.05635356 0.7867958

2 0.58878406 1.0000000 0.80738184 0.9621405

3 0.05635356 0.8073818 1.00000000 0.6355220

4 0.78679579 0.9621405 0.63552196 1.0000000

All of these functions work in the same way as negDistMat(): if called with argument x, a
similarity matrix is returned, otherwise a function is returned.

8.3 Rectangular similarity matrices

With the introduction of leveraged affinity propagation, distance calculations are entirely per-
formed within the apcluster package. The code is based on a customized version of the dist()
function from the stats package. In the following example, a rectangular similarity matrix of all
samples against a subset of the samples is computed:

> sel <- sort(sample(1:nrow(x1), ceiling(0.08 * nrow(x1))))

> sel

[1] 13 29 33 34 44

> s1r <- negDistMat(x1, sel, r=2)

> dim(s1r)

[1] 60 5

> s1r[1:7,]

13 29 33 34 44

1 -0.014603013 -0.022549737 -0.1737253 -0.2223371 -0.1933647

2 -0.001699832 -0.006817446 -0.2206123 -0.2733747 -0.2455206

3 -0.015345081 -0.022217640 -0.1672119 -0.2149003 -0.1866619

4 -0.014703942 -0.020312110 -0.1641115 -0.2112203 -0.1837830

5 -0.008328025 -0.021148694 -0.2247310 -0.2795651 -0.2470108

6 -0.004504812 -0.018396781 -0.3125267 -0.3753219 -0.3411642

7 -0.003460584 -0.016865771 -0.2822221 -0.3424318 -0.3088750
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The rows correspond to all samples, the columns to the sample subset. The sel parameter
specifies the sample indices of the selected samples in increasing order. Rectangular similarity
calculation is provided in all distance functions of the package. If the parameter sel is not speci-
fied, the quadratic similarity matrix of all sample pairs is computed.

8.4 Defining a custom similarity measure for leveraged affinity propagation

As mentioned in Section~6 above, leveraged affinity propagation requires the definition of a sim-
ilarity measure that is supplied as a function or function name to apclusterL(). For vectorial
data, the similarity measures supplied with the package (see above) may be sufficient. If other
similarity measures are necessary or if the data are not vectorial, the user must supply his/her own
similarity measure. The user can supply any function as argument s to apclusterL(), but the
following rules must be obeyed in order to avoid errors and to ensure meaningful results:

1. The data must be supplied as first argument, which must be named x.

2. The second argument must be named sel and must be interpreted as a vector of indices that
select a subset of data items in x.

3. The function must return a numeric matrix with similarities. If sel=NA, the format of the
matrix must be length(x)×length(x). If sel is not NA, but contains indices selecting a
subset, the format of the returned similarity matrix must be length(x)×length(sel).

4. Although this is not a must, it is recommended to properly set row and column names in the
returned similarity matrix.

As an example, let us revisit the sequence clustering example presented in Section~7. Let us
first define the function that implements the similarity measure:

> spectrumK6 <- function(x, sel=NA)

+ {

+ if (any(is.na(sel)))

+ {

+ s <- kernelMatrix(stringdot(length=6, type="spectrum"), x)

+ rownames(s) <- names(x)

+ colnames(s) <- names(x)

+ }

+ else

+ {

+ s <- kernelMatrix(stringdot(length=6, type="spectrum"), x, x[sel])

+ rownames(s) <- names(x)

+ colnames(s) <- names(x)[sel]

+ }

+

+ s

+ }
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Now we run leveraged affinity propagation on the ch22Promoters data set using this similarity
measure

> promAPL <- apclusterL(s=spectrumK6, ch22Promoters, frac=0.1, sweeps=10,

+ p=promAP@p)

> promAPL

APResult object

Number of samples = 150

Number of sel samples = 15 (10%)

Number of sweeps = 10

Number of iterations = 134

Input preference = 0.01367387

Sum of similarities = 55.1909

Sum of preferences = 0.1367387

Net similarity = 55.32764

Number of clusters = 10

Exemplars:

NM_001169111 NM_022141 NM_001128633 NM_001195071 NM_001146288 NM_033386

NM_181492 NM_080764 NM_001199562 NM_032608

Clusters:

Cluster 1, exemplar NM_001169111:

NM_001169111 NM_012324 NM_005198 NM_004737 NM_007194 NM_014292

NM_001199580 NM_003325 NM_033257 NM_014876 NM_000407 NM_023004

NM_001130517 NM_001169110 NM_020831 NM_152299 NM_005984 NM_001085427

Cluster 2, exemplar NM_022141:

NM_001184970 NM_002883 NM_001051 NM_174975 NM_014227 NM_014460

NM_153615 NM_022141 NM_001137606 NM_053006 NM_015367 NM_000395

NM_012143 NM_004147 NM_021974

Cluster 3, exemplar NM_001128633:

NM_001128633 NM_002133 NM_015672 NM_013378 NM_001128633 NM_000106

Cluster 4, exemplar NM_001195071:

NM_001195072 NM_002882 NM_001195071 NM_031937 NM_001164502 NM_017911

NM_001172688

Cluster 5, exemplar NM_001146288:

NM_144704 NM_002473 NM_004900 NM_001097 NM_007128 NM_032758

NM_002305 NM_030882 NM_000496 NM_004377 NM_053004 NM_001099294

NM_152855 NM_004121 NM_001146288 NM_000262 NM_004327 NM_152426

NM_004861 NM_001145398 NM_138433 NM_015715 NM_001159554 NM_001171660

NM_015124 NM_006932 NM_152906 NM_001002034 NM_000754 NM_013236

NM_145343

Cluster 6, exemplar NM_033386:

NM_015140 NM_138415 NM_001164501 NM_014339 NM_152868 NM_014941

NM_002415 NM_001159546 NM_033386 NM_007311 NM_007098 NM_001670
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NM_001193414 NM_015653 NM_032775 NM_001136029 NM_001024939 NM_015330

NM_002969 NM_052906 NM_152511 NM_006487 NM_001001479

Cluster 7, exemplar NM_181492:

NM_001102371 NM_017829 NM_001039366 NM_024053 NM_052945 NM_014433

NM_001142964 NM_181492 NM_003073 NM_015366 NM_005877 NM_148674

NM_017414 NM_001135911 NM_003935 NM_001166242 NM_001165877

Cluster 8, exemplar NM_080764:

NM_175878 NM_003490 NM_001010859 NM_014306 NM_080764 NM_001164104

Cluster 9, exemplar NM_001199562:

NM_020243 NM_022720 NM_018006 NM_032561 NM_005008 NM_000185

NM_001199562 NM_003560

Cluster 10, exemplar NM_032608:

NM_001135772 NM_203377 NM_152267 NM_017590 NM_001098270 NM_001184971

NM_138481 NM_012401 NM_014303 NM_001144931 NM_001098535 NM_152510

NM_003347 NM_001039141 NM_014509 NM_001014440 NM_152513 NM_138338

NM_032608

So we obtain 10 clusters in total.

9 Miscellaneous

9.1 Convenience vs. efficiency

In most of the above examples, we called a clustering method by supplying it with a similarity
function and the data to be clustered. This is undoubtedly a convenient approach. Since the result-
ing output objects (unless the option includeSim=FALSE is supplied) even includes the similarity
matrix, we can plot heatmaps and produce a cluster hierarchy on the basis of the clustering result
without the need to supply the similarity matrix explicitly.

For large data sets, however, this convenient approach has some disadvantages:

If the clustering algorithm is run several times on the same data set (e.g., for different pa-
rameters), the similarity matrix is recomputed every time.

Every clustering result (depending on the option includeSim) usually includes a copy of
the similarity matrix.

For these reasons, depending on the actual application scenario, users should consider computing
the similarity matrix beforehand. This strategy, however, requires some extra effort for subsequent
processing, i.e. the similarity must be supplied as an extra argument in subsequent processing.

9.2 Clustering named objects

The function apcluster() and all functions for computing distance matrices are implemented to
recognize names of data objects and to correctly pass them through computations. The mechanism
is best described with a simple example:
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> x3 <- c(1, 2, 3, 7, 8, 9)

> names(x3) <- c("a", "b", "c", "d", "e", "f")

> s3 <- negDistMat(x3, r=2)

So we see that the names attribute must be used if a vector of named one-dimensional samples
is to be clustered. If the data are not one-dimensional (a matrix instead), object names must be
stored in the row names of the data matrix.

All functions for computing similarity matrices recognize the object names. The resulting
similarity matrix has the list of names both as row and column names.

> s3

a b c d e f

a 0 -1 -4 -36 -49 -64

b -1 0 -1 -25 -36 -49

c -4 -1 0 -16 -25 -36

d -36 -25 -16 0 -1 -4

e -49 -36 -25 -1 0 -1

f -64 -49 -36 -4 -1 0

> colnames(s3)

[1] "a" "b" "c" "d" "e" "f"

The function apcluster() and all related functions use column names of similarity matrices as
object names. If object names are available, clustering results are by default shown by names.

> apres3a <-apcluster(s3)

> apres3a

APResult object

Number of samples = 6

Number of iterations = 124

Input preference = -25

Sum of similarities = -4

Sum of preferences = -50

Net similarity = -54

Number of clusters = 2

Exemplars:

b e

Clusters:

Cluster 1, exemplar b:

a b c

Cluster 2, exemplar e:

d e f
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> apres3a@exemplars

b e

2 5

> apres3a@clusters

[[1]]

a b c

1 2 3

[[2]]

d e f

4 5 6

9.3 Computing a label vector from a clustering result

For later classification or comparisons with other clustering methods, it may be useful to compute
a label vector from a clustering result. Our package provides an instance of the generic function
labels() for this task. As obvious from the following example, the argument type can be used
to determine how to compute the label vector.

> apres3a@exemplars

b e

2 5

> labels(apres3a, type="names")

[1] "b" "b" "b" "e" "e" "e"

> labels(apres3a, type="exemplars")

[1] 2 2 2 5 5 5

> labels(apres3a, type="enum")

[1] 1 1 1 2 2 2

The first choice, "names" (default), uses names of exemplars as labels (if names are available,
otherwise an error message is displayed). The second choice, "exemplars", uses indices of ex-
emplars (enumerated as in the original data set). The third choice, "enum", uses indices of clusters
(consecutively numbered as stored in the slot clusters; analogous to the standard implementa-
tion of cutree() or the clusters field of the list returned by the standard function kmeans()).
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9.4 Implementation and performance issues

Prior to version 1.2.0, apcluster() was implemented in R. Starting with version 1.2.0, the main
iteration loop of apcluster() has been implemented in C++ using the Rcpp package [3], which
has led to a speedup in the range of a factor or 9–10.

Note that details=TRUE requires quite an amount of additional memory. If possible, avoid
this for larger data sets.

The asymptotic computational complexity of aggExCluster() is O(l3) (where l is the num-
ber of samples or clusters from which the clustering starts). This may result in excessively long
computation times if aggExCluster() is used for larger data sets without using affinity propaga-
tion first. For real-world data sets, in particular, if they are large, we recommend to use affinity
propagation first and then, if necessary, to use aggExCluster() to create a cluster hierarchy.

10 Future Extensions

We currently have no implementation that exploits sparsity of similarity matrices. The implemen-
tation of sparse AP which is available as Matlab code from the AP Web page1 is left for future
extensions of the package. Presently, we only offer a function sparseToFull() that converts
similarity matrices from sparse format into a full l × l matrix.

11 Special Notes for Users Upgrading from Previous Versions

Version 1.3.0 has brought several fundamental changes to the architecture of the package. We tried
to ensure backward compatibility with previous versions where possible. However, there are still
some caveats the users should take into account:

The functions apcluster(), apclusterK(), and aggExCluster() have been re-implemented
as S4 generics, therefore, they do not have a fixed list of arguments anymore. For this reason,
users are recommended to name all optional parameters.

Heatmap plotting has been shifted to the function heatmap() which has now been defined
as an S4 generic method. Previous methods for plotting heatmaps using plot() are partly
still available, but deprecated.

12 Change Log

Version 1.3.0:

added Leveraged Affinity Propagation Clustering

re-implementation of main functions as S4 generic methods in order to facilitate the
convenient internal computation of similarity matrices

for convenience, similarity matrices can be stored as part of clustering results
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heatmap plotting now done by heatmap() which has been defined as S4 generic

extended interface to functions for computing similarity matrices

added function corSimMat()

implementation of length()method for classes APResult, AggExResult, and ExClust

added accessor function to extract clustering levels from AggExResult objects

correction of exemplars returned by apcluster for details=TRUE in slot idxAll of
returned APResult object

when using data stored in a data frame, categorical columns are now explicitly omitted,
thereby, avoiding warnings

all clustering methods now store their calls into the result objects

updates and extensions of help pages and vignette

Version 1.2.0:

reimplementation of apcluster() in C++ using the Rcpp package [3] which reduces
computation times by a factor of 9-10

obsolete function apclusterLM() removed

updates of help pages and vignette

Version 1.1.1:

updated citation

minor corrections in help pages and vignette

Version 1.1.0:

added exemplar-based agglomerative clustering function aggExCluster()

added various plotting functions for dendrograms and heatmaps

extended help pages and vignette according to new functionality

added sequence analysis example to vignette along with data set ch22Promoters

re-organization of variable names in vignette

added option verbose to apclusterK()

numerous minor corrections in help pages and vignette

Version 1.0.3:

Makefile in inst/doc eliminated to avoid installation problems

renamed vignette to “apcluster”

Version 1.0.2:

replacement of computation of responsibilities and availabilities in function apcluster()
by pure matrix operations (see 9.4 above); traditional implementation à la Frey and
Dueck still available as function apclusterLM;

improved support for named objects (see 9.2)
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new function for computing label vectors (see 9.3)

re-organization of package source files and help pages

Version 1.0.1: first official release, released March 2, 2010

13 How to Cite This Package

If you use this package for research that is published later, you are kindly asked to cite it as follows:

U. Bodenhofer, A. Kothmeier, and S. Hochreiter (2011). APCluster: an R pack-
age for affinity propagation clustering. Bioinformatics 27(17):2463–2464. DOI:
10.1093/bioinformatics/btr406.

Moreover, we insist that, any time you cite the package, you also cite the original paper in which
affinity propagation has been introduced [5].

To obtain BibTEX entries of the two references, you can enter the following into your R ses-
sion:

> toBibtex(citation("apcluster"))
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