
Package Vignette
SimuChemPC

Mohsen Ahmadi
mohsen ahmadi989@yahoo.com

Jan 2014

Contents

1 Motivation 2

2 Data Initialization 2

3 Utility Functions 4

4 Simulation set-up 6

5 Results 8

6 R Session Information 11

1

1 Motivation

QSAR (Quantitative Structure-Activity Relationship) modeling is used to
predict the activity of compounds relying on the activity of known compounds
and whose ultimate aim is to identify highly potent compounds. In this package,
we propose an efficient method (i.e. EI) by which finding potent compounds is
faster than underlying competitors (i.e. GP, NN and RA)

Molecular Descriptors are calculated for each compound where they are related
to the measured biological activity from a mathematical aspect.

In this tutorial, we are going to walk through a workflow example in which
you can see how the package works and can be used.

2 Data Initialization

First of all, these libraries should be included into your R (>=2.13).

> library(rcdk)

> library(SimuChemPC)

Starting from a sample SDF file, We use rcdk package to get features/descriptors
as the input for SimuChemPC package. We load our sample SDF file like so
(of course, the path of your file should be set accordingly):

> SDF_file = system.file("extdata", "sample.sdf", package = "SimuChemPC")

> mols <- load.molecules(SDF_file)

> length(mols)

[1] 100

> mols = mols[1:20]

We take 20 out of 100 molecules to save running time. We have different
descriptors to be used as input data. In our tutorial we use a type of Weight-
edPathDescriptor.

> descNames <- c("org.openscience.cdk.qsar.descriptors.molecular.WeightedPathDescriptor")

> descNames

[1] "org.openscience.cdk.qsar.descriptors.molecular.WeightedPathDescriptor"

> features <- eval.desc(mols, descNames)

Having calculated descriptors in hand, we are going to fetch potencies from
our sample SDF file.

In such a SDF file, there are some properties for each molecule inside. We
can see the list of properties for first molecule as follows:

> get.properties(mols[[1]])

2

http://cran.r-project.org/web/packages/rcdk/index.html
http://cran.r-project.org/web/packages/SimuChemPC/index.html

$cr_index

[1] "1301769"

$Pub_details

[1] "1993_J. Med. Chem._36_22_12060"

$TID

[1] "10185"

$Pref_name

[1] "Adenosine kinase"

$Organism

[1] "Homo sapiens"

$`Potency[nM]`

[1] "160"

$Year

[1] "1993"

$`FP:MACCS`

[1] "27 38 42 52 54 57 62 65 72 75 77 79 80 83 84 87 89 90"

$`FP:TGT`

[1] "13428 13435 10188 10230 12786 10231 13434 12822 13470 12829 10272"

With the help of ”get.property” function we can fetch specific attributes
from each molecule in our sample SDF file. In order to fetch ”molecule index”
and ”potency” for each of which we do like so:

> get.property(mols[[1]], "Potency[nM]")

[1] "160"

> get.property(mols[[1]], "cr_index")

[1] "1301769"

To do so for all molecules in SDF file, we make a data frame object called
”potency” and we bind it as follows:

> p = data.frame()

> for (i in 1:length(mols)) {

+ Potency = get.property(mols[[i]], "Potency[nM]")

+ p = rbind(p, data.frame(Potency))

+ }

3

After taking those values out, it’s the time to combine each of descriptors
with corresponding potency values. Here we go:

> datafile <- cbind(features, p)

> dim(datafile)

[1] 20 6

> datafile[1:5,]

WTPT.1 WTPT.2 WTPT.3 WTPT.4 WTPT.5 Potency

1 40.60574 2.030287 28.52843 8.170702 15.31685 160

2 44.62161 2.028255 34.18068 8.235517 23.36887 8500

3 40.60574 2.030287 28.52843 8.170702 15.31685 300

4 40.60574 2.030287 28.52843 10.636011 15.31685 40

5 40.60574 2.030287 28.52843 8.170702 17.78216 150

At this point, we are done within data initialization. We use this data frame
object further as input in package workflow.

3 Utility Functions

We have two functions namely ”trainChemPC” and ”predictChemPC”.
The first function is used to get train data and target values as input and
returns ”loghyper” parameters.

The latter function takes ”train data”, ”test data” (for prediction), ”target val-
ues”, ”method” (one of four different methods) and ”loghyper” parameters al-
ready obtained from first function. In order to apply these functions on our
sample data, first we split data into two parts for train and test data. So, we
try:

> len <- dim(datafile)[1]

> len

[1] 20

> half <- dim(datafile)[1]/2

> half

[1] 10

> col <- dim(datafile)[2]

> col

[1] 6

> xTrain <- datafile[1:half, 1:(col - 1)]

> yTrain <- as.matrix(as.numeric(array(datafile[1:half, col])))

> xTest <- datafile[(half + 1):len, (1:col - 1)]

> yTest <- as.matrix(as.numeric(array(datafile[(half + 1):len,

+ col])))

4

We pass ”xTrain” and ”yTrain” to trainChemPC function as input and we
get loghyper parameters as output of this function. The result of our sample is
shown here:

> loghyper = trainChemPC(xTrain, yTrain)

> loghyper

[,1]

[1,] 0.9887708

[2,] 0.3023906

[3,] -1.7449306

In the light of predictChemPC function, we make a prediction based on four
different methods namely: EI, GP, NN, RA.

� EI (Expected Improvement): A compound for which maximum expected
potency improvement is reached.

� GP (Gaussian Process Regression): A compound holding maximum pre-
dicted potency in test data is selected.

� NN (Nearest Neighbor): A compound that is nearest (Tonimito Coeffi-
cient as distance measure) to the most potent compound in training data
is selected.

� RA (Random): As it’s name suggests, a compound is selected randomly.

Here are the results of predictChemPC for our sample data in each method:

> predictChemPC(xTrain, yTrain, xTest, loghyper, method = "RA")

[1] "index of compound based on: RA => 4"

> predictChemPC(xTrain, yTrain, xTest, loghyper, method = "NN")

[1] "index of compound based on: NN => 10"

> predictChemPC(xTrain, yTrain, xTest, loghyper, method = "GP")

[1] "index of compound based on: GP => 8"

> predictChemPC(xTrain, yTrain, xTest, loghyper, method = "EI")

[1] "index of compound based on: EI => 7"

5

4 Simulation set-up

In this section we touch the simulation set-up in detail. What happens in the
heart of simulation is as follows:

� Data are randomly divided into roughly equal size of train and test data.

� Normalization is applied to train and test data.

� Feature Selection is applied to normalized data to ignore irrelevant and
redundant features w.r.t. target values(potency). It’s, in turn, born by
three steps:

– We compute spearman rank correlation between each feature i and
potency (we name correlation values as p-values afterwards)

– We apply Bejnamini and Hochberg FDR procedure over p-values

– Eventually, we select those features for which adjusted p-value <=
0.05 (i.e. their null hypotheses are rejected)

� During a loop, training data are used to fit the Gaussian Process model.
Test data are scanned for the compound with maximal expected potency
improvement. Subsequently, selected compound is added to training data
to further refine the model. The process of adding compounds is continued
until all test data are consumed.

The last parameter of ”SimuChemPC” is meant to repeat these steps. For the
purpose of this tutorial, this parameter is set to 5. At the end of the day, the
number of simulation steps that is required to find most potent compound in
the original test set is considered.

> dataX <- datafile[, 1:(col - 1)]

> dataY <- as.matrix(as.numeric(array(datafile[, col])))

> dim(dataX)

[1] 20 5

> dim(dataY)

[1] 20 1

> rank <- SimuChemPC(dataX, dataY, "RA", 5)

[1] "experiment => 1"

[1] "============="

[1] "experiment => 2"

[1] "============="

[1] "experiment => 3"

[1] "============="

[1] "experiment => 4"

[1] "============="

[1] "experiment => 5"

[1] "============="

6

> dim(rank)

[1] 10 5

> rank[1:5,]

[,1] [,2] [,3] [,4] [,5]

[1,] -1.0569761 0.7271143 1.27412748 -1.2664963 -1.463211

[2,] 0.8487259 -1.7390166 -0.09750924 -0.7535501 -2.124997

[3,] -0.2768096 0.8150522 -0.23967375 0.6338133 3.038380

[4,] 0.8255127 1.8437395 -0.04346080 -0.7535501 2.928673

[5,] -0.9767157 1.8040795 1.03109564 0.5875014 1.517981

> rank <- SimuChemPC(dataX, dataY, "NN", 5)

[1] "experiment => 1"

[1] "============="

[1] "experiment => 2"

[1] "============="

[1] "experiment => 3"

[1] "============="

[1] "experiment => 4"

[1] "============="

[1] "experiment => 5"

[1] "============="

> dim(rank)

[1] 10 5

> rank[1:5,]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.1951584 1.8437395 0.4166191 0.5875014 2.985241

[2,] 0.8487259 1.8040795 1.0537242 0.6338133 3.536225

[3,] 0.3501027 1.8809944 1.2741275 -0.6494239 2.928673

[4,] 0.8255127 0.7271143 1.0310956 -1.2664963 1.517981

[5,] 0.8705314 0.8150522 1.0749804 -0.7535501 3.038380

> rank <- SimuChemPC(dataX, dataY, "GP", 5)

[1] "experiment => 1"

[1] "============="

[1] "experiment => 2"

[1] "============="

[1] "experiment => 3"

[1] "============="

[1] "experiment => 4"

[1] "============="

[1] "experiment => 5"

[1] "============="

> dim(rank)

7

[1] 10 5

> rank[1:5,]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.1951584 1.8437395 0.4166191 0.5875014 1.517981

[2,] 0.8487259 1.8040795 1.0537242 0.6338133 2.985241

[3,] 0.3501027 1.8809944 1.2741275 -0.6494239 3.536225

[4,] 0.8255127 0.7271143 1.0310956 -0.5464852 2.928673

[5,] 0.8705314 0.8150522 1.0749804 -0.4145110 3.038380

> rank <- SimuChemPC(dataX, dataY, "EI", 5)

[1] "experiment => 1"

[1] "============="

[1] "experiment => 2"

[1] "============="

[1] "experiment => 3"

[1] "============="

[1] "experiment => 4"

[1] "============="

[1] "experiment => 5"

[1] "============="

> dim(rank)

[1] 10 5

> rank[1:5,]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.1951584 4.2849999 -0.09750924 -0.6494239 6.467316

[2,] 0.8487259 1.8437395 -0.23967375 0.5875014 1.517981

[3,] 0.3501027 1.8040795 0.41661907 -0.7535501 2.985241

[4,] 0.8255127 -0.4231404 1.07498045 0.6338133 3.536225

[5,] 0.8705314 1.8809944 1.05372419 -1.2664963 2.928673

5 Results

We applied simulation to the whole sample data (consists of 100 molecules)
and the result is demonstrated in Figure 1 and Figure 2. As you can see in
figures, EI outperforms other methods as it takes less steps to find most potent
compound in the original test set.

8

0

5

10

15

20

25

30

35

40

45

50

EI GP NN RA

Three most potent compounds

Figure 1: Three most potent compound for each method

9

0

10

20

30

40

50

EI GP NN RA

First Max

0

10

20

30

40

50

EI GP NN RA

Second Max

−10

0

10

20

30

40

50

EI GP NN RA

Third Max

Figure 2: First, second and third max box plots for each method

10

6 R Session Information

> sessionInfo()

R version 2.13.0 (2011-04-13)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.1252

[3] LC_MONETARY=English_United States.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] SimuChemPC_1.3 rcdk_3.1.7 iterators_1.0.5

[4] png_0.1-4 fingerprint_3.4.7 rcdklibs_1.4.7

[7] rJava_0.9-3

loaded via a namespace (and not attached):

[1] tools_2.13.0

11

	Motivation
	Data Initialization
	Utility Functions
	Simulation set-up
	Results
	R Session Information

