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Abstract

A common task in medical imaging is assessing whether a new imaging system or
device is an improvement over an existing one. Observer performance methodology, such
as receiver operating characteristic (ROC) analysis, is widely used for this purpose. ROC
studies are often required for regulatory approval of new devices. The purpose of this work
is to describe RJafroc, which implements software for analysis of data acquired using the
ROC paradigm and its location specific extensions. It is an enhanced implementation
of existing Windows software called JAFROC (jackknife alternative free-response ROC,
V4.2.1, http://www.devchakraborty.com). In the ROC paradigm the radiologist rates
each image for confidence in presence of disease. The images are typically split equally
between actually non-diseased and diseased. A common figure of merit (FOM) is the
area under the ROC curve, which has the physical interpretation as the probability that
a diseased image is rated higher than a non-diseased one. In ROC studies a number of
radiologists (readers) rate images in two or more treatments, and the object of the analysis
is to determine the significances of the inter-treatment differences between reader-averaged
FOMs. In the free-response (FROC) paradigm the reader marks the locations of suspicious
regions and rates each region for confidence in presence of disease, and credit for detection
is only given if a true lesion is correctly localized. In the region of interest (ROI) paradigm
each image is divided into a number of ROIs and the reader rates each ROI. Each paradigm
requires definition of a valid FOM that rewards correct decisions and penalizes incorrect
ones and specialized significance testing procedure are applied. The package reads data
in all currently used data formats including Excel. Significance testing uses two models
in widespread use, a jackknife pseudovalue based model due to Dorfman-Berbaum-Metz
(DBM) and an ANOVA model with correlated errors due to Obuchowski-Rockette (OR),
both of which have been improved by Hillis. Included are tools for (1) calculating a variety
of free-response FOMs; (2) ROC sample size estimation for planning a future study based
on pilot data; (3) viewing empirical operating characteristics in ROC and free-response
paradigms; (4) producing formatted report files; and (5) saving data files in appropriate
formats for analysis with alternate software.

Keywords: medical imaging, observer performance, assessment methodology, ROC, FROC,
JAFROC software, R.

1. Introduction

A common task in medical imaging is assessing whether a new imaging system is an im-
provement over an existing one. Observer performance measurements, widely used for this
purpose, require data collection and analyses methods that fall under the rubric of what
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is loosely termed “ROC analysis”, where ROC is an abbreviation for Receiver Operating
Characteristic (Metz 1986). ROC analysis is a specialized branch of statistics that is of
great importance in medicine, where new imaging technology and the accuracy of interpre-
tations often need to be assessed. The Food and Drug Administration (FDA), which regu-
lates medical imaging devices, requires ROC studies as part of the device approval process
(see document “Statistical Guidance on Reporting Results from Studies Evaluating Diagnos-
tic Tests” available at http://www.fda.gov/RegulatoryInformation/Guidances). There
are, conservatively, at least 1000 publications describing ROC studies and a seminal paper
(Metz 1986) by the late Prof. C.E. Metz has been cited over 1800 times. Since they in-
volve numbers of radiologists interpreting large number of images in different modalities,
ROC studies can be very expensive to conduct. For example (Pisano, Gatsonis, Hendrick,
Yaffe, Baum, Acharyya, Conant, Fajardo, Bassett, D’Orsi, Jong, and Rebner 2005), the
Digital Mammography for Imaging Screening Trial (DMIST) cost about $30 million (this
study involved about 50,000 asymptomatic women at 33 mammography centers, and each
mammogram was interpreted by two radiologists per mammography center). More typical
ROC studies proposed in National Institutes of Health (NIH) grant applications are budgeted
in the hundreds of thousands of dollars and often take years to complete. Consequently,
there is much interest in optimizing methodology for analyzing ROC studies and its exten-
sions, and four websites disseminate software for analyzing such studies: the University of
Chicago has a site for ROC analysis software (http://metz-roc.uchicago.edu/) as does
the University of Iowa (http://perception.radiology.uiowa.edu/) and the FDA (https:
//code.google.com/p/imrmc/); Windows software called JAFROC (jackknife alternative
free-response ROC, V4.2.1), which can analyze ROC studies and its extensions (Chakraborty
and Berbaum 2004; Chakraborty 2013), is available at http://www.devchakraborty.com.
Software from the University of Iowa and University of Chicago websites have been used in
several hundred publications (Professor Kevin Berbaum, University of Iowa, personal com-
munication, ca 2014). JAFROC has been used in 77 publications: the list is viewable at
http://www.devchakraborty.com/JafrocApplications.pdf. The purpose of this work is
to describe a package called RJafroc, which is an enhanced implementation of JAFROC.
In this section we introduce terminology used in the RJafroc-package page of the docu-
mentation that accompanies this paper. Several reviews of this field may be consulted for
details (Metz 1978, 1986, 1989; Wagner, Beiden, Campbell, Metz, and Sacks 2002; Wagner,
Metz, and Campbell 2007; Kundel, Berbaum, Dorfman, Gur, Metz, and Swensson 2008; Metz
2008) regarding basics of ROC methodology. [An existing package ROCR (Sing, Sander,
Beerenwinkel, and Lengauer 2005) for classifier performance evaluation and visualization,
while useful in the machine learning, pattern recognition and artificial intelligence fields, is
not suitable for the medical imaging applications addressed in the various software modules
mentioned above.]

In an ROC study the radiologist is shown images of patients (images and cases are used
interchangeably as synonyms for patients), the radiologist is “blinded,” of course, to the true
disease states, and the radiologist’s task is to rate each patient for confidence in presence or
absence of disease. The rating r is typically on a numeric scale, with higher values repre-
senting increasing confidence in presence of disease and lower values representing increasing
confidence in absence of disease. Typically 5 or 6 integer ratings are used but the ratings could
have higher precision. With a 6 rating scale a 1-rating would correspond to high confidence
that patient is non-diseased and a 6-rating would correspond to high confidence that patient

http://www.fda.gov/RegulatoryInformation/Guidances
http://metz-roc.uchicago.edu/
http://perception.radiology.uiowa.edu/
https://code.google.com/p/imrmc/
https://code.google.com/p/imrmc/
http://www.devchakraborty.com
http://www.devchakraborty.com/JafrocApplications.pdf
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is diseased. The normalized counts in the different ratings bins, cumulated separately for
actually non-diseased and actually diseased patients, can be used to construct an operating
point. For example, the cumulated counts in diseased ratings bins 3, 4 and 5, divided by the
number of actually diseased images, yields true positive fraction TPF3+, where TPF is the
ordinate of the ROC plot, and the corresponding cumulated counts for non-diseased images,
divided by the number of non-diseased images, yields false positive fraction FPF3+, where
FPF is the abscissa. It can be seen that as long as no bin has zero counts for both non-
diseased and diseased images, an R rating ROC study will yield R − 1 non-trivial operating
points {FPFr+, TPFr+; r = 2, 3, ..., R}. The origin (0, 0) and the upper right corner (1, 1) are
trivial operating points, belonging to any dataset, obtained by counting none and all of the
binned ratings, respectively. The empirical ROC curve is defined by connecting neighboring
operating points (including the trivial ones) with straight lines. While several curve-fitting
methods are available (Dorfman and Alf 1968, 1969; Dorfman and Berbaum 1986; Dorfman,
Berbaum, Metz, Lenth, Hanley, and Abu Dagga 1997; Pan and Metz 1997; Metz and Pan
1999; Dorfman and Berbaum 2000; Pesce and Metz 2007) and have their merits, the trape-
zoidal area under the empirical ROC is frequently used as a non-parametric figure of merit
(FOM) for quantifying observer performance (Hanley and McNeil 1982). It can be shown
to be equivalent to the Mann-Whitney-Wilcoxon 2-sample U-statistic (Wilcoxon 1945; Mann
and Whitney 1947). True positive fraction is synonymous with sensitivity and the comple-
ment of false positive fraction is synonymous with specificity, so the ROC curve is a plot of
sensitivity vs. 1 − specificity. ROC studies are typically conducted with about 50/50 or
more non-diseased/diseased patients. The patients are imaged in two or more imaging sys-
tems (termed modalities or treatments) and the images are rated by a number of radiologists
(typically about 5 to 10). This type of fully crossed study design is termed multiple reader
multiple case (MRMC) and, although methods are available for partially paired interpreta-
tions (Metz, Herman, and Roe 1998; Obuchowski 2009), MRMC studies are the focus of this
work.

A limitation of the ROC paradigm is that it acquires a single rating per image, where the
rating applies to the image as a whole, not to any specific region(s) in the image. Typically,
disease is manifested by the presence of localized diseased regions or lesions. For example,
lung cancer often presents as localized malignant nodules found on chest x-rays or computed
tomography (CT) scans. Ignoring localization can result in an overestimate of true perfor-
mance (Obuchowski, Mazzone, and Dachman 2010); for example, suppose a true lesion on a
diseased case is missed and a disease-free region is perceived as abnormal by the radiologist
- the two mistakes would effectively cancel each other and the event would be credited as
a true positive at the level of confidence associated with the disease-free region. There are
two data collection paradigms that allow for localization information to be collected to differ-
ent extents (a third important paradigm (Starr, Metz, Lusted, and Goodenough 1975; Starr,
Metz, and Lusted 1977; Swensson and Judy 1981; Swensson 1996), termed location ROC
(LROC) is not included in this description, as it is not currently implemented in any of the
websites mentioned so far). In the free-response paradigm (Egan, Greenburg, and Schulman
1961; Miller 1969; Bunch, Hamilton, Sanderson, and Simmons 1978) the radiologist marks
and rates regions that are suspicious for disease. A mark is classified as lesion localization
(LL) if it successfully locates an actual lesion to within clinically acceptable spatial accuracy,
or non-lesion localization (NL) otherwise (usage of ROC-specific terms like true positive and
false positive in the FROC, LROC or ROI contexts can lead to confusion). Unmarked le-



4 Analysis of Data Acquired Using ROC Paradigm and Its Extensions

sions are assigned the –infinity rating. By treating the rating of the highest rated mark on
a non-diseased image (or –infinity if the image has no marks) as its inferred FP rating, it
is possible to define an inferred FPF quantity that is analogous to true FPF obtained in an
actual ROC study. By cumulating LL events and dividing by the total number of lesions it
is possible to define a lesion localization fraction (LLF) quantity that is analogous to TPF,
but because it requires correct localization, may not reach unity, even when all ratings are
cumulated. A plot of LLF along the ordinate vs. FPF is defined as the alternative FROC,
or AFROC (Chakraborty 1989; Chakraborty and Winter 1990), where it is understood that
the uppermost operating point, obtained by cumulating all the marks, is to be connected to
(1,1) by a dotted line (while inaccessible to the observer, it needs to be taken into account
in defining the area under the AFROC as a valid figure of merit (Chakraborty 2006b,a); es-
sentially it gives credit for unmarked non-diseased cases and penalizes for unmarked lesions).
Non-lesion localization fraction (NLF) is defined as the cumulated number of NLs divided
by the total number of cases. The FROC plot is defined as that of LLF along the ordinate
vs. NLF (Bunch, Hamilton, Sanderson, and Simmons 1978; Chakraborty, Breatnach, Yester,
Soto, Barnes, and Fraser 1986; Niklason, Hickey, Chakraborty, Sabbagh, Yester, Fraser, and
Barnes 1986; Barnes, Sabbagth, Chakraborty, Nath, Luna, Sanders, and Fraser 1989). By
treating the rating of the highest rated mark on a diseased image (or negative infinity if the
image has no marks) as its inferred TP rating, it is possible to define an inferred TPF. The
plot of inferred TPF vs. inferred FPF is the inferred ROC curve. Regarding the highest rated
NL mark on any image as an inferred FP1 rating (the 1 denotes that NL marks on diseased
cases could be contributing to this FP-like rating) and the corresponding AFROC1 plot is
that of LLF vs. FPF1. By assigning clinically relevant weights to different lesions on the
same diseased image, it is possible to define weighted LLF, weighted AFROC and weighted
AFROC1 plots (the weights, which add up to unity on any diseased image, are the relative
importances of finding the lesions: from the clinical perspective all lesions are not alike; some
are more aggressive than others and therefore more important to find). With the exception
of the FROC, the trapezoidal areas under all of these curves qualify as valid figures of merit
(a valid figure of merit is one that rewards good decisions and penalizes bad decisions, where
good and bad are defined with respect to patient outcome). That the area under the FROC
is a particularly bad figure of merit can be appreciated from the fact that a perfect observer’s
FROC curve would be a vertical line extending from (0,0) to (0,1), for which the area measure
would be zero.

In the region of interest (ROI) paradigm (Obuchowski, Lieber, and Powell 2000) each image
is divided into Q regions of interest (typically Q is 4 or 5) where each region is either non-
diseased or diseased, and the reader gives a ROC-like rating to each region. Regarding each
of the regions as a mini-image, it is possible to define ROC-like quantities TPF’ and FPF’,
where the primes distinguish them from true FPF and TPF. For example, FPF’ and TPF’
can be defined for a dataset containing only diseased images, for which it would be impossible
to define FPF. The data collection paradigms are summarized in Table 1.

Analysis of the data starts with estimation, for each treatment - reader combination, of the fig-
ure of merit. One object of the analysis is to determine the significance of the reader-averaged
differences in FOMs between pairs of modalities. While several significance-testing methods
have been proposed, see Table 2, we focus on two that are easily accessible and consequently in
widespread use: the Dorfman-Berbaum-Metz (DBM) method (Dorfman, Berbaum, and Metz
1992) and the Obuchowski-Rockette (OR) method (Obuchowski and Rockette 1995), both of
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which have been significantly improved by contributions by Hillis, and are henceforth referred
to as DBMH and ORH, respectively. A third method (Gallas 2006; Gallas, Bandos, Samuel-
son, and Wagner 2009) often termed a mechanistic or first-principles approach to MRMC
analysis, is also available online, that yields independent estimates of variability parameters
used in DBMH and ORH analyses, in addition to its own estimates. All significance-testing
methods are applicable to any scalar figure of merit. In fact current JAFROC software uses
the DBMH significance testing method and applies it to different figures of merit, e.g., the
trapezoidal area under the AFROC curve.

Table 1: Data collection paradigms, associated operating characteristics, figures of merit and
common terminology

Data collection
paradigm

Operating
characteristic(s)

FOM Terminology

Receiver
operating

characteristic

ROC = TPF vs.
FPF

Trapezoidal area
under ROC

AUC

AFROC = LLF
vs. FPF

Trapezoidal area
under AFROC

JAFROC,
weighted
JAFROC

Free-response
AFROC1 = LLF

vs. FPF1
Trapezoidal area
under AFROC1

JAFROC1,
weighted

JAFROC1
FROC = LLF vs.

NLF
Not recommended

Inferred ROC
Trapezoidal area
under inferred

ROC
AUC

Region of interest
ROC’=TPF’ vs.

FPF’
Trapezoidal area

under ROC’
AUC’

If a non-significant result is obtained (i.e., p > α ) in a pilot study then the investigator may
wish to plan a new pivotal study that is sufficiently powered to detect a clinically relevant
difference between two modalities of interest. The pilot study is used to get estimates of
variability components entering a figure of merit model, as these determine the sample size.
Sample-size estimation methods for ROC studies are available on all referenced websites. A
preliminary sample-size method for free-response studies is available on the JAFROC website.
We are unaware of any sample size estimation method for ROI studies.

2. Statistical Models and Methods

The figure of merit is a critical determinant of statistical power (Chakraborty 2008) and
clinical relevance (Chakraborty 2012) of the measurement. Even for the relatively simple
ROC paradigm, several FOMs have been proposed, e.g., partial area measures (Jiang, Metz,
and Nishikawa 1996; Yousef, Wagner, and Loew 2005), the Youden index (Youden 1950)
and others (Pepe 2003). In the following sections we define the implemented ROC data
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Table 2: Software availability of MRMC observer performance methods.

Significance
testing methods

Online software
name and website

Supported data
collection
paradigms

Supported
FOMs

DBMH, ORH

OR-DBM MRMC
/ http:

//perception.

radiology.

uiowa.edu

Wilcoxon and
parametric

fits

DBMH

Metz ROC
Software / http:

//metz-roc.

uchicago.edu/

MetzROC/

software

ROC
Wilcoxon and

parametric
fits

Mechanistic
MRMC

iMRMC / https:

//code.google.

com/p/imrmc

Wilcoxon

DBMH

JAFROC /
http://

devchakraborty.

com

ROC, FROC, ROI

Trapezoidal
areas under

ROC,
AFROC,
AFROC1,
weighted

versions and
ROC’, and

other FOMs

Ordinal regres-
sion(Toledano and

Gatsonis 1996;
Toledano 2003)
Wald test on U-
statistics(Song

1997)
Hierarchical

ordinal regres-
sion(Ishwaran and

Gatsonis 2000;
Obuchowski,

Beiden, Berbaum,
Hillis, Ishwaran,

Song, and Wagner
2004)

NA ROC

AUC and
other ROC
figures of

merit

Multiple boot-
straps(Beiden,
Wagner, and

Campbell 2000)

http://perception.radiology.uiowa.edu
http://perception.radiology.uiowa.edu
http://perception.radiology.uiowa.edu
http://perception.radiology.uiowa.edu
http://metz-roc.uchicago.edu/MetzROC/software
http://metz-roc.uchicago.edu/MetzROC/software
http://metz-roc.uchicago.edu/MetzROC/software
http://metz-roc.uchicago.edu/MetzROC/software
http://metz-roc.uchicago.edu/MetzROC/software
https://code.google.com/p/imrmc
https://code.google.com/p/imrmc
https://code.google.com/p/imrmc
http://devchakraborty.com
http://devchakraborty.com
http://devchakraborty.com
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FOM, two FOMs commonly used in analyzing free-response data (several other implemented
free-response figures of merit are defined in Appendix A.1), followed by the ROI figure of
merit. Two implemented significance-testing methods are described followed by sample-size
estimation for ROC studies. No derivations are given: we simply refer the journal reader to
the appropriate literature.

2.1. Figure of merit for ROC data

Images are indexed by ktt, where t is the truth state (1 for disease-free cases and 2 for
diseased cases) and kt indexes the cases for truth state t, specifically, k1 = 1, 2 . . . ,K1 and
k2 = 1, 2 . . . ,K2 where K1 is the number of disease-free cases and K2 is the number of diseased
cases. Let zijktt denote the rating given to case ktt by the reader j using modality i with
i = 1, 2 . . . , I and j = 1, 2 . . . , J , where I is the number of modalities and J is the number of
readers. The trapezoidal area under the ROC curve, θ, estimated for reader j in modality i
by the Wilcoxon statistic (Wilcoxon 1945; Mann and Whitney 1947):

θ̂ij =
1

K1K2

K1∑
k1

K2∑
k2

ψ (zijk11, zijk22) (1)

The kernel function ψ is defined by:

ψ (zijk11, zijk22) = 1 zijk11 < zijk22

ψ (zijk11, zijk22) = 0.5 zijk11 = zijk22

ψ (zijk11, zijk22) = 0 zijk11 > zijk22

 (2)

This figure of merit can be shown to be identical to the area under the empirical (trapezoidal)
ROC curve (Bamber 1975). It has the physical interpretation as the probability that a
randomly picked diseased image will be rated higher than a randomly picked non-diseased
image (Hanley and McNeil 1982).

2.2. Figures of merit for free-response data

Since free-response data allows for varying number of lesions and mark/rating pairs per case,
the notation is necessarily more complex. The case-truth index t refers to the case (or patient)
as a whole (non-diseased, t = 1, or diseased, t = 2), not to specific locations in the case. Let
Nk22 denote the number of lesions in diseased case k22, where Nk22 ≥ 1. The total number
of lesions in the data set is N2:

N2 =

K2∑
k2=1

Nk22 (3)

The notation is driven by the Chakraborty search-model for the free-response paradigm
(Chakraborty 2006a,b) that involves two phases, a search phase during which suspicious
regions (decision sites) are identified (based on eye-tracking measurements this phase is quite
rapid (Kundel, Nodine, Conant, and Weinstein 2007), typically 100 ms for experts) and a
decision phase during which each decision-site is examined (typically 1 sec per site) and a
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decision is made on whether to mark it. Decision sites can be either noise sites (not corre-
sponding to real lesions) or signal sites (corresponding to real lesions). Marked noise sites are
non-lesion localizations while marked signal sites are lesion localizations. Marks are labeled
by a location index ls (ls = 1, 2, . . .) and a site-truth index s which determines the type of the
site, i.e., s = 1 for a non-lesion localization and s = 2 for a lesion localization. The rating for
modality i, reader j, case ktt and site lss is denoted rijkttlss.

Several methods have been proposed to infer ROC-like data (i.e., single rating per image) from
free-response data. The highest rating inferred ROC (IR) figure of merit θIRij is estimated by
(this is identical to the A0 figure of merit defined by Song, Bandos, Rockette, and Gur (2008)):

θ̂IRij =
1

K2K1

K2∑
k2=1

K1∑
k1=1

ψ (max(rijk11∗1),max(rijk22∗∗)) (4)

The max function is the maximum over the indices indicated by the asterisks. For the second
max function, the maximum over diseased cases, the maximum is over all marks (NLs and
LLs), so on a diseased case there is a possibility that a non-lesion localization is rated higher
than any lesion localization on that case. If all lesions are marked and no noise sites are
marked, signifying perfect performance, the ψ function is unity, and θ̂IRij is unity. If no lesions
are marked and the distribution of the numbers and ratings of NL marks is the same for
non-diseased and diseased images, signifying the observer is unable to discriminate between
them, the ψ function comparisons yield 0.5, on the average, implying θ̂IRij = 0.5, which is the

worst possible ROC performance. Therefore, θ̂IRij ranges between 0.5 and unity. The Song et
al (Song et al. 2008) A1 figure of merit takes the average rating of all marked regions on an
image to infer an ROC-like single rating for the image. The Song A2 figure of merit involves
a stochastic dominance idea.

Let Wk2l2 denote the weight of lesion l22 in abnormal case k22 such the weights on any given
diseased case add up to unity:

Nk22∑
l2=1

Wk2l2 = 1 (5)

The weighted (according to clinical importance) JAFROC figure of merit θwJAFROCij is esti-
mated by:

θ̂wJAFROCij =
1

K2K1

K2∑
k2=1

K1∑
k1=1

Nk22∑
l2=1

Wk2l2ψ (max(rijk11∗1), rijk22l22) (6)

If all lesions are marked and no non-diseased image is marked the ψ function is unity and
θ̂wJAFROCij is unity, the best possible performance. If no lesions are marked and every non-

diseased image has at least one mark the ψ function is zero and θ̂wJAFROCij is zero, the worst
possible performance. This figure or merit, like the one to be described next, ranges between
0 and unity, unlike the ROC area figure of merit that ranges between 0.5 and 1. The above
figure of merit does not count NLs on diseased cases. The extension to include the highest
rated NL on diseased cases, called the weighted JAFROC1 figure of merit, θ̂wJAFROC1

ij , is:
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θ̂wJAFROC1
ij =

1

K2 (K1 +K2)

K2∑
k2=1

 K1∑
k1=1

Nk22∑
l2=1

Wk2l2ψ (max(rijk11∗1), rijk22l22)

+

K2∑
k′2=1

Nk22∑
l2=1

Wk2l2ψ
(
max(rijk′22∗1), rijk22l22

) (7)

The first term in the numerator compares LL ratings to the maximum NL ratings on non-
diseased images, similar to Eqn. 6. The second term compares LL ratings to the maximum
NL ratings on diseased images. Since the maximum of NL ratings in k′22 is being compared
with each LL rating in k22, we should use the lesion weights corresponding to k22 and the l2
index ranges from 1 to Nk22. The above two figures of merit have covered the needs of most
users of JAFROC. Other implemented free-response figures of merit, sometimes needed for
specific clinical reasons, are described in Appendix A.1.

2.3. Figure of merit for ROI data

In this paradigm each image is divided into Qktt regions of interest (ROIs). Obuchowski’s
analytic significance testing procedure (Obuchowski 1997) can handle varying number of ROIs
per image, but is currently unimplemented in RJafroc, which instead uses resampling methods
for signficance testing. Let zijk22l22 denote the rating in modality i, reader j, for the lesion-
present ROI indexed by l22 in diseased case k22 and let qk222 denote the total number of
lesion-containing ROIs in the case. Similarly, let zijkttl11 denote the rating in modality i,
reader j, for the lesion-absent ROI indexed by l11 in case ktt (which could be non-diseased
or diseased) and let qktt1 be the total number of non-lesion containing ROIs in the case. The
trapezoidal area under the ROI-level ROC curve is estimated by Obuchowski et al. (2000)

θ̂ROIij =

K1∑
k1=1

K2∑
k2=1

2∑
t=1

qktt1∑
l1=1

qk222∑
l2=1

ψ (zijkttl11, zijk22l22)

K1∑
k1=1

K2∑
k2=1

2∑
t=1

qktt1∑
l1=1

qk222∑
l2=1

(1)

(8)

For t = 1 the comparisons are between ratings of lesion-containing ROIs and ratings of ROIs
on non-diseased cases and for t = 2 comparisons are between ratings of lesion-containing ROIs
and ratings of lesion-absent ROIs on diseased cases. Unlike the ROC figure of merit and the
weighted JAFROC figure of merit, the ROI figure of merit, like the weighted JAFROC1 figure
of merit, can be defined over a dataset with no non-diseased cases. Table 3 summarizes the
figures of merit described so far.

2.4. DBMH significance testing method

The DBM method (Dorfman et al. 1992) models the jackknife derived pseudovalues (Efron
and Tibshirani 1993) of θ̂ij , denoted Y ′ijk for modality i, reader j and case k (k = 1, 2, . . .K;
where K = K1 +K2 is the total number of cases). The pseudovalues are defined by:

Y ′ijk = Kθ̂ij − (K − 1) θ̂ij(k) (9)



10 Analysis of Data Acquired Using ROC Paradigm and Its Extensions

Table 3: Summary of the figures of merit for the different observer performance measurement
data collection methods. [IR = inferred ROC using the highest rating; A1, A2 are inferred
ROC figures of merit]

Paradigm Description of FOM Symbol Comments

ROC
Trapezoidal area under

ROC
θ̂ij

Equivalent to Wilcoxon
statistic

Highest rating inferred
ROC

θ̂IRij

Average rating inferred
ROC

A1

FROC
Stochastic dominance

inferred ROC
A2

Weighted JAFROC θ̂wJAFROCij

Recommended FOM for
FROC data

Weighted JAFROC1 θ̂wJAFROC1
ij

To be used only in absence
of non-diseased cases

ROI
Trapezoidal area under

ROI-level ROC’
θ̂ROIij

Here θ̂ij(k) is the estimate of θij for modality i, reader j and case k removed (jackknifed) from
the analysis. Hillis, Berbaum, and Metz (2008) have defined a centering transformation

Yijk = Y ′ijk +
(
θ̂ij − Y ′ij•

)
(10)

The effect of this transformation is that the average of the centered pseudovalues over the
case index is identical to the estimate of the figure of merit:

Yij• = Y ′ij• +
(
θ̂ij − Y ′ij•

)
= θ̂ij (11)

This has the practical advantage that all confidence intervals are correctly centered. While this
transformation is unnecessary if one uses the Wilcoxon as the figure-of-merit, for generality
with other possible figures of merit, it is understood that all calculations from now on will use
centered pseudovalues. The DBM pseudovalue model (Dorfman et al. 1992) is:

Yijk = µ+ τi +Rj + Ck + (τR)ij + (τC)ik + (RC)jk + εijk
I∑
i=1

τi = 0
(12)

The right hand side consists of 2 fixed effects, µ, τi, and 6 random effects modeled as mutually
independent samples from zero-mean normal distributions with variances (in the same order
of appearance in the above equation) σ2

R, σ2
C , σ2

τR, σ2
τC , σ2

RC and σ2
ε . Using the dot symbol

to denote an average over the corresponding index, the first term can be µ estimated by
averaging the observed left hand side over all three indices:

µ = Y••• (13)
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The modality effect can be estimated by:

τi = Yi•• − µ (14)

The reader and case averaged difference between two different modalities i and i′ (often termed
the observed effect size) is given by

τi − τi′ = Yi•• − Yi′•• = θ̂i• − θ̂i′• (15)

Estimating the strengths of the random terms involves analysis of variance (ANOVA) methods
specially adapted to this problem by Dorfman, Berbaum, Metz, Hillis and others. Only the
final results are summarized here. The starting point is calculation of the mean squares. In
the following definitions the Y subscript emphasizes that the relevant mean-square quantities
are calculated using pseudovalues, not figure-of-merit values.

MSY (T ) =
JK

I∑
i=1

(Yi••−Y•••)2

I−1

MSY (R) =
IK

J∑
j=1

(Y•j•−Y•••)2

J−1

MSY (TR) =
K

I∑
i=1

J∑
j=1

(Yij•−Yij•−Y•j•+Y•••)2

(I−1)(J−1)

MSY (TC) =
J

I∑
i=1

K∑
k=1

(Yi•k−Yi••−Y••k+Y•••)
2

(I−1)(K−1)

MSY (ε) =

I∑
i=1

J∑
j=1

K∑
k=1

(Yijk−Yij•−Yi•k−Y•jk+Yi••+Y•j•+Y••k−Y•••)
2

(I−1)(J−1)(K−1)

(16)

Hillis proposes the following statistic for testing the null hypothesis of no modality effect
(Hillis 2007):

FDBMH =
MSY (T )

MSY (TR) +H (MSY (TC)−MSY (ε))
(17)

Here H (x) is the unit step function, defined as unity for positive x and zero otherwise. Hillis
has shown that FDBMH is distributed as an F-statistic with numerator degrees of freedom
ndf = I − 1 (i.e., one less than the number of treatments) and ddfH denominator degrees of
freedom, i.e.,

FDBMH ∼ Fndf,ddfH (18)

The denominator degrees of freedom ddfH is defined by (this is different from the original
definitions by DBM):

ddfH =
[MSY (TR) +H [MSY (TC)−MSY (ε)]]2

MSY (TR)2

(I−1)(J−1)

(19)
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The critical value of the F-statistic for rejection of the null hypothesis is given by F1−α,ndf,ddfH .
The p-value of the test is given by:

p = P (F > FDBMH |F ∼ Fndf,ddfH ) (20)

The (1− α) 100 percent confidence interval for (θi − θi′)is given by

CI1−α =
(
θ̂i• − θ̂i′•

)
± tα/2;ddfH

√
2

JK
(MSY (TR) + max (MSY (TC)−MSY (ε) , 0)) (21)

The analysis described so far treats both readers and cases as random factors, so it is termed
random-reader random-case (RRRC). Special cases of the analysis, which regards either read-
ers or cases as fixed factors, is possible, and the results are given in Appendix A.2. These are
sometimes necessary if the number of readers or the number of cases is not large enough to
support treating them as random factors (for example, one could have a single reader interpret
a set of cases in two modalities).

2.5. ORH significance testing method

The statistical model underlying the OR method is (Obuchowski and Rockette 1995):

θ̂ij{c} = θ0 + ∆θi +Rj + (τR)ij + εij{c}
I∑
i=1

∆θi = 0
(22)

The left hand side is the estimated figure-of-merit θ̂ij{c} for modality i and case-set index
{c}, where c = 1, 2, . . . , C denote different case sets (i.e., different collections of cases, not
individual cases, emphasized by the curly bracket notation) sampled from the patient pop-
ulation). In practice the dataset is limited to c = 1, but resampling and other methods,
are available to estimate the case-sample variability from a single case set realization. The
first two terms on the right hand side of Eqn. 22 have their usual meanings. The remain-
ing terms are mutually independent random samples: Rj denotes a random contribution to
the figure-of-merit of reader j, modeled as a sample from a zero-mean normal distribution
with variance σ2

R; (τR)ij denotes a treatment-dependent random contribution of reader j in

modality i, modeled as a sample from a zero-mean normal distribution with variance σ2
τR.

[We are abusing the notation but it is implicit that the variances in the OR model refer to
the FOM, while those in the DBM model apply to pseudovalues.] The error term is modeled
by a zero mean vector multivariate normal distribution with covariance matrix Σ described
by 4 parameters, V ar, Cov1, Cov2, Cov3, defined as follows:

Cov
(
εij{c}, εi′j′{c}

)
=


V ar i = i′, j = j′

Cov1 i 6= i′, j = j′

Cov2 i = i′, j 6= j′

Cov3 i 6= i′, j 6= j′

(23)

OR have suggested that the 4 elements of the covariance matrix should be ordered as follows:

V ar ≥ Cov1 ≥ Cov2 ≥ Cov3 (24)
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Resampling methods are used to estimate the parameters of the covariance matrix. Using
the bootstrap method (Efron and Tibshirani 1993), where {b} is the bth bootstrap replicate,
b = 1, 2, . . . , B,

Ĉov
(
εij{c}, εi′j′{c}

)
=

〈
1

B − 1

B∑
b=1

(
θij{b} − θij{•}

) (
θi′j′{b} − θi′j′{•}

)〉
ij

(25)

As with the case-set index {c}, the bootstrap index {b} denotes a set of cases. The averages,
indicated by the bracket symbols, over modalities and readers are necessary since the co-
variances in the OR model are assumed to be independent of modality and reader. The
jackknife estimate is:

Ĉov
(
εij{c}, εi′j′{c}

)
=

〈
K − 1

K

K∑
k=1

(
θij(k) − θij(•)

) (
θi′j′(k) − θi′j′(•)

)〉
ij

(26)

DeLong, DeLong, and Clarke-Pearson (1988) have described an analytical covariance estima-
tion method that is applicable as long as one restricts to the ROC paradigm and the Wilcoxon
FOM (the bootstrap and the jackknife are more generally applicable to any figure of merit).

Because of the correlated structure of the error term a customized ANOVA is needed. The
null hypothesis is that the true figure-of-merit of all modalities are identical, i.e.,

NH : ∆θi = 0 (i = 1, 2, ..., I) (27)

A modified F-statistic is needed, denoted F ∗ORH and defined by (this is different from that
originally suggested by OR):

F ∗ORH =
MS (T )

MS (TR) +H
(
J
(
Ĉov2 − Ĉov3

)) (28)

Eqn. 28 incorporates Hillis’ modification, which ensures that the constraint Cov2 ≥ Cov3 is
always obeyed. The mean square (MS) terms are defined by (note the lack of the Y subscript,
as these are calculated directly using FOM values):

MS (T ) = J
I−1

I∑
i=1

(
θ̂i• − θ̂••

)2

MS (TR) = 1
(I−1)(J−1)

I∑
i=1

J∑
j=1

(
θ̂ij − θ̂i• − θ̂•j + θ̂••

)2
(29)

According to Hillis, the observed statistic F ∗ORH is distributed as an F-statistic with ndf = I−1
and ddfORH degrees of freedom:

F ∗ORH ∼ Fndf,ddfORH
(30)



14 Analysis of Data Acquired Using ROC Paradigm and Its Extensions

where

ddfORH =

[
MS (TR) +

(
J
(
Ĉov2 − Ĉov3

))]
[MS(TR)]

(I−1)(J−1)

2

2

(31)

For the Wilcoxon statistic, the two definitions of ddfH (Eqn. 19 and Eqn. 31) are equivalent.
The critical value of the F-statistic for rejection of the null hypothesis is given by F1−α,ndf,ddfH .
The p-value of the test is given by:

p = P (F > F ∗ORH |F ∼ Fndf,ddfORH
) (32)

The percent (1− α) 100confidence interval for
(
θ̂i − θ̂i′

)
is given by

CI1−α =
(
θ̂i• − θ̂i′•

)
± tα/2;ddfORH

√
2

J
(MS (TR) + J max (Cov2 − Cov3, 0)) (33)

The analysis described so far treats both readers and cases as random factors (RRRC). Special
cases of the analysis, which regards either readers or cases as fixed factors, are given in
Appendix A.3.

2.6. Sample size estimation for ROC studies

We will illustrate the procedure for the ORH method. Two modalities are assumed. The
observed effect size (absolute value of the difference in figures of merit between the two
modalities) is 2 |τ̂1|. Under the alternative hypothesis AH : τi 6= 0 the test statistic is
distributed as a non-central F-distribution with ndf = 1 and to-be-determined ddf and non-
centrality parameter ∆. The sample size procedure (Hillis, Obuchowski, and Berbaum 2011)
assumes random-readers and random cases; different formulae apply when either readers or
cases is treated as a fixed effect, see below.

1. Specify the effect size d: typically, when dealing with area under the ROC curve as the
figure of merit, one might choose the value observed in the pilot study.

2. Estimate the OR modality-reader interaction variance component: this is given by (see
Table 1 in Hillis (2007)):

σ̂2
τR = MS (TR)− V̂ ar + Ĉov1 +H

(
Ĉov2 − Ĉov3

)
If this yields a negative variance, Hillis suggests setting it to zero.

3. Estimate the non-centrality parameter and the ddf of the F-distribution. Let K∗ denote
the number of cases in the pilot dataset, and let J,K be the numbers of readers, cases
in the pivotal study. The non-centrality parameter ∆ and the ddf are estimated by:

∆̂ =
J d

2

2

σ̂2
τR + K∗

K

(
V̂ ar − Ĉov1 + (J − 1)H

(
Ĉov2 − Ĉov3

))
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d̂df = (J − 1)

[
σ̂2
τR + K∗

K

(
V̂ ar − Ĉov1 + (J − 1)H

(
Ĉov2 − Ĉov3

))]2

[
σ̂2
τR + K∗

K

(
V̂ ar − Ĉov1 + (J − 1)H

(
Ĉov2 − Ĉov3

))]2

4. The statistical power 1− β at significance level α can be calculated using:

1− β = P
(
F > F

1−α;1,d̂df
|F ∼ F

1,d̂df ;∆̂

)
F1,ddf ;∆ denotes the non-central F-distribution with degrees of freedom 1, ddf , and non-
centrality parameter ∆ and F1−α;1,ddf is the critical value of F such that fraction of the
1− α central F distribution with degrees of freedom 1, ddf is below the critical value.

5. If the power is below the desired or target power, typically chosen to be 0.8, one tries
successively larger value of K until the target power is reached. The procedure could
be repeated with different values of J (depending on cost and other practicality issues,
it might be better to have more reader each reading fewer cases to achieve the same
target power).

Hillis has also described a procedure, currently unimplemented in RJafroc, for correcting
the estimate if the numbers of non-diseased to diseased case ratio is substantially different
between pilot and pivotal studies (Hillis et al. 2011).

Formulae for fixed reader random case (FRRC) sample size estimation

The only change needed is to define:

ddf = K − 1 (34)

Formulae for random reader fixed case (RRFC) sample size estimation

The only change needed is to define:

ddf = J − 1 (35)

3. Examples

It is assumed that the package has been installed from the CRAN website and that the package
has been loaded using the library() function.

3.1. Structure of the dataset

The package comes pre-loaded with three datasets: (1) an ROC dataset named rocData,
which has been repeatedly used by Berbaum, Hillis and colleagues to illustrate advances in
ROC methodology (Hillis 2007) (and referred to in their papers as Van Dyke data (Van Dyke,
White, Obuchowski, Geisinger, Lorig, and Meziane 1993)), (2) an FROC dataset named
frocData, contributed by Dr. Zanca (Zanca, Jacobs, Van Ongeval, Claus, Celis, Geniets,
Provost, Pauwels, Marchal, and Bosmans 2009), and a simulated ROI dataset named roiData

(see Appendix A.4 for details regarding the ROI simulator). Their structures are shown below:
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str(rocData)

## List of 8

## $ NL : num [1:2, 1:5, 1:114, 1] 1 3 2 3 2 2 1 2 3 2 ...

## $ LL : num [1:2, 1:5, 1:45, 1] 5 5 5 5 5 5 5 5 5 5 ...

## $ lesionNum : int [1:45] 1 1 1 1 1 1 1 1 1 1 ...

## $ lesionID : num [1:45, 1] 1 1 1 1 1 1 1 1 1 1 ...

## $ lesionWeight: num [1:45, 1] 1 1 1 1 1 1 1 1 1 1 ...

## $ dataType : chr "ROC"

## $ modalityID : chr [1:2] "0" "1"

## $ readerID : chr [1:5] "0" "1" "2" "3" ...

str(frocData)

## List of 8

## $ NL : num [1:2, 1:4, 1:200, 1:7] -Inf -Inf -Inf -Inf -Inf ...

## $ LL : num [1:2, 1:4, 1:100, 1:3] 5 4 4 3 5 5 4 2 4 5 ...

## $ lesionNum : int [1:100] 1 1 1 1 1 1 1 1 1 1 ...

## $ lesionID : num [1:100, 1:3] 1 1 1 1 1 1 1 1 1 1 ...

## $ lesionWeight: num [1:100, 1:3] 1 1 1 1 1 1 1 1 1 1 ...

## $ dataType : chr "FROC"

## $ modalityID : chr [1:2] "4" "5"

## $ readerID : chr [1:4] "1" "3" "4" "5"

str(roiData)

## List of 8

## $ NL : num [1:2, 1:5, 1:90, 1:4] 0.957 0.907 0.57 0.824 1.473 ...

## $ LL : num [1:2, 1:5, 1:40, 1:4] 1.51 2.32 2.37 2.19 2.34 ...

## $ lesionNum : int [1:40] 2 3 2 2 3 3 1 2 3 3 ...

## $ lesionID : num [1:40, 1:4] 2 1 1 1 1 2 4 1 1 1 ...

## $ lesionWeight: num [1:40, 1:4] 0.5 0.333 0.5 0.5 0.333 ...

## $ dataType : chr "ROI"

## $ modalityID : chr [1:2] "1" "2"

## $ readerID : chr [1:5] "1" "2" "3" "4" ...

The ROC dataset has two modalities, five readers, 69 (= 114 - 45) non-diseased and 45
diseased cases. The FROC data set has two modalities, 4 readers, 100 non-diseased and 100
diseased cases. Since ROC and ROI data are special cases of free-response data, the same data
structure is used to accommodate all of them. The dataType field can be ROC, FROC or ROI.
For a given modality and reader, for ROC data the FP ratings are addressed by the first K1

values of the third dimension of the NL array and the corresponding TP ratings are addressed
by the K2 values of the third dimension of the LL array. The fourth dimension on the NL and
LL arrays, only the first value of which is used to address ROC ratings, corresponds to the
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location index lss, i.e., the multiple marks of a given type, NL (s = 1) or LL (s = 2), that are
possible for FROC data. In the above example, the dimensioning of the NL array shows that
there is least one image in the dataset with 7 NL marks, while the dimensioning of the LL
array shows that there is at least one diseased image with 3 lesions. The lesionNum field is
an array of length K2 whose elements contain the number of lesions in the diseased cases, i.e.,
Nk22. The lesionID field is an integer label (not necessarily consecutive or even positive) used
to distinguish between different lesions on the same case. This is necessary when weighted
FOMs are used, as it is necessary to keep track of which lesion is getting which rating in
order to assign it the correct weight. For example, LL[1,1,1,2] is the rating assigned to the
2nd lesion for the first diseased case, first reader in the first modality and the corresponding
label is lesionID[1, 2]. The lesionWeight field, corresponding to Wk2l2 , has the same
dimensions as lesionID. The variables ModalityID and readerID are string arrays of length
I, J , respectively, that are used to identify the modalities and readers, respectively. The ROI
dataset has two modalities, 5 readers, 50 non-diseased and 40 diseased images, each with 4
ROIs. On the diseased images, the number of actually diseased ROIs varies from 1 to 4. The
simulator is available from http://www.devchakraborty.com/RoiData/RoiSimulator.zip.

3.2. Creating dataset objects

The user can manually (or using code) create dataset objects by adhering to the structure
described above (this could be useful in running simulation studies). For single datasets it
is more convenient to enter the data into an Excel sheet (both .xlsx and .xls files are
supported) following the JAFROC data file format detailed in the help page for the package
RJafroc-package and summarized below. The ReadDataFile() function reads the data in
JAFROC format (the default). If format = "MRMC", it will read .csv, .txt or .lrc files
(http://perception.radiology.uiowa.edu/). If format = "iMRMC" it will read .imrmc

files (https://code.google.com/p/imrmc/). In each case it returns a dataset object. The
MRMC and iMRMC formats apply to ROC data only while the JAFROC format applies to
all paradigms. The JAFROC Excel file contains three worksheets:

1. A Truth worksheet, which contains a list of all cases in the dataset and the number of
lesions, if any, on each case, and the weight of each lesion.

2. A TP or LL worksheet (use TP for ROC data and LL for all other paradigms), which
contains the ratings of TPs or LLs.

3. A FP or NL worksheet (use FP for ROC data and NL for all other paradigms), which
contains the ratings of FPs or NLs.

For FROC data, except for the Truth worksheet, where each case must occur at least once,
the number of rows in the other worksheets is variable. For ROC data each case appears once
in the Truth worksheet and it appears once in either the FP or TP worksheet. Sample data
files are available on the JAFROC website. The following example downloads each of them
and reads them.

rocXlsx <- "http://www.devchakraborty.com/RocData/rocData.xlsx"

rocLrc <- "http://www.devchakraborty.com/RocData/rocData.lrc"

http://www.devchakraborty.com/RoiData/RoiSimulator.zip
http://perception.radiology.uiowa.edu/
https://code.google.com/p/imrmc/
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rocCsv <- "http://www.devchakraborty.com/RocData/rocData.csv"

rocImrmc <- "http://www.devchakraborty.com/RocData/rocData.imrmc"

frocXlsx <- "http://www.devchakraborty.com/FrocData/frocData.xlsx"

roiXlsx <- "http://www.devchakraborty.com/RoiData/roiData.xlsx"

fullName <- rocXlsx

download.file(url = fullName, basename(fullName), mode = "wb")

RocDataXlsx<- ReadDataFile(fileName = basename(fullName))

fullName <- rocLrc

download.file(url = fullName, basename(fullName))

RocDataLrc<- ReadDataFile(fileName = basename(fullName), format = "MRMC")

fullName <- rocCsv

download.file(url = fullName, basename(fullName))

RocDataCsv<- ReadDataFile(fileName = basename(fullName), format = "MRMC")

fullName <- rocImrmc

download.file(url = fullName, basename(fullName))

RocDataImrmc<- ReadDataFile(fileName = basename(fullName), format = "iMRMC")

fullName <- frocXlsx

download.file(url = fullName, basename(fullName), mode = "wb")

FrocDataXlsx<- ReadDataFile(fileName = basename(fullName))

fullName <- roiXlsx

download.file(url = fullName, basename(fullName), mode = "wb")

RoiDataXlsx<- ReadDataFile(fileName = basename(fullName))

3.3. Analyzing an ROC dataset

One has two choices, DBMH significance testing, implemented by the function DBMHAnalysis(),
or ORH significance testing, implemented by the function ORHAnalysis(). Both of these take
a dataset object as the first argument, and have options for changing the significance level α
of the test (the default is 0.05), and which factors (readers and/or cases) to regard as random
(the default is ALL). The return value of the DBMHAnalysis() is a list of 22 elements. Both
functions use the weighted JAFROC figure of merit as the default, so to analyze ROC and
ROI paradigm data one must explicitly specify the figure of merit options as shown below.
To apply DBMH significance testing to a ROC dataset object:

# ROC example

retDbmRoc <- DBMHAnalysis(rocData, fom = "Wilcoxon")

print(retDbmRoc)

The returned data object, which can be viewed using the print() function of R, has the
structure shown in Table 4. The output can be understood if one uses the following abbre-
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viations, often used in combination: Trt = treatment, Rdr = reader, RRRC = random reader
random case, FRRC = fixed reader random case, RRFC = random reader fixed case, ci = 1−α
confidence interval, fomArray = θ̂ij , f = value of observed F-statistic, p = p-value for rejecting
the null hypothesis, DiffTrt = reader-averaged FOM differences between pairs of modalities,
ddf = denominator degrees of freedom for F-test (the numerator degrees of freedom is al-
ways I − 1), AvgRdrEachTrt = the FOM is averaged over all readers, separately for each
treatment, varComp = the DBM pseudovalue variance components defined in connection with
Eqn. 12. For the dataset shown, the reader-averaged difference between the two modalities
is not significant for RRRC (p = 0.0517), but is significant if either reader (p = 0.021) or case
(p = 0.042) is regarded as a fixed factor.

To perform ORH significance testing one uses the function ORHAnalysis(), which takes
the same arguments as DBMHAnalysis(), and additional optional arguments allowing choice
of the covariance estimation method: CovEstMethod = Jackknife, Bootstrap or DeLong

(Jackknife is the default) and if the bootstrap method is selected one can optionally specify
the number of bootstraps (default = 200). The function will generate an error if the DeLong
method is selected with a figure of merit that is not the Wilcoxon statistic. The return value
of the ORHAnalysis()is a list of 21 elements, Table 5, similar to that of DBMHAnalysis(), but
instead of 6 pseudovalue derived variance components, it returns the elements of the covari-
ance matrix (V ar, Cov1, Cov2, Cov3) and the mean-squares and variance components for the
reader and treatment-reader effects.

retORRoc <- ORHAnalysis(rocData, fom = "Wilcoxon")

print(retORRoc)

CovOR <- retORRoc$varComp

cov1 <- CovOR$varCov[3]

cov2 <- CovOR$varCov[4]

cov3 <- CovOR$varCov[5]

varEps <- CovOR$varCov[6]

msTR <- retORRoc$msTR

msT <- retORRoc$msT

CovOR

## varCov

## Var(R) 0.0015349993

## Var(T*R) 0.0002004025

## COV1 0.0003466137

## COV2 0.0003440748

## COV3 0.0002390284

## Var(Error) 0.0008022883

Table 6 summarizes the results of DBMH and ORH analysis, for the latter the results of
using different covariance estimation methods are shown, and compared to results yielded
by OR-DBM MRMC (the University of Iowa Windows software). Since ORH yields similar
results as DBMH (they are identical for the Wilcoxon figure of merit) henceforth we will only
show results for DBMH.
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Table 4: The structure of the object retDbmRoc returned by DBMHAnalysis. [Trt = treat-
ment, Rdr = reader, RRRC = random reader random case, FRRC = fixed reader random case,
RRFC = random reader fixed case, ci = 1 − α confidence interval, fomArray = θ̂ij , f = ob-
served F-statistic, p = p-value, DiffTrt = reader-averaged FOM differences between pairs of
modalities, ddf = denominator degrees of freedom for F-test (the numerator degrees of free-
dom is always I − 1), AvgRdrEachTrt = FOM averaged over all readers, for each treatment,
varComp = the DBM pseudovalue variance components.]

Variable Name Description

fomArray The figure of merit array of each reader and modality.
anovaY The ANOVA table of the pseudovalues.
anovaYi The ANOVA table of the pseudovalues for each modality.
varComp The table of DBM variance components estimates.

fRRRC
The F statistic for testing the null hypothesis, for the RRRC
condition.

ddfRRRC
The denominator degrees of freedom of the F statistic, for the
RRRC condition.

pRRRC
The p-value of the significance test of the NH for the RRRC con-
dition.

ciDiffTrtRRRC

The confidence intervals and related tests for the reader-averaged
FOM differences between pairs of modalities, for the RRRC con-
dition.

ciAvgRdrEachTrtRRRC
The confidence intervals and related tests for reader averaged
FOM in each modality, for the RRRC condition.

fFRRC
The F statistic for testing the null hypothesis, for the FRRC con-
dition.

ddfFRRC The denominator degrees of freedom of the FRRC F statistic.

pFRRC
The p-value of the significance test of the NH, for the FRRC
condition.

ciDiffTrtFRRC

The confidence intervals and related tests for the reader-averaged
FOM differences between pairs of modalities, for the FRRC con-
dition.

ciAvgRdrEachTrtFRRC
The confidence intervals and related tests for reader averaged
FOM in each modality, for the FRRC condition.

ssAnovaEachRdr
The sum of squares table of the ANOVA of the pseudovalues for
each reader (based on the data only for the specified reader).

msAnovaEachRdr
The mean squares table of the ANOVA of the pseudovalues for
each reader (based on the data only for the specified reader).

ciDiffTrtEachRdr
The confidence intervals and related tests of the FOM differences
between pairs of modalities for each reader.

fRRFC
The F statistic for testing the null hypothesis, for the RRFC con-
dition.

ddfRRFC
The denominator degrees of freedom of the F statistic, for the
RRFC condition.

pRRFC
The p-value of the significance test of the NH, for the RRFC
condition.

ciDiffTrtRRFC
The confidence intervals and related tests for the FOM differences
between pairs of modalities, for the RRFC condition.

ciAvgRdrEachTrtRRFC
The confidence intervals and related tests for reader averaged
FOM in each modality, for the RRFC condition.
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Table 5: The structure of the object retORHRocreturned by ORHAnalysis.

Variable Name Description

fomArray The figure of merit array of each reader and modality.
msT The treatment mean square.
msTR The treatment-reader mean square.

varComp

The first two elements contain the reader and modality-reader
variance components, the rest contain, in order, Cov1, Cov2, Cov3
and Var.

fRRRC
The F statistic for testing the null hypothesis, for the RRRC
condition.

ddfRRRC
The denominator degrees of freedom of the F statistic, for the
RRRC condition.

pRRRC
The p-value of the significance test of the NH for the RRRC con-
dition.

ciDiffTrtRRRC

The confidence intervals and related tests for the reader-averaged
FOM differences between pairs of modalities, for the RRRC con-
dition.

ciAvgRdrEachTrtRRRC
The confidence intervals and related tests for reader averaged
FOM in each modality, for the RRRC condition.

fFRRC
The F statistic for testing the null hypothesis, for the FRRC con-
dition.

ddfFRRC The denominator degrees of freedom of the FRRC F statistic.

pFRRC
The p-value of the significance test of the NH, for the FRRC
condition.

ciDiffTrtFRRC

The confidence intervals and related tests for the reader-averaged
FOM differences between pairs of modalities, for the FRRC con-
dition.

ciAvgRdrEachTrtFRRC
The confidence intervals and related tests for reader averaged
FOM in each modality, for the FRRC condition.

varCovEachRdr
Obuchowski-Rockette Variance and Cov1 estimates for each
reader.

ciDiffTrtEachRdr
The confidence intervals and related tests of the FOM differences
between pairs of modalities for each reader.

fRRFC
The F statistic for testing the null hypothesis, for the RRFC con-
dition.

ddfRRFC
The denominator degrees of freedom of the F statistic, for the
RRFC condition.

pRRFC
The p-value of the significance test of the NH, for the RRFC
condition.

ciDiffTrtRRFC
The confidence intervals and related tests for the FOM differences
between pairs of modalities, for the RRFC condition.

ciAvgRdrEachTrtRRFC
The confidence intervals and related tests for reader averaged
FOM in each modality, for the RRFC condition.
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Table 6: Results of DBMH and ORH analysis (with different methods for estimating the
covariance matrix) for rocData compared to that yielded by OR-DBM MRMC (the University
of Iowa Windows software). Only results for random readers and random cases are shown.

Statistic RJafroc OR-DBM MRMC

θ̂1•, θ̂2• 0.897, 0.941 0.897, 0.941

θ̂1• − θ̂2• -0.0438 -0.0438
p-value 0.0517 0.0517

DBMH F-statistic 4.46 4.46
ddf 15.3 15.26

Confidence interval (-0.088, 0.000359) (-0.088,0.00036)

θ̂1• − θ̂2• -0.0438 -0.0438
p-value 0.0517 0.0517

ORH Jackknife F-statistic 4.46 4.46
ddf 15.3 15.26

Confidence interval (-0.088, 0.000359) (-0.088,0.00036)

θ̂1• − θ̂2• -0.0438 -0.0438
p-value 0.0501 0.0558

ORH Bootstrap
boots = 200

F-statistic 4.56 4.21

ddf 14.5 17.07
Confidence interval (-0.0876, 0.0000164) (-0.0888, 0.00121)

θ̂1• − θ̂2• -0.0438 -0.0438
p-value 0.0512 0.0512

ORH DeLong F-statistic 4.48 4.48
ddf 15.1 15.07

Confidence interval (-0.0879, 0.000267) (-0.0879,0.00027)
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3.4. Sample size estimation for ROC studies

For the ROC dataset analyzed above, since random reader random case analysis was unable
to reject the null hypothesis, a sample size estimate may be of interest for the purpose of
planning a future study. We equate the effect size to the magnitude of the observed effect
size, 0.0438, which is our best information about the magnitude of the true effect size (if the
modalities will be further optimized prior to the pivotal study, it may be reasonable to posit
0.05 as the true effect size). The following commands performs DBH analysis and extracts
the relevant pseudovalue variance components and effect size for sample size estimation:

retDbm <- DBMHAnalysis(rocData, fom = "Wilcoxon")

effectSize <- retDbm$ciDiffTrtRRRC$Estimate

varYTR <- retDbm$varComp$varComp[3]

varYTC <- retDbm$varComp$varComp[4]

varYEps <- retDbm$varComp$varComp[6]

The function SampleSizeGivenJ() can be used to determine the number of cases necessary
to achieve a specified target power (default 0.8) for different specified values of J . Since the
pilot study was conducted with 5 readers and barely reached significance, it is of interest to
try different values 6:10 as in the code snippet below:

for (J in 6:10) {

ret <- SampleSizeGivenJ(J, varYTR, varYTC, varYEps,

effectSize = effectSize)

message("# of readers = ", J, ", estimated # of cases = ", ret$K, "\n",

"predicted power = ", signif(ret$power, 4), "\n")

}

## # of readers = 6, estimated # of cases = 251

## predicted power = 0.8005

##

## # of readers = 7, estimated # of cases = 211

## predicted power = 0.8008

##

## # of readers = 8, estimated # of cases = 188

## predicted power = 0.8007

##

## # of readers = 9, estimated # of cases = 173

## predicted power = 0.8005

##

## # of readers = 10, estimated # of cases = 163

## predicted power = 0.8016

This type of information can be used to test the practicality of different study designs.
The preceding analysis assumed RRRC; to get results assuming fixed readers, supply the
option randomOption = "CASES"; to get results assuming fixed cases, supply the option
randomOption = "READERS".



24 Analysis of Data Acquired Using ROC Paradigm and Its Extensions

Similar analysis can be conducted using the ORH method.

retOR <- ORHAnalysis(rocData, fom = "Wilcoxon")

effectSize <- retDbm$ciDiffTrtRRRC$Estimate

CovOR <- retOR$varComp

cov1 <- CovOR$varCov[3]

cov2 <- CovOR$varCov[4]

cov3 <- CovOR$varCov[5]

varErrOR <- CovOR$varCov[6]

msTR <- retOR$msTR

KStar <- length(rocData$NL[1,1,,1])

for (J in 6:10) {

ret <- SampleSizeGivenJ(J, cov1 = cov1, cov2 = cov2, cov3 = cov3,

varEps = varErrOR, msTR = msTR, KStar = KStar,

effectSize = effectSize)

message("# of readers = ", J, ", estimated # of cases = ", ret$K, "\n",

"predicted power = ", signif(ret$power, 4), "\n")

}

## # of readers = 6, estimated # of cases = 251

## predicted power = 0.8005

##

## # of readers = 7, estimated # of cases = 211

## predicted power = 0.8008

##

## # of readers = 8, estimated # of cases = 188

## predicted power = 0.8007

##

## # of readers = 9, estimated # of cases = 173

## predicted power = 0.8005

##

## # of readers = 10, estimated # of cases = 163

## predicted power = 0.8016

These are identical to those obtained with DBMH analysis. Hillis, Obuchowski, Schartz,
and Berbaum (2005) have shown that when the Wilcoxon is used as the figure of merit, and
jackknifing is used to estimate the covariance matrix, the two methods will yield identical
results for multiple reader studies.

3.5. Analyzing an FROC dataset

Analysis of location specific data (free-response or ROI) is not fundamentally different from
that of ROC paradigm data. As long as the figure of merit is a scalar, and well-behaved
(rewards good decisions and penalizes bad decisions) significance testing methods developed
for ROC apply to the selected figure of merit. We illustrate analysis of this dataset using
the function DBMHAnalysis(), noting that wJAFROC is the default figure of merit. There are
100 non-diseased and 100 diseased images, with the number of lesions on the diseased images
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ranging from 1 to 3, in this free-response dataset. The two modalities are labeled 4 and 5
(the full dataset, containing data for 5 modalities, is available from author DPC).

## default JAFROC analysis, wJAFROC FOM is assumed

retDbmwJafroc <- DBMHAnalysis(frocData)

print(retDbmwJafroc)

Other analyses options for free-response data are shown below.

## wJAFROC1 FOM (use only if there are no non-diseased cases)

retDbmwJafroc1 <- DBMHAnalysis(frocData, fom = "wJAFROC1")

print(retDbmwJafroc1)

retDbmJafroc <- DBMHAnalysis(frocData, fom = "JAFROC")

print(retDbmJafroc)

## JAFROC1 FOM (use only if there are no non-diseased cases)

retDbmJafroc1 <- DBMHAnalysis(frocData, fom = "JAFROC1")

print(retDbmJafroc1)

Table 7 shows results of DBMH-analysis, using location specific figures of merit (JAFROC,
wJAFROC, JAFROC1 and wJAFROC1), applied to a free-response dataset and compared to results
obtained using the Windows version V 4.2.1 of JAFROC software. Only results for random
readers and random cases are shown. The reason for making wJAFROC the default figure of
merit is that the software is primarily designed to analyze free-response data (none of the
other mentioned websites have this capability) and by doing weighted analysis each diseased
case gets the same importance in the analysis, regardless of the number of lesions in it. With
un-weighted analysis, selected by setting the figure of merit option to JAFROC or JAFROC1,
the results can be skewed by cases having a large number of lesions (we have encountered a
nuclear medicine bone-scan dataset where the number of lesions per patient varied from a few
to a hundred).

The JAFROC1 figures of merit use all highest rated NL marks, even those on diseased cases.
While JAFROC1 may give higher statistical power, it mixes two types of discriminability, that
between LLs and NLs on normal cases (clinically very important) and that between LLs and
NLs on abnormal cases (clinically less important). For this reason we do not recommend
JAFROC1 or wJAFROC1, unless the dataset has no non-diseased cases, in which situation the
mixing effect just referred to cannot occur. Another issue with the JAFROC1 and wJAFROC1

figures of merit is that they will depend on the case mix (i.e., the proportion of cases that
are actually diseased). This means that two investigators sampling the same population but
using different case mixes may get different results, even after sampling effects are accounted
for. This issue also applies to the ROI paradigm, where one can use a dataset with no non-
diseased cases. For these reasons we prefer JAFROC and particularly wJAFROC figures of merit
for characterizing free-response performance.

Inferred ROC analysis can be performed on free-response data. Following are examples:
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Table 7: Results of DBMH-analysis, using location specific figures of merit, applied to a free-
response dataset and compared to results obtained using the Windows version of the software.
Only results for random readers and random cases are shown.

FOM Statistic RJafroc JAFROC V4.2.1

θ̂4•, θ̂5• 0.768, 0.714 0.768, 0.714

θ̂4• − θ̂5• 0.0548 0.0548

wJAFROC CI
(
θ̂4• − θ̂5•

)
(0.0328, 0.0769) (0.0328, 0.0769)

p-value 6.46E-06 <0.0001
F-statistic 24.9 24.88

ddf 54.96 54.96

θ̂4•, θ̂5• 0.758, 0.703 0.758, 0.703

θ̂4• − θ̂5• 0.0548 0.0548

JAFROC CI
(
θ̂4• − θ̂5•

)
(0.0315, 0.0780) (0.0316, 0.0780)

p-value 5.63E-06 <0.0001
F-statistic 21.6 21.6

ddf 236.4 236.4

θ̂4•, θ̂5• 0.783, 0.729 0.783, 0.729

θ̂4• − θ̂5• 0.054 0.054

wJAFROC1 CI
(
θ̂4• − θ̂5•

)
(0.036, 0.0715) (0.036, 0.0715)

p-value 1.91E-09 <0.0001
F-statistic 36.5 36.51

ddf 1491 1492

θ̂4•, θ̂5• (0.773, 0.720) (0.773, 0.720)

θ̂4• − θ̂5• 0.0535 0.0535

JAFROC1 CI
(
θ̂4• − θ̂5•

)
(0.0291, 0.0779) (0.0291, 0.078)

p-value 5.55E-05 <0.0001
F-statistic 19.3 19.4

ddf 51.07 51.07
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# following three examples are for ROC data inferred from FROC data using dif-

ferent methods

retDbmHrAuc <- DBMHAnalysis(frocData, fom = "HrAuc")

# highest rating inferred ROC

retDbmSongA1 <- DBMHAnalysis(frocData, fom = "SongA1")

retDbmSongA2 <- DBMHAnalysis(frocData, fom = "SongA2")

Table 8 shows results of DBMH-analysis, using inferred ROC figures of merit (HrAuc, SongA1
and SongA2), applied to a free-response dataset and compared to results obtained using the
Windows version of the software. Only results for random readers and random cases are
shown. The Song figures of merit, particularly A2, are computationally quite intensive (to
put it in perspective, software run times in this field pale in comparison to the effort required
to acquire the data, often 6 months or more).

Table 8: Results of DBMH-analysis, using inferred ROC figures of merit (HrAuc, SongA1 and
SongA2), applied to a free-response data

FOM Statistic RJafroc JAFROC V4.2

θ̂4•, θ̂5• 0.851, 0.808 0.851, 0.808

θ̂4• − θ̂5• 0.04219 0.04219

HrAuc CI
(
θ̂4• − θ̂5•

)
(0.0098, 0.0746) (0.0098, 0.0746)

p-value 0.0240 0.0240
F-statistic 14.96 14.96

ddf 3.429 3.43

θ̂4•, θ̂5• 0.853, 0.808 0.853, 0.808

θ̂4• − θ̂5• 0.04505 0.04505

SongA1 CI
(
θ̂4• − θ̂5•

)
(0.0186, 0.0715) (0.0186, 0.0715)

p-value 0.0095 0.0095
F-statistic 23.1 23.1

ddf 3.84 3.84

θ̂4•, θ̂5• 0.847, 0.800 0.847, 0.800

θ̂4• − θ̂5• 0.0468 0.0468

SongA2 CI
(
θ̂4• − θ̂5•

)
(0.0156, 0.0780) (0.0156, 0.0780)

p-value 0.0173 0.0173
F-statistic 22.5 22.53

ddf 3.03 3.03

Besides showing that the package gives identical results to JAFROC, the results illustrate
some general principles. (1) While all methods reject the NH, the p-value is considerably
smaller for weighted JAFROC (6.46e-06) as compared to the inferred ROC methods (range
0.0095 to 0.024). While one cannot infer statistical power from a comparison of p-values
on a single dataset, the increased statistical power of JAFROC analysis has been confirmed
with simulation studies (Chakraborty 2002; Chakraborty and Berbaum 2004; Chakraborty
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2008) and is one reason this paradigm is gaining acceptance. (2) The JAFROC figure of merit
for each modality is smaller than the corresponding inferred ROC figures of merit. This
is because of the localization requirement, which implies that LLF is always less than the
corresponding inferred TPF. In other words lesions are only counted towards LLF if they is
correctly localized, while TPF is only concerned with the inferred single ratings per case. (3)
The effect size is larger for JAFROC (0.0548) than for any of the inferred ROC methods (about
0.047 for Song A2). Since effect size appears as the square in sample size calculations, this
contributes towards JAFROC’s higher statistical power. The reason for the larger JAFROC
effect size is that the figure of merit has a larger range over which it can vary, 0 to 1, while
any ROC figure of merit is restricted to the range 0.5 to 1.

3.6. Analyzing an ROI dataset

The package comes pre-loaded with an ROI dataset, roiData. The NL[1:2, 1:5, 1:90,

1:4] array contains the ratings of all non-diseased ROIs while the LL[1:2, 1:5, 1:90,

1:4] array contains the ratings of all diseased ROIs. Since wJAFROC is the default figure
of merit, one needs to explicitly specify the ROI figure of merit when using the function
DBMHAnalysis().

# ROI example

retDbmRoi <- DBMHAnalysis(roiData, fom = "ROI")

The results of RRRC analysis using RJafroc and C++ version of JAFROC are summarized
in Table 9.

Table 9: DBMH applied to ROI data analysis. Only results for random readers and random
cases are shown.

FOM Statistic RJafroc JAFROC V4.2

θ̂4•, θ̂5• 0.884, 0.922 0.884, 0.922

θ̂4• − θ̂5• -0.038 -0.038

ROI CI
(
θ̂4• − θ̂5•

)
(-0.064, -0.0116) (-0.064, -0.0116)

p-value 0.00823 0.00823
F-statistic 9.687 9.69

ddf 13.0 13.0

3.7. Generating an output report

The function OutputReport is used to generate a report closely patterned on that of OR-DBM
MRMC and DBM-MRMC. The following commands illustrate the usage of this function.

OutputReport(dataset = rocData, method = "DBMH", fom = "Wilcoxon",

dataDscrpt = "MyROCData", showWarnings = FALSE)

OutputReport(dataset = rocData, method = "DBMH", fom = "Wilcoxon",

reportFile = "MyROCDataAnalysis.txt", showWarnings = FALSE)
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OutputReport(dataset = rocData, method = "ORH", fom = "Wilcoxon",

showWarnings = FALSE)

OutputReport(dataset = frocData, method = "DBMH", fom = "Wilcoxon",

showWarnings = FALSE) # ERROR!

OutputReport(dataset = frocData, method = "ORH",

showWarnings = FALSE) # default fom is wJAFROC

OutputReport(dataset = frocData, method = "DBMH", fom = "HrAuc",

showWarnings = FALSE)

OutputReport(dataset = roiData, method = "ORH", fom = "ROI",

showWarnings = FALSE)

The dataDscrpt option is only needed if a dataset object is specified. It is a string description
of the dataset object, the default being the variable name of the dataset object. One can
explicitly specify the output file name using the reportFile option, as in the second example.
If this parameter is missing, the function will use the file name of the data file or the value
of the dataDscrpt option followed by the underscore separated concatenation of the method

and fom as the output file name. Since the Wilcoxon statistic only applies to ROC data, the
fourth example generates an error.

Alternatively, one can read the data file directly and skip the dataset object creation step:

OutputReport("rocData.xlsx", format = "JAFROC", method = "DBMH",

fom = "Wilcoxon", dataDscrpt = "MyROC2Data",

showWarnings = FALSE)

3.8. Saving a data file in a specified format

The function SaveDataFile can be used to save an ROC dataset object in any compatible
format, thereby allowing it to be analyzed with alternate software. The following examples
illustrate its usage (the OR-DBM MRMC specified“*.csv”and“*.txt”files are identical except
for the different file extensions).

3.9. ROC data visualization

The package includes a function EmpiricalOpCharac() for plotting trapezoidal ROC curves.
The following commands will create trapezoidal ROC curves for all combinations of modalities
and readers in the rocData dataset:

plotM <- c(1:2)

plotR <- c(1:5)

plotROC <- EmpiricalOpCharac(data = rocData, trts = plotM,

rdrs = plotR, opChType = "ROC")

The trts = plotM argument tells the function to plot both modalities, and rdrs = plotR

tells it to plot data for all five reader in each modality. The result of printing plotROC, a
ggplot2 object (Wickham 2009), is Fig. 1. Since ROC analysis is a subspecialty of statistics,
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and not all users may be familiar with it, we point out the obvious: an operating characteristic
that approaches the top-left corner has greater area under the trapezoidal curve, which implies
greater performance. The ROC curve for a guessing observer would be the diagonal line
connecting (0, 0) to (1, 1).

Fig. 1(a) shows the large variability in performance between the readers, which is one reason
one needs to adequately sample the reader population. The following construct can be used
to plot operating characteristics for each modality, averaged over readers (Fig. 1(b)).

plotMAvg <- list(1, 2)

plotRAvg <- list(c(1:5),c(1:5))

plotRocAvg <- EmpiricalOpCharac(dataset = rocData, trts = plotMAvg,

rdrs = plotRAvg, opChType = "ROC")

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPF

T
P

F

● ● ● ● ●R−0 R−1 R−2 R−3 R−4

M−0 M−1

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPF

T
P

F

M−0
R−0 1 2 3 4

M−1
R−0 1 2 3 4

(b)

Figure 1: (a) shows empirical receiver operating characteristics for all 5 readers in both modal-
ities. (b) shows reader-averaged receiver operating characteristics for the two modalities.

This tells the function to create two plots, one per modality, where each plot is averaged over
all 5 readers.

3.10. Free-response data visualization

The function EmpiricalOpCharac() can be used to plot trapezoidal ROC/AFROC/FROC
curves. The following commands will create trapezoidal ROC curves for all 8 combinations
of 2 modalities and 4 readers in the frocData dataset, Fig. 2(a), and reader-averaged ROC,
Fig. 2(b), reader-averaged AFROC, Fig. 2(c) and reader-averaged FROC curves, Fig. 2(d).
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plotM <- c(1:2)

plotR <- c(1:4)

plotROC <- EmpiricalOpCharac(data = frocData, trts = plotM,

rdrs = plotR, opChType = "ROC")

plotMAvg <- list(1, 2)

plotRAvg <- list(c(1:4),c(1:4))

plotRocAvg <- EmpiricalOpCharac(data = frocData, trts = plotMAvg,

rdrs = plotRAvg, opChType = "ROC")

plotMAvg <- list(1, 2)

plotRAvg <- list(c(1:4),c(1:4))

plotAFROC <- EmpiricalOpCharac(data = frocData, trts = plotMAvg,

rdrs = plotRAvg, opChType = "AFROC")

plotMAvg <- list(1, 2)

plotRAvg <- list(c(1:4),c(1:4))

plotFROC <- EmpiricalOpCharac(data = frocData, trts = plotMAvg,

rdrs = plotRAvg, opChType = "FROC")

Panel (a) does show, for each reader, coded by color, that the dotted lines are above the
corresponding solid lines. This is confirmed in the averaged ROC, AFROC and FROC curves
(panels (b), (c) and (d)). Panel (c) shows the difference that was found to be significant by
DBMH/ORH analysis using both wJAFROC and HrAuc figures of merit.

The numbering of the readers is not sequential; the reader IDs are actually string labels, and
in this dataset for some reason the experimenter chose not to use the sequential labels 1 -
4. Comparing panels (b) and (c) one can appreciate that the AFROC curve is below the
corresponding ROC curve, and that the difference is areas is larger for the AFROC than the
ROC. Panel (d) shows the averaged FROC curves; although used by some investigators, this
is a poor summary of performance. Even the partial area under the FROC to the left of some
defined abscissa value is not a good figure of merit (Youden 1950; Hillis 2007), as it does not
give credit for non-diseased images with no marks (these are actually high confidence correct
decisions - i.e., perfect decisions).

3.11. Software comparison

Table 10 compares the features and capabilities of existing online software and RJafroc: data
file format, whether they are open-source, and if so, the programming language expertise
needed to understand them, whether they are cross platform applications, whether individual
modules can be called from other languages, whether they include integrated visualization
routines, and the degree to which they accommodate location paradigms.

4. Discussion

This paper has covered several topics that are relevant to assessment of medical imaging
systems. These include the choice of data collection paradigm (ROC, FROC or LROC),
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Figure 2: (a) shows the empirical highest rating inferred ROC curves for all combinations of
modalities and readers. (b) shows the reader-averaged inferred ROC curves for both modal-
ities. (c) shows the reader-averaged AFROC curves for both modalities. (d) shows the
reader-averaged FROC curves for both modalities.

the choice of figure of merit, significance-testing methods (DBM and ORH), and sample-size
estimation for ROC studies. Data visualization methods have been described that could
benefit from better curve-fitting algorithms. In our experience statisticians tend to favor the
empirical figures of merit, as these are least based on what would be considered restrictive
assumptions. However, when the operating points do not span the ROC space adequately,
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Table 10: Software capabilities comparison of available methods of analyzing observer perfor-
mance data

Software
OR-DBM
MRMC

iMRMC JAFROC RJafroc

Data entry
Plain text in

specified
format

Plain text in
specified
format

Excel file in
JAFROC

format

All text and
Excel file
formats

Open
Source/Language

No/Fortran/C++ Yes/Java No/C++ Yes/R

Cross platform No Yes No Yes

Call from other
Languages

No No No Yes

ROC curve fitting Yes No No No

Integrated data
visualization

capability
No Yes Yes Yes

Localization
paradigms (ROI

and FROC)
No No Yes Yes

Predicting search
paradigm
operating

characteristics

No No Yes Yes

Saving an ROC
dataset in a

different format
No No No Yes

then empirical figures of merit become very dependent on the locations of the points, which
can lead to misleading inferences.

A preliminary sample-size method for free-response studies is available on the JAFROC web-
site. The problem is essentially one of determining the JAFROC effect size that would cor-
respond to a particular inferred ROC effect size. Effect sizes are well understood in ROC
methodology, since the paradigm is very familiar, dating to the early 1940s (it was originally
introduced (Hilden 1991) to measure performance of radar in detecting enemy aircraft). The
other figures of merit are less well understood. Until 2004 (Chakraborty and Berbaum 2004)
there was no well-established way of analyzing FROC data, but attempts began in the late 70s
(Bunch et al. 1978) and some progress was made in the late 80s and early 90s (Chakraborty
et al. 1986; Chakraborty 1989; Chakraborty and Winter 1990). The only way to assign a
realistic effect size to an FROC figure of merit is to have a model for fitting FROC data that
also predicts ROC data. As we have seen, the JAFROC effect size tends to be larger than the
corresponding ROC effect size, see Tables 7 and 8. To determine the connection one needs a
way of estimating the parameters of a model of visual search that explains free-response and
other operating characteristics. Such a model has been introduced (Chakraborty 2006b,a) and
a preliminary maximum likelihood estimation method is implemented in the Windows version
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of the software. We are currently working on enhancements to the estimation procedure for
improved reliability. The software currently does not implement any of the ROC curve-fitting
methods that are implemented in the University of Iowa and University of Chicago website
software. Another direction for improvement is accommodating the LROC paradigm, cur-
rently unsupported by any easily accessible software. Since R is an open source platform it is
our hope that this software will lead others with interest in this field to contribute to it.
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A. Appendices

A.1. Other free-response figures of merit implemented in RJafroc

Free-response data can be used to infer maximum sensitivity and specificity, corresponding
to the highest operating point on the ROC curve, excluding the trivial point at (1, 1). These
are defined by

θ̂ISeij = 1
K2

K2∑
k2=1

φ (max (rijk22∗∗))

θ̂ISpij = 1− 1
K1

K1∑
k1=1

φ (max (rijk11∗1))

The JAFROC FOM is defined as the probability that lesions are rated higher than the highest
noise on normal images:

θ̂JAFROCij =
1

N2K1

K2∑
k2=1

Nk22∑
l2=1

K1∑
k1=1

ψ (max(rijk11∗1), rijk22l22) (A.1)

The corresponding JAFROC1 FOM, which includes the highest noise on abnormal images, is
defined by

θ̂JAFROC1
ij =

1

N2 (K1 +K2)

K2∑
k2=1

Nk22∑
l2=1

 K1∑
k1=1

ψ (max(rijk11∗1), rijk22l22)

+

K2∑
k′2=1

ψ
(
max(rijk′22∗1), rijk22l22

) (A.2)

The maximum LLF figure of merit is defined by

θ̂maxLLF
ij =

K2∑
k2=1

Nk22∑
l2=1

φ (rijk22l22)

N2
(A.3)

Here φ (x) = 1 is x is finite and φ (−∞) = 0. The maximum NLF figure of merit is defined by

θ̂maxNLF
ij =

K1∑
k1=1

K2∑
k2=1

Nktt1∑
li=1

φ (rijkttl11)

K1 +K2
(A.4)
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An exponentially transformed specificity figure of merit (Popescu 2011) is defined by:

θ̂IExpTrnsSpij = exp

−
K1∑
k1=1

Nk111∑
li=1

φ (rijk11l11)

K1

 (A.5)

These are summarized in Table A.1:

Table A.1

Paradigm Description of FOM Symbol Comments

Highest rating inferred
sensitivity

θ̂ISeij

Case-level inferred
sensitivity

Highest rating inferred
specificity

θ̂ISpij

Case-level inferred
specificity

Exponentially transformed
specificity

θ̂IExpTrnsSij Popescu suggestion

FROC JAFROC θ̂JAFROCij Does not use weighting

JAFROC1 θ̂JAFROC1
ij Does not use weighting

Maximum ordinate of
FROC

θ̂maxLLFij Lesion-level ”sensitivity”

Maximum abscissa of
FROC

θ̂maxNLFij

Lesion-level ”inverse
specificity”, lower values

preferred

A.2. Special cases of DBMH analysis

Fixed-reader random-case (FRRC) analysis

When readers are treated as a fixed effect, the appropriate F statistic for testing the null
hypothesis is

FDBM |R =
MSY (T )

MSY (TC)
(A.6)

This is distributed as an F statistic with ndf = I − 1, and ddf = (I − 1)(K − 1):

FDBM |R ∼ FI−1,(I−1)(K−1) (A.7)

The critical value of the statistic is F1−α;I−1,(I−1)(K−1) which is that value such that fraction
(1− α) of the distribution lies to the left of the critical value. The null hypothesis is rejected
if the observed value of the F statistic exceeds the critical value:

FDBM |R > F1−α;I−1,(I−1)(K−1) (A.8)
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The p-value of the test is the probability that a random sample from the distribution exceeds
the observed value:

p = P
(
F > FDBM |R|F ∼ FI−1,(I−1)(K−1)

)
(A.9)

The (1− α) confidence interval is given by:

CI1−α =
(
θ̂i• − θ̂i′•

)
± tα/2;(I−1)(K−1)

√
2

JK
MSY (TC) (A.10)

Random-reader fixed case (RRFC) analysis

When cases are treated as a fixed effect, the appropriate F statistic for testing the null
hypothesis is

FDBM |C =
MSY (T )

MSY (TR)
(A.11)

This is distributed as an F statistic with ndf = I − 1, and ddf = (I − 1)(J − 1):

FDBM |C ∼ FI−1,(I−1)(J−1) (A.12)

The critical value of the statistic is F1−α;I−1,(I−1)(J−1) which is that value such that fraction
(1− α) of the distribution lies to the left of the critical value. The null hypothesis is rejected
if the observed value of the F statistic exceeds the critical value:

FDBM |C > F1−α;I−1,(I−1)(J−1) (A.13)

The p-value of the test is the probability that a random sample from the distribution exceeds
the observed value:

p = P
(
F > FDBM |C |F ∼ FI−1,(I−1)(J−1)

)
(A.14)

The (1− α) confidence interval is given by:

CI1−α =
(
θ̂i• − θ̂i′•

)
± tα/2;(I−1)(J−1)

√
2

JK
MSY (TR) (A.15)

A.3. Special cases of ORH analysis

Fixed-reader random-case (FRRC) analysis

When readers are treated as a fixed effect, the appropriate F statistic for testing the null
hypothesis is

FOR|R =
MS (T )[

V̂ ar − Ĉov1 + (J − 1)H
(
Ĉov2 − Ĉov3

)] (A.16)
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This is distributed as an F statistic with ndf = I − 1, and ddf = ∞, or equivalently a
chi-square distribution with I-1 degrees of freedom:

FOR|R ∼ FI−1,∞ = χ2
I−1 (A.17)

The critical value of the statistic is F1−α;I−1,∞ = χ2
1−α;I−1, which is that value such that

fraction (1− α) of the distribution lies to the left of the critical value. The null hypothesis is
rejected if the observed value of the F statistic exceeds the critical value:

FOR|R > F1−α;I−1,∞ = χ2
1−α;I−1, (A.18)

The p-value of the test is the probability that a random sample from the distribution exceeds
the observed value:

p = P
(
F > FOR|R|F ∼ FI−1,∞

)
(A.19)

The (1− α) confidence interval is given by:

CI1−α =
(
θ̂i• − θ̂i′•

)
± tα/2;∞

√
2

J

[
V̂ ar − Ĉov1 + (J − 1)H

(
Ĉov2 − Ĉov3

)]
(A.20)

Random-reader fixed case (RRFC) analysis

When cases are treated as a fixed effect, the appropriate F statistic for testing the null
hypothesis is:

FOR|C =
MS (T )

MS (TR)
(A.21)

This is distributed as:

FOR|C ∼ FI−1,(I−1)(J−1) (A.22)

The critical value of the statistic is F1−α;I−1,(I−1)(J−1) which is that value such that fraction
(1− α) of the distribution lies to the left of the critical value. The null hypothesis is rejected
if the observed value of the F statistic exceeds the critical value:

FDBM |C > F1−α;I−1,(I−1)(J−1) (A.23)

The p-value of the test is the probability that a random sample from the distribution exceeds
the observed value:

p = P
(
F > FDBM |C |F ∼ FI−1,(I−1)(J−1)

)
(A.24)

The (1− α) confidence interval is given by:

CI1−α =
(
θ̂i• − θ̂i′•

)
± tα/2;(I−1)(K−1)

√
2

J
MS (TR) (A.25)



44 Analysis of Data Acquired Using ROC Paradigm and Its Extensions

A.4. Details of ROI simulator

Since it is based on the Roe-Metz simulator for ROC data, we begin by describing the ROC
data simulator for MRMC studies. For each modality, it consists of two unit variance dis-
tributions separated by an amount that determines AUC in that modality. The readers and
cases are modeled by random samples and there is an error term that depends on treatments,
readers and cases. The Roe and Metz model is (Roe and Metz 1997):

Zijktt = µt + τit + Cktt +Rjtt + (τC)iktt + (τR)ijt + (RC)jktt + εijktt (A.26)

The fixed effects in the simulator are described by

µ1 = 0;µ2 = µ
τi,1 = 0; τ1,2 = 0; τ2,1 = τ

(A.27)

The random effects are described by

Cktt ∼ N
(
0, σ2

C

)
Rjt ∼ N

(
0, σ2

R

)
(τC)iktt ∼ N

(
0, σ2

τC

)
(τR)ijt ∼ N

(
0, σ2

τR

)
(RC)jktt ∼ N

(
0, σ2

RC

)
εijktt ∼ N

(
0, σ2

ε

)
(A.28)

To preserve the unit variance character of the model, the following constraint is applied:

σ2
C + σ2

τC + σ2
RC + σ2

ε = 1 (A.29)

Since ROI data is a special case of FROC data, we denote the ROI rating by rijkttlss where
onl1 = 1, 2, . . . , Q non-diseased cases, where Q is the number of ROIs (or “quadrants”) on
every case, and on diseased cases l2 = 1, 2, ..., qk2 , where qk2 is the number of diseased ROIs
on diseased case k22, and l1 = 1, 2, . . . , Q− qk2 on diseased case k22.

The ROI model is defined by:

Zijktt = µt + τit + Cktt +Rjtt + (τC)iktt + (τR)ijt + (RC)jktt

+ (CL)kttlss + (τCL)ikttlss + (RCL)jkttlss + εijkttlss (A.30)

The idea is to split up each term containing the case factor into two terms, one containing
the case factor, and the other an additional location factor L (for location) with levels defined
by , such that the net case variance is unaltered. The following two terms do not contain the
case factor and hence do not need to be split.

Rjt ∼ N
(
0, σ2

R

)
(τR)ijt ∼ N

(
0, σ2

τR

)
The following term containing only the case factor is split up as follows [the term () controls
the correlation between the samples from the different locations on the same case]:
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Cktt ∼ N
(
0, ρCσ

2
C

)
(CL)kttlss ∼ N

(
0, (1− ρC)σ2

C

)
Likewise, the treatment-case factor is split up as follows:

τCiktt ∼ N
(
0, ρτCσ

2
τC

)
(τCL)ikttlss ∼ N

(
0, (1− ρτC)σ2

τC

)
The reader-case factor is split up as follows:

RCjktt ∼ N
(
0, ρRCσ

2
RC

)
(RCL)jkttlss ∼ N

(
0, (1− ρRC)σ2

RC

)
Finally, the error term is split up as follows:

εijktt ∼ N
(
0, ρεσ

2
ε

)
(εL)ijkttlss ∼ N

(
0, (1− ρε)σ2

ε

)
For the simulated data the following values, selected from Table 1 in the Roe and Metz paper,
were used:

σ2
R = 0.2;σ2

τR = 0.005;
σ2
C = 0.7;σ2

τC = 0.05;σ2
RC = 0.2;σ2

ε = 0.05;

The correlation parameters were set as follows:

ρC = 0.1; ρRC = 0.1; ρτC = 0.9; ρε = 0.9;
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