PBSmodelling: Developer’'s Guide

Alex Couture-Beil, Jon T. Schnute, and Rowan Haigh

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station

3190 Hammond Bay Road
Nanaimo, British Columbia
VOT 6N7

December 2, 2009

Page left blank intentionally

TABLE OF CONTENTS

ADSIIACT e e e e eeeees ...

RESUME ...ttt e e e e e e e e e e e s bbbt b et e e e e eeeeeees il.....

e 1] = Lo PP PRSP iL..

1. Overview of creating GUI WINAOWSccoeeiiiiiiiiiiiiiiiciis s e e 1
1.1, Widget liSt repreSENtatiONoeiiieee ettt e e 3

0 0 A I o 1= o o IR/ T [1= 3

1.2. Internal data BICtUre (.PBSMOd).......ccoiiiiiiiiiiiiiiiiiiiiiiire e 4

2. Creating widgets from a tree-structured liSt.............ccoeeiiiiiiiiiiiiiccie e 5

2.1.1. Accessing and modifying datmred in widgetPtrs..........oovvviiiviiiiinnennn. 6

2.2. The parseWINFile FUNCLONcovuiiiiiiiiie e e e e e e e e eeaaeens 6
2.3, Getting YOUI fEEE WELottt e e e e e e e e e e eeeeeenenes 7
2.4, ANBXEICISE. ... uttititiietee ettt e et e e e e e e e e e et ettt ettt et e e e e e e e e e e e e e e e bbb 7
2.5. Diving deeper into PBSMOdelliNgcouuvuumiiiiiiiieeei e 8

RETEIEINCES ...ttt ettt e e e e e e e e e e e e e e e e e e e

Appendix A: List of defined functions and ODJECTS ... 9

Appendix B: R Package Delapment TiMe SAVEISciiiiiiiieeeeiiieeeeeeviiienn e 11

Appendix C: Adding a NeW WIAgeL.........oooiiiiiiiiieiii e 12
g 0o [0 i [o] o PP PPPPPPPPPPPPP 12........
DefiNiNg @ NEW WIAQETuiiii ettt ettt e e e e e e e e e e e e eeeeeeennes 12
Creating the Widget (implementation)ccoeeeiriiiiieeeiiiiciir e 13
An Example: Adding the DropliSt WIdget............coiiiiiiiiieiiiiieeeeiiiii e 13

LIST OF TABLES

Table 1. Window description fileontaining a grid and labelscccoviiiiiiiiicicenn. 1
Table 2. Function call stack producediletparsing description files..............ccccevvvvvenens 2
Table 3. Children widgets of a grdtry reproducing the same outputcceeeeeeeeeeee. 3
Table 4. Example of the top level of .PBSMOd liSt............oovvviiiiiiiiiiieeeen 4
Table 4. A subset of the &n widget definition from thevidgetDefs.r file............ 12

Table 5. Contents afidget list passed tacreateWidget.droplist e, 16

Table 6. Expandedroplist ~ widget implementationccccceviiiiiiiiiiiiiiiii 17

LIST OF FIGURES

Figure 1. GUI generated by the description fiille.txt inTable 1......cccvvviieenennn. 1
Figure 2. Tree representationfié.txt from Figure 1oouvveiiiiiiiiieeeeeeiis 2
Figure 3.droplist produced without using widget parameters values 15

Abstract

This document is intended for futurevétopers of PBSmodelling and describes the
internal data-structures and algorithosed to implement PBSmodelling’s GUI
functionality. Users of PBSmodelling shouldhsalt “PBS Modelling 1: User’s Guide”.

Résumé

Ce document est prévu pour des dévelappéutures de PBSmodelling. Ce document
décrit les algorithmes et structure de deespour la fonctionnaditde la création des
interface graphique (ou GUI «Graphit#der Interface») de PBSmodelling. Les
utilisateurs de PBSmodelling devraient adivsre «<PBS Modelihig 1: User's Guide».

Preface

Prior to working on the development of 8Bodelling, | had no experience with the R
environment. After reading through “An Intfuction to R” and trying out various code
samples from Jon Schnute, | began to éeelfident with the R language. PBSmodelling
initially evolved from samples of tcl/tbtained from various sources including “A
Primer on the R-Tcl/Tk Package” by Peteldd2ard. | quickly learned that searching
google for “R tcltk” provided a wealth of infomtion including a list oR tcl/tk examples
compiled by James Wettenhall which I initiallyedlsas a starting point for experimenting
with different widgets.

| hope to offer some insights of PBSmbitg’s GUI creation algorithms and data
structures. It is not crucial to understand eveaitlen this document, as it is really here
to aid in the navigation and understandifighe source code which ultimately
determines the (correct or incect) behaviour of PBSmodelling.

Alex Couture-Beill
February 2007

1. Overview of creating GUI windows

Graphical User Interface windows are defined text file using a special format as
described in the Tech Report. In brief, the text file has multiple lines, with each line
defining a widget. A widget definition can be extended to multiple lines by using a
backslash ‘\'. A widget may have pre definedgmeters that either requires an argument
or has a default value for missing argumelties. The ordering and default values of
these parameters are defined inwiggetDefs.r file.

This ASCII text file must be parsed and corted into a tree struated list before the
createWin function can call the requirekl function to build the window. A tree-
structured list of widgets is formed. Thendbw widget defines the root, or starting point
of the tree. This tree will have a branchemkver a grid or menu is encountered. These
two special types of widgets will otain one or more children widgets.

Table 1. Window description fileontaining a grid and labels.

#file.txt
Window
Grid2 2
Label
Label
Label
Label
Label end

o0Om>

B (ol x
4B
CD

end

Figure 1. GUI generated by the description fiille.txt in Table 1.

Table 1 describes a window that has a 2x2@hdah will contain labks A, B, C and D,
and a fifth label “end” which is not associatetdh the grid. The waidow description file
is parsed into a tree-structured list that resembles Figure 2.

Whdow

Grid2 2 Label end

Row 1 Row 2

Label A Label C

Label B Label D

Figure 2. Tree representationfitd. txt from Figure 1.

However before converting the window destidp into a tree, it must first be broken up
into tokens representing each witlgg using the following process.

1. Extract lines describing @gets into a string, andfiéquired, collapse widget
definitions that span multiple lines into a single string. This occurs in the main
code of theparseWinFile function.

. Convert each widget definition string irdonon tree structurdit by using the
.convertPararmStrToList function.

. Scan through this list and verify thedgiet type is valid, all required arguments
are given and valid, and assign defaultiga to any missing arguments. This is
done in thegetParamFromStr function.

. Scan through the list looking fatenu or grid widgets. These widgets will cause
a branch in the tree. If a grisifound, associate the nexfol*nrow widgets as
children of the grid widgdty using the helper functiaparsegrid . This helper
function is recursive and will handle nested grids. Similayuitem andmenu
widgets are associated together andghesemenu function.

This process is initiated by callimgrseWinFile . However, the order of the call stack
does not appear in the same order of ttedi steps above. Instead the following call
stack is produced.

Table 2. Function call stack producstile parsing description files.

createWin
parseWinFile

.getParamFromStr
.convertPararmStrToList
calls strToList C code

1.1. Widget list representation

Widgets are represented by using a Tiste list must have the named elemgyjie”
which is used to identify the type of widget that the list represents. Ontigpéte

value is known, PBSmodelling can inserteatract other elements as defined in
.widgetDefs fromwidgetDefs.r . During the parsing process any missing values
will be inserted with defaults as defined.widgetDefs

During the parsing process, additional inteffields may be added to the widget. These
should typically start with a dgf) to differentiate an interndield from a user specified
one.

Currently every widget isternally assigned @ebug element which is a list containing
information used for displaying error messages to the user.

$.debug$sourceCode source code entered by user for the widget
$.debug$fname filename of WD file

$.debug$line.start beginning line of widget description
$.debug$line.end end line of widget description

To familiarize yourself with té list representation of a>or, examine the output of
str(parseWinFile("vector myVec 3", astext=T)[[1]])

parseWinFile returns a list of unnamed lists whicepresent individual windows. The
[[1]] suffix is used to target the first windoWowever, in this case only a single
window is defined, so including the indexngly reduces one level of indentation.

1.1.1. The grid widget

Thegrid widget includes the internal fieldvidgets" which is used to store all
children widgets of the grid. This is adwdimensional list, with the first index
representing the row, and the secamex representing the column. Recall Figure 1
represented a 2 x 2 grid contaigifour labels A, B, C, D.

Table 3. Children widgets of a grdtry reproducing the same output.
> str(parseWinFile("file.txt")[[1]]$.widgets[[1]], 4)

List of 15

$ type : chr "grid"
$ nrow Sint 2

$ ncol sint 2

...omitted arguments...
$.widgets :List of 2

..$:List of 2

.. ..$:Listof 9

... .$ type : chr"label"
.. WP text o chr "AY

...omitted arguments...

....% Listof 9
... .$type : chr"label"
. oBtext chr"B"
...omitted arguments...
. :List of 2
....% Listof 9
... .$type : chr"label"
wuBtext o chr'Ct
...omitted arguments...
. ..$:Listof 9
... .3 type : chr"label"
.5text : chr"D"
...omitted arguments...

Note that the grid has.aidgets element which is a list of 2. This is used to store the
rows. And each row has two widgets, A, B fow 1, and C, D for row 2. The suffix
[[1]1$.widgets[[1]] of parseWinFile , targets the first widdef the first window.

1.2. Internal data structure (.PBSmod)

TCL/TK relies heavily on the use of pointeiThese pointers arequred for controlling
windows and extracting data. PBSmodelling nsalkee of a global ligo store TCL/TK
pointers as well as other infoation that is associatedth each widget, or window.

PBSmodelling specifies that each window hasame, either defined explicitly by the
user in a window description filey by using the default name window . All
information to do with a specific wdow is stored in a list under
.PBSmod$windowName wherewindowName is the actual name of the window.

Data that is related to PBSmodelling asteig, and not a particular window, such as
user defined options and the @nt active windowis stored undeiPBSmod with a
name that begins with a dot. This avoadsiflicts with windove since a window name
may not begin with a dot.

Table 4. Example of the top level of .PBSmod list.

.PBSmod <- list(
myWindow <- list(tcl pointer stuff...),
mySecondWin <- list(more tcl stuff...),
.options <- list(openfile=..., option2=...),
.activeWin <- "myWindow"

)

Each window uses a list witheHollowing named components:

widgetPtrs
a named list containing widget pointersch element of the list is named after

—5—

the variable name of the widget. Notwaltgets will appear in this list, only
widgets which have a corresponding tk widget.

widgets
a named list containing important “widgdests” as extracted from the window
description file. This list will includevery widget that has a name or names
argument. Unnamed widget will never tegerenced again once the window is
created, and therefore do not néetbe stored for later usage.

tkwindow
a pointer to the window created tikyoplevel()

functions
a vector of all function names that are referenced by the GUI.

actions
a vector of containing the last N amwtis triggered by the window, where N is
defined indefs.R under themaxActionSize

2. Creating widgets from a tree-structured list

OncecreateWin has parsed the windowstiption file into a tree structured list, it can
start creating the actual widgets by calling the appropkat@mmands. Due to the

nature of tk, it is easiest to wrap all widgets in a gnidatewin creates a 1 x N grid

and adds all user supplied widg¢o this grid. This guarantees that we only have a single
widget on the top level to create, and theretoeateWin does not require any loop for
creating the widgets, inste&dises a recursive functioryeateWidget

.createWidget determines the type of widget thregeds to be created by looking at the

type element. It then callgreateWidget.xxx wherexxx is the widget type. For
example a label results in a call.teeateWidget.label . In the case of grids,
.createWidget.grid creates a tkframe, and then recursively calateWidget to

create every child widget. In some casesdivafi be nested grids, however, due to the
wonderful properties of recsion, this is no differerthan any other widget.

During the.createWidget ~ process, functions that requiréclvar , namely widgets
with aname, will have to store the tcl pointer in thédgetPtrs section of PBSmod.

It is important to understand how PB&delling creates high level widgets likector

in order to understand why some witlggormation is only stored in theidgets list,
while not in thewidgetPtrs list. Some widgets mightot have a corresponding tcl/tk
widget. For example theector widget is implemented by inserting maagel and
entry widgets into a gd. For this reason theector widget will never have a single
tcl/tk pointer, but rather a collection of pointers for eactny widget.

A vector defined by
vector name=foo length=3

—6—

will create three entry widgets namied[1] ,foo[2] , andfoo[3] , which will be
inserted intawidgetPtrs with the three correspondippinters; however, the name
“foo ” will never appear in the list since therenis pointer to associateith it. It is still
necessary to save some referencemhigher level widget (in this cased ") since it
might be reference isetWinVal(c(foo=1:3)) . OtherwisesetWinval would return
an error saying it could not locate the widget nafed however, it would not complain
if it received the namfool[1]

All elements ofwidgetPtrs are lists with exactly a single named elemamtar , or
tclwidget

tclvar is the standard pointerrfanost widgets which is used to get or set values
with the standarttlvalue() interface function.

tclwidget is only used fotext widget, since tcl/tk uses a different interface via
tkconfigure()

2.1.1. Accessing and modifying data stored in widgetPtrs

While it is possible to access the data disgdtlis advised to makese of the internal
functions:.map.init , .map.add ,.map.set ,.map.get , and.map.getAll . These
functions range from a single line to 25 lirdcode and use®r checking to avoid
overwriting a currently saved value.

.map.init initialize a blank list to store data

.map.add only save the value if nbbing previously was saved
.map.set save a value even if it reqas overwriting previous data
.map.get retrieve a value

.map.getAll retrieve all values

In computer science the term ‘map’ is usedéscribe a data stiture that maps a key
(in string form) to a value. Another common name for a map is a hash table.

2.2. The parseWinFile function

TheparseWinFile function is responsible for converg a window description file into
an equivalent window description list. A tdite can be represégd as a vector of
strings, with each element of the veatepresenting a new line of the file.aftext is
TRUE parseWinFile does exactly this; otherwise, it will read in the filename into a
vector of strings.

parseWinFile then iterates over every element @ tlector (one line at a time). It is
important that comments are stripped ouhatappropriate time, loérwise the line count
used in error messages can be wrong.

During the iteration process,afsingle backslash is foundetfunction will continue to
the next line without parsing any data. It vadintinue joining all ebended lines together

—7—

until no more backslashes are found, thus transforming a spanning description into a
single line.

The function.getParamFromStr is used to convert and haate the complete widget
line into the beginning of a widget list. Once tintire file has been converted into these
lists, the function then rescans theseslisbking for any of the following special
widgets:window , menu, menuitem , andgrid . Widget data fromvindow is extracted
and stored in top level variables; meiaws stored in a special list, with eanhnu
containing a recursiveenuData list that holdsnenuitems and sub-menus.

Whenever ayrid widget is found, awidgets element is created to hold a list of lists.
This two dimensional list will hold the nemtow*ncol widgets. The functions that do
this are recursive and are dgsed to handle grids nestedgnds (nested in grids and so
on...). Menus use similar recursive fumets, except without the need for a two-
dimensional list.

2.3. Getting your feet wet
Here are a few examples you can try to getliar with the functions used for parsing.

PBSmodelling:::.convertPararmStrToList("entry name=foo")
This simply breaks up the string into an unvalidated list. Try giving it data that is not a
valid widget.

PBSmodelling:::.getParamFromStr("entry name=foo")
Thisincludes a call to the above function, and then validates the returned results to the
accepted arguments as defined in widgetDefs.r

2.4. An exercise
Try to add a widget calledviywidget ” to PBSmodelling.

1. Create alist in thevidgetDefs.r file namedwidgetDefs$mywidget

2. Create a function calledreateWidget.grid that have the parametétk,
widget, winName) , where
tk = a tcl pointer to th parent tk object,
widget = the list describing the widget,
winName = the name of the window being created.
The return value must be a vatal/tk pointer to a widget.

3. Start with a fairly simple function #t only displays a tklabel, such as:
.createWidget. XXXX <- function(tk, widget, winName)
{
return(tklabel(parent=tk,
text="A limited widget"))

8-

You may want to include a call str(widget) to display what sort of
information is passed to this function.

More detailed information on addimgw widgets appears in Appendix C.

2.5. Diving deeper into PBSmodelling
By this point you should be familiar withéhmain data types of PBSmodelling: widget
lists, recursive widget lists (likgrid andmenu), and the globaPBSmod list.

The uses of these data types will becafearer as you explore the source code of
PBSmodelling.

References

Daalgard, P. 2001. A primer on the R Tcl/Tk pack&Rews 1 (3): 27-31, September
2001. URL:http://CRAN.R-project.org/doc/Rnews/

Schnute, J.T., Couture-Belil, A., and Hai§h,2006. PBS Modelling 1: User’s Guide.
Canadian Technical Report of Fisherend Aquatic Sciences. 2674: viii + 112 p.

Wettenhall, J. 2004. R TclTk Examples
URL: http://bioinf.wehi.edu.au/~wettenhall/RTclTkExamples/

Appendix A: List of defined functions and objects

widgetDefs.r - defined objects

.widgetDefs - list defining widget paramaters and default values
.pFormatDefs - list defining accepted paramaters (and default

values) for "P" format of readList and writeList
.regex.complex - catches all valid complex; also catches "-"
.regex.numeric - catches numeric strings; also catches "-"
.regex.logical - catches all logical values

supportFuns.R - defined functions

.addslashes - escapes special characters from a string

.mapArrayToVec - determines which index to use for a vector, when
given an N-dim index of an array

.getArrayPts - returns all possible indices of an array

.convertVecToArray - converts a vector to an array

.tclArrayToVector - converts array to vector

fibCall - interface C code via Call()

fibC - interface C code via C()

fibR - iterative fibonacci in R

fibClosedForm - closed form equation for fibonacci numbers

.viewPkgDemo - GUI to display something equivalent to R's demo()

.dUpdateDesc - update description of demo

.dClose - function to execute on closing runDemos()

.viewPkgVignette - GUI to display equivalent to R's vignette()

.removeFromList - remove items from a list

.initPBSoptions - called from zzz.R .First.lib() intialization func

.forceMode - forces variable into mode w/out any warnings

findSquare - find m x n matrix given N

guiFuns.r - defined functions

trimWhiteSpace - remove leading and trailing whitespace

.stripComments - remove comments from a string

.inCollection - find a needle in a haystack

.searchCollection - searches a haystack for a needle, or a similar
longer needle.

.map.init - initialize the datastructure that holds the map(s)
A map is another name for hash table (an R list)

.map.add - save a new value for a given key, if no current
value is set

.map.set - force a save

.map.get - returns a value associated with a key

.map.getAll - returns all values

.extractVar - extracts values from the tclvar ptrs of a window

.PBSdimnameHelper - add dimnames to objects

.convertMatrixListToMatrix - converts a list into an N-dim array
.convertMatrixListToDataFrame
- converts a list into a dataFrame
.setMatrixElement - helper function used by .convertMatrixListToMatrix
to assign values from the list into the array
.getMatrixListSize - determine the minumum required size of the array
needed to create to convert the list into an array
.matrixHelp - helper for storing elements in an N-dim list
.validateWindowDescList - checks for a valid PBSmodelling description List
and sets any missing default values
.validateWindowDescWidgets - used by .validateWindowDescList to validate each

-10-

widget
.parsemenu - associate menuitems with menus
.parsegrid - associate items with a grid
.stripSlashes - removes escape backslashes from a string
.stripSlashesVec - convert a grouping of strings representing an

argument into a vector of strings
.convertPararmStrToVector - convert a string representing data into

a vector. (used for parsing P format data)
.catError2 - displays parse error (P data parser)
.convertPararmStrToList - convert a string representing a widget into

a vector. (used for parsing description files)

.catError - displays parsing errors
.stopWidget - display and halt on fatal post-parsing errors
.getParamFromsStr - convert a string representing a widget into a list

including default values as defined in
widgetDefs.r
.buildgrid - used to create a grid on a window
.createTkFont - creates a usable TK font from a given string
.createWidget - generic function to create most widgets, which
calls appropriate function:
.createWidget.grid
.createWidget.button
.createWidget.check
.createWidget.data
.createWidget.droplist
.createWidget.entry
.createWidget.history
.createWidget.include
.createWidget.label
.createWidget.matrix
.createWidget.null
.createWidget.object
.createWidget.object.scrolling
.createWidget.radio
.createWidget.slide
.createWidget.slideplus
.createWidget.spinbox
.createWidget.table
.createWidget.text
.createWidget.vector
.superobject.saveValues - save values from the object widget

.superobject.redraw - redraw the object widget

.check.object.exists - test for existence of dynamically loaded object
(currently works for ‘object’ & ‘table’)

.table.getvalue - get values from a table widget

.table.setvalue - set values for a table widget

.updateHistoryButtons - update history widget buttons

.updateHistory - update history widget values

.updateFile - helper for sortHistory

.sortHelperActive - helper for sortHistory

.sortHelperFile - helper for sortHistory

.sortHelper - helper for sortHistory

.sortActHistory - helper for sortHistory

.extractFuns - get a list of called functions

.extractData - called directly by TK on button presses (or binds,
on changes, slides, ...)

.setWinValHelper - used by setWinVal to target single widgets

.convertMode - converts a variable into a mode without showing
any warnings

.autoConvertMode - converts X into a numeric mode, if it looks like
a valid number

.doClean - used by cleanProj to clean project files

.doCleanWD - cleans system garbage files

11—

Appendix B: R Package Development Time Savers

Creating software is an iterative processmpie, fix syntax errors, re-compile, install
package, test package, fix bug, and staer. Luckily R provides framework that
compiles packages.

In my experience, installing packages thro&j menu system can take up a lot of time
if you have to install a package more thartites in a day. | have automated the process
by using the following R script.

#select and install most recent version of the package
pkg <- sort(grep("*"PBSmapping_.*\\.zip$",
dir("C:\\DFO\\packages\\"), value=T), decreasing=T)[1]
cat("installing"); cat(pkg); cat("\n");
install.packages(paste("C:\\DFO\\packages\\",pkg,sep=""), .libPaths()[1], repos = NULL)

| have a copy of the script savedaasolnstall.r which is invoked by a batch file
with the command:

R CMD BATCH autolnstall.r

This command can easily be inserietd a modified version of theuild.bat file that
comes with PBSmodelling.

12—

Appendix C: Adding a New Widget

Introduction

This document describes how to adaviveidgets to PBSmodelling. PBSmodelling
provides a framework for parsing widget dgsttons from a window description file.
Once the widget is parsed from input text iatlist structure, thevidget must be created
by various tcl/tk calls. Once the widget instargereated, a pointer tbis returned to
the PBSmodelling framework which is respdmsifor embedding the widget into some
grid.

In order to add a new widget, the task iskaem into two steps: 1) a definition of the
widget along with all possible parametersluding default values, and 2) an
implementation of the widget using R tclitkdgets, or existing PBSmodelling widgets.

Defining a new widget

All widgets supported by PBSmodelling are defined in the RWidtetDefs , from the
file widgetDefs.r . Each named element of the listresponds to a unique widget with
the corresponding name. For examntple entry widget is described in

.widgetDefs$entry (Table 5).

Table 5. A subset of the &y widget definition from thevidgetDefs.r file.

.widgetDefs$entry <- list(
list(param="type', required=TRUE, class="character"),
list(param="name’, required=TRUE, class="character"),
list(param="width', required=FALSE, class="integer", default=20),
[...more parameters omitted...])

Each widget must define andared list of parameters. Each parameter must accept a
specific class (or type) of data, for example character, integer, or logical. Some
parameters are required; where as other valiledefault to a value if the user omits the
parameter. The options associated with gazhmeter are recordéeda list with the
following named elements:

e param — character; the name of the parameter

e required —logical; iftrue , then the parameter mus# supplied by the user; if
false , then thalefault value is used when no value is supplied by the user

e class - character; one of the following classesaracter, logical,

integer, numeric , CharacterVector, integerVector ; user supplied
values (text) are convied into this type.
e default — data type corresponding to the \eabf class; use this default value

when the user omitted the parameter; only applicable veugired=FALSE

-13-

e grep — character; an optional regular eegsion the user supplied value must
match in order to be validated

e allow null —logical; if true, usesupplied value can B¢ULL, and isn’'t subject
to the regular expression validation; if omitted, defaultsAbSE

These six parameter options are storeddimgle list which desibes one particular
parameter, here by referred to gsmeameter definition. A widget definition is defined as

an ordered list of parameter definitions; where the ordering corresponding to the default
ordering of the widget. In keeping to BBiodelling standards, the first parameter
definition must be for the type parameteirthermore, the type parameter’s required

value must b&RUE The remaining parameters are ordered with the required ones first.

Creating the Widget (implementation)

The second step for adding a new widgeitniglementing the code which will actually
create the widget. In the last sectionfaeused on creating a formal definition of the
widget, without writing any glorithms to create the widget.

After parsing a window description filereateWin proceeds to traverse the parsed
window description file. As widge@re encountered,call is made to

.createWidget.X whereX is the value of the widget'sphg parameter. Note that this
process is dynamic, amteateWin does not need to be modified.

.createWidget.x must have the function definition of:
function(tk, widget, winName)

wheretk is the parent frame which will contain the widgeitiget is a list of parameter
values, andvinName is the name of the window cuntty being creted. The function

must return the tcl/tk pointer to the newly created widget; which will be packed into the
parent grid automatically by existing PBSmodelling codec(eateWidget.grid)

Some widgets, such as history and data dalimettly create tcl/tk widgets, but rather
build upon the PBSmodelling grid widgahd embed PBSmodelling entry widgets
within that grid. In such a case, the ftion will return the pointer returned by the
correspondingcreateWidget.grid call.

An Example: Adding the Droplist Widget

Consider the following R tcl/tk coder producing a drop down combo box.
require(tcltk)

tcIRequire("BWidget")

tt <- tktoplevel()

comboBox <- tkwidget(tt,"ComboBox",editable=FALSE,values=1:10)
tkgrid(comboBox)

In order to add such a widget to PBSmodelling,must first have a formal definition of
the widget, as found in the PBSmodelling user guide:

—14—

type=droplist name values=NULL labels=NULL selected=1 add=FALSE
font="" fg="black" bg="" function="" enter=TRUE action="droplist"
edit=TRUE mode="character" width=20 sticky="" padx=0 pady=0

Thedroplist has 18 parameters, therefore we noustite 18 parameter definitions in
thewidgetDefs.r file, stored undemidgetDefs$droplist

.widgetDefs$droplist <- list(

list(param="type', required=TRUE, class="character"),

list(param="name’, required=TRUE, class="character"),

list(param="'values', required=FALSE,
class="characterVector", default=NULL, allow_null=TRUE),

list(param="'choices', required=FALSE, class="character",
default=NULL, allow_null=TRUE),

list(param="labels', required=FALSE, class="characterVector",
default=NULL, allow_null=TRUE),

list(param="'selected’, required=FALSE, class="integer",
default=1, grep=""[0-9]+%$"),

list(param="add', required=FALSE, class="logical", default=FALSE),

list(param="font', required=FALSE, class="character", default=""),

list(param="fg', required=FALSE, class="character", default="black"),

list(param="'bg', required=FALSE, class="character", default="white"),

list(param="function’, required=FALSE, class="character",
default=""),

list(param="enter’, required=FALSE, class="logical", default=TRUE),

list(param="action', required=FALSE, class="character",
default="droplist"),

list(param="edit', required=FALSE, class="logical", default=TRUE),

list(param="mode’, required=FALSE, class="character",
default="character",
grep="~(numericjinteger|complex]logical|character)$"),

list(param="'width', required=FALSE, class="integer", default=20),

list(param="sticky', required=FALSE, class="character", default="",
grep="7(n|s|N|S|e|w|E|W)*$"),

list(param="padx’, required=FALSE, class="integerVector", default=0,
grep=""[0-9]+([\{]+[0-9]+)?$"),

list(param="pady', required=FALSE, class="integerVector", default=0,
grep=""[0-9]+([\{]+[0-9]+)?$")

Some of these parameters, for exanpaldx andpady , do not directly reflect the
droplist ~ widget; however, will be used byelyrid layout manager when packing
widgets into the GUI.

The next step is to implement the creation ofdifolist ~ widget. This is done by
creating a function in thguiFuns.r ~ file:

.createWidget.droplist <- function(tk, widget, winName)
Recall that the function creatasvidget attached to the pardkitand returns the tcl/tk

pointer. If we ignore the parameter valuestfee time being, we can test the existing R
tcl/tk code with PBSmodkhg with few modifications:

—15—

.createWidget.droplist <- function(tk, widget, winName)

{
tclRequire("BWidget")
comboBox <- tkwidget(tk,"ComboBox",
editable=FALSE,values=1:10)

return(comboBox)

}

Consider the following line &m a window description file:
droplist name=s values="alpha beta"

By this point, we can teftBSmodelling correctly createsleplist ; however, from
Figure 3, it's clear that the widget parametaiues, such as values and fg/bg are being
ignored.

_iolx]
I jv

Figure 3.droplist produced by PBSmodelling withouting widget parameters values.

Our next step is to flesh out theeeateWidget.droplist function to make use of
the parameter values stored in thidget list. Table 6 shows the contents of thidget
list passed tocreateWidget.droplist

—16—

Table 6. Contents afidget list passed tacreateWidget.droplist

List of 18

$type : chr "droplist"

$name :chr"s"

$ values : chr [1:2] "alpha" "beta"
$ selected: num 1

$add :logi FALSE

$font :chr™

$fg :chr"black"

$bg :chr"white"

$ function: chr ™

$ enter :logi TRUE

$ action : chr "droplist"

$ edit :logi TRUE

$ mode : chr "character”

$ width : num 20

$ sticky : chr™

$padx :numO

$pady :numO

$.debug :List of 4

..$ sourceCode: chr "droplist name=s values=\"alpha beta\""
.$ fname : chr "d:\\nome\\projects\\dfo\\tmp\\t.txt"
.$ line.start: int 1

.$line.end :intl

Thewidget$values contains a vector of optionghich we can pass to comboBox’s
values argument. However, in order to retridwe selected value, we must create a tcl
variable, viaclvar , and associate it with the @boBox widget by passing the tcl
variable as théxtvariable argument.

PBSmodelling is capable of automaticallyrieving, and modifying tcl variables via
getwWinvVal andsetWinVal respectively. Themap.add function, shown in Table 7,

associates the tcl varigpointer, stored irclvar , with the widget for later calls to
getWinval andsetWinVval

17—

Table 7. Expandedroplist ~ widget implementation whichates tcl variable pointers
with .map.add for modification viagetWinval andsetWinVal

.createWidget.droplist <- function(tk, widget, winName)

{
tclRequire("BWidget")

#create a tcl variable to store the selected item
textvar <- tclVar(widget$values| widget$selected])
.map.add(winName, widget$name, tclvar=textvar)

#create the widget
comboBox <- tkwidget(tk,"ComboBox",

editable=widget$add, values=widget$values,
textvariable=textvar,
fg=widget$fg, entrybg=widget$bg)

#disable the widget if applicable (see: setWidgetState)
if(widget$edit == FALSE)
tkconfigure(drop_widget, state="disabled")

return(comboBox)

}

Thedroplist presented here is a simplification of theplist ~ widget provided in
PBSmodelling. Thisiroplist ~ does not facilitate dynamically loading values from an R
variable; nor does it return tiselected index or completeater of all choices in the
droplist . However, these extensions can bmwed in the PBSmodelling source code,
in particular the in thecreateWidget.droplist , .setWinValHelper , and

.extractVar functions.

