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Introduction

Overview

This package implements clustering of multivariate normal random vectors with missing elements. Clustering
is achieved by fitting a Gaussian Mixture Model (GMM). The parameters are estimated by maximum
likelihood, using the Expectation Maximization (EM) algorithm. Our implementation extends existing
methods by allowing for missingness in the input data. The EM algorithm addresses missingness of both
the cluster assignments and the vector components. The output includes the marginal cluster membership
probabilities; the mean and covariance of each cluster; the density of each mixture component evaluated at
the observations; the posterior probabilities of cluster membership; maximum a posteriori cluster assignments;
and a completed version of the input data, with missing values replaced by their posterior expectations.

Model

Suppose the data consist of n random vectors in RD. Each observation Yi arises from one of K distinct
clusters. Associate with each observation a K×1 vector of indicators Zi ∈ {0, 1}, where Zik = 1 if observation
i belongs to cluster k, and Zik = 0 otherwise. These cluster membership indicators are latent variables. The
marginal probability of membership to cluster k is πk = P (zik = 1). Conditional on membership to the
kth cluster, the observation Yi follows a multivariate normal distribution, with cluster-specific mean µk and
covariance Σk.Overall, the generative model is:

Zi ∼ Multinomial(π1, · · · , πK)

Yi

∣∣(Zik = 1) ∼ N
(
µk,Σk

)
Marginally, the observations Yi follow a GMM, with density:

f(yi) =
K∑

k=1
f(yi, zik = 1) =

K∑
k=1

f(yi|zik = 1)P (zik = 1) =
K∑

k=1
f(yi|µk,Σk)πk.
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Each element Yid of Yi is potentially missing at random. Associated with each observation a D × 1 vector
of response indicators Ri, where Rid = 1 if element d of observation i is observed, and Rid = 0 otherwise.
Partition each Yi into its observed Y obs

i and missing Y mis
i components. That is, element Yid belongs to Y obs

i

if Rid = 1, and belongs to Y mis
i if Rid = 0. The missingness occurs at random if (Rid ⊥ Yid)|Y obs

i . That is,
given the observed elements of Yi, whether any remaining element is missing is independent of that element’s
value.

Maximum likelihood estimates (MLEs) for the parameters of the GMM are obtained using the EM algorithm.
During the E-step, both the cluster assignments Zik and the unobserved components Y mis

i of Yi are treated
as missing data. Suppose momentarily that all data were observed for observation i. The contribution of
subject i to the complete data log likelihood would be:

`i =
K∑

k=1
zik ln πk −

1
2

K∑
k=1

zik ln det(Σk)− 1
2

K∑
k=1

zik(yi − µk)Σ−1
k (yi − µk).

Since the Zik are not observed, and the Yi are incompletely observed, the complete data log likelihood
cannot be evaluated. Instead, an EM objective is formed by taking the expectation of the complete data log
likelihood, conditional on the observed data and the current parameter state:

q
(r)
i ≡ E

{
`i|yobs

i , ϑ(r)} =
K∑

k=1
γ

(r)
ik ln πk −

1
2

K∑
k=1

γ
(r)
ik ln det(Σk)− 1

2

K∑
k=1

tr
{

Σ−1
k V

(r)
ik

}
.

Here yobs
i is the observed data for subject i; ϑ(r) is the current parameter state; γ(r)

ik is the responsibility,
defined as E(Zik|yobs

i , ϑ(r)]; and V (r)
ik is the expected residual outer product, defined as E

{
Zik(Yi − µk)(Yi −

µk)′|yobs
i , ϑ(r)}. In the M-step, updates of the model parameters ϑ are obtained by maximizing the EM

objective.

Once the convergence criterion has been achieved, the responsibility, or posterior probability of cluster
membership, is calculated as:

γik = P (Zik = 1|yobs
i ) = f(yobs

i | µk,Σk)πk∑K
k′=1 f(yobs

i | µk′ ,Σk′)πk′
.

The maximum a posteriori classification for yi is given by:

Ai = arg max
k

γik

For observation Yi, posterior expectation of the missing elements Y mis
i , given the observed elements Y obs

i , is:

E(Y mis
i |yobs

i ) =
K∑

k=1
E(Y mis

i |yobs
i , zik = 1)πk.

Data Generation

Description

The function rGMM simulates observations from a Gaussian Mixture Model. The number of observations is
specified by n, and the dimension of each observation by d. The number of clusters is set using k, which
defaults to 1. The marginal probabilities of cluster membership are provided as a numeric vector pi, which
should contain k elements. If pi is omitted, the clusters are assumed equi-probable. The proportion of
elements in the n× d data matrix that are missing is specified by miss, which defaults to zero. Note that
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when miss>0, it is possible for all elements of an observation to be missing. The cluster means are provided
either as a numeric prototype vector, or as a list of numeric vectors. If a single prototype is provided, that
vector is taken as the mean for all clusters. By default, the zero vector is adopted as the prototype. The
cluster covariances covs are provided as a numeric prototype matrix, or as a list of such matrices. If a single
prototype is provided, that matrix is used as the covariance for all clusters. By default, the identity matrix is
adopted as the prototype.

Examples

Single Component without Missingness

In this example, n = 1e3 observations are simulated from a single k = 1 bivariate normal distribution d = 2
without missingness. The mean is µ = (2, 2), and the covariance is an exchangeable correlation structure
with off-diagonal ρ = 0.5.
set.seed(100)
# Single component without missingness
sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
data <- rGMM(n = 1e3, d = 2, k = 1, means = c(2, 2), covs = sigma)

Single Component with Missingness

In this example, n = 1e3 observations are simulated from a single k = 1 trivariate normal distribution d
= 3 with 20% missingness miss = 0.2. The mean defaults to the zero vector, and the covariance to the
identity matrix.
# Single component with missingness
data <- rGMM(n = 1e3, d = 3, k = 1, miss = 0.2)

Two Components without Missingness

In this example, n = 1e3 observations are simulated from a two-component k = 2 trivariate normal distribu-
tion d = 3 without missingness. The mean vectors are µ1 = (−2,−2,−2) and µ2 = (2, 2, 2). The covariance
matrices are both exchangeable with off-diagonal ρ = 0.5. Since pi is omitted, the cluster are equi-probable,
i.e. π1 = π2 = 1/2.
# Two-component mixture without missingness
mean_list <- list(

c(-2, -2, -2),
c(2, 2, 2)

)
sigma <- matrix(

c(1, 0.5, 0.5,
0.5, 1, 0.5,
0.5, 0.5, 1), nrow = 3)

data <- rGMM(n = 1e3, d = 3, k = 2, means = mean_list, covs = sigma)

Four Components with Missingness

In this example, n = 1e3 observations are simulated from a four-component k = 4 bivariate normal dis-
tribution d = 2 with 10% missingness miss = 0.1. The mean vectors are µ1 = (−2,−2), µ2 = (−2, 2),
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µ3 = (2,−2) and µ4 = (2, 2). The covariance matrices are all 0.5 ∗ I. The cluster proportions are (35%, 15%,
15%, 35%) for (π1, π2, π3, π4), respectively.
# Four-component mixture with missingness
mean_list <- list(

c(-2, -2),
c(-2, 2),
c(2, -2),
c(2, 2)

)
sigma <- 0.5 * diag(2)
props <- c(0.35, 0.15, 0.15, 0.35)
data <- rGMM(

n = 1e3,
d = 2,
k = 4,
pi = props,
miss = 0.1,
means = mean_list,
covs = sigma

)

Parameter Estimation

Description

The function fit.GMM estimates the GMM parameters. The data are expected as a numeric matrix data,
with observations as rows. The number of mixture components is specified using k, which defaults to 1. Initial
values for the mean vectors, covariance matrices, and cluster proportions are provided using init_means,
init_covs, and init_props, respectively. The initial means init_means are provided as a list of vectors,
the initial covariances init_covs as a list of matrices, and the cluster proportions init_props as a numeric
vector. Initial means and covariances should be supplied as a lists with k components, even if k = 1, or if all
k > 1 components are initialized at the same value.

If the data contain complete observations, i.e. observations with no missing elements, fit.GMM will attempt
to initialize all model parameters (µ,Σ, π). However, if the data data contain no complete observations, then
initial values are required for each of init_means, init_props, and init_props. Supplying initial values
may also result in better performance when there are relatively few complete observations.

The arguments maxit, eps, and report control the fitting procedure. maxit sets the maximum number of
EM iterations to attempt. The default is 102. eps sets the minimum acceptable improvement in the EM
objective function. The default is 10−6. If report = TRUE, then fitting progress is displayed.

Examples

Single Component without Missingness

In this example, 103 observations are simulated with a single bivariate normal distribution without missingness.
Since the model contains only a single component, the output is a list containing the estimated mean and
covariance, and the model log likelihood. In the case of a single component without missingness, the maximum
likelihood estimates are available in closed form.
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# Single component without missingness
sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)
data <- rGMM(n = 1e3, d = 2, k = 1, means = c(2, 2), covs = sigma)
fit <- fit.GMM(data, k = 1)
cat("Estimated Mean and Covariance:\n")
show(fit)

## Estimated Mean and Covariance:
## $Mean
## y1 y2
## 2.024176 2.007562
##
## $Covariance
## [,1] [,2]
## [1,] 1.0669079 0.5317859
## [2,] 0.5317859 0.9994667
##
## $Objective
## [1] -1754.07

Single Component with Missingness

In this example, 103 observations are simulated from a single trivariate normal distribution with 20%
missingness. Since the model contains only a single component, the output is again a list. However, in the
case of missingness, the EM algorithm is used for estimation, and a completed version of the input data is
returned, with missing values replaced by their posterior expectations.The true mean is the zero vector, and
the true covariance is identity. For fit1 below, the initial mean and covariance are estimated internally using
complete observations. For fit2 below, the mean and covariance are initialized at the truth. The final value
of the EM objective is increased by initializing at the truth.
set.seed(102)

# Single component with missingness
data <- rGMM(n = 1e3, d = 3, k = 1, miss = 0.2)

cat("Initial parameter values set internally:\n")
fit1 <- fit.GMM(data, k = 1)

cat("\nEstimated mean:\n")
show(fit1$Mean)

cat("\nEstimated covariance:\n")
show(fit1$Covariance)

cat("\nFinal objective:\n")
show(fit1$Objective)

cat("Initial parameter values set manually:\n")
init_means = list(

c(0, 0, 0)
)
init_covs = list(

diag(3)
)
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fit2 <- fit.GMM(data, k = 1, init_means = init_means, init_covs = init_covs)

cat("\nEstimated mean:\n")
show(fit2$Mean)

cat("\nEstimated covariance:\n")
show(fit2$Covariance)

cat("\nFinal objective:\n")
show(fit2$Objective)

cat("\nGain in final objective by initializing parameters at the truth:\n")
fit2$Objective-fit1$Objective

## Initial parameter values set internally:
## Objective increment: 1.32
## Objective increment: 0.0425
## Objective increment: 0.00177
## Objective increment: 0.000115
## Objective increment: 1.13e-05
## Objective increment: 1.34e-06
## Objective increment: 1.68e-07
## 6 update(s) performed before reaching tolerance limit.
##
##
## Estimated mean:
## y1 y2 y3
## 0.007209316 0.053596831 -0.027423821
##
## Estimated covariance:
## y1 y2 y3
## y1 0.91340883 -0.02162862 0.02771232
## y2 -0.02162862 0.97258027 0.06271627
## y3 0.02771232 0.06271627 0.95024429
##
## Final objective:
## [1] -2793.743
## Initial parameter values set manually:
## Objective increment: 8.47
## Objective increment: 0.541
## Objective increment: 0.0465
## Objective increment: 0.00493
## Objective increment: 0.000572
## Objective increment: 6.87e-05
## Objective increment: 8.37e-06
## Objective increment: 1.03e-06
## Objective increment: 1.26e-07
## 8 update(s) performed before reaching tolerance limit.
##
##
## Estimated mean:
## y1 y2 y3
## 0.007209512 0.053596653 -0.027423582
##
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## Estimated covariance:
## y1 y2 y3
## y1 0.91340891 -0.02163085 0.02771294
## y2 -0.02163085 0.97258018 0.06271506
## y3 0.02771294 0.06271506 0.95024417
##
## Final objective:
## [1] -2793.743
##
## Gain in final objective by initializing parameters at the truth:
## [1] 0.0001295088

Two Components without Missingness

In this example, 103 observations are simulated from a two-component, trivariate normal distribution without
missingness. Since the model has multiple components, the output is an object of class mix. The show method
displays the estimated cluster proportions and the final objective. The slots of the output contain the following:
* @Means and @Covariances: lists of the estimated cluster means and covariances. * @Density: the cluster
densities evaluated at the observations. * @Responsibilities: the posterior membership probabilities for
each observation. * @Assignments: the maximum a posteriori cluster assignments and assignment entropy.
* @Completed: a completed version of the input data is returned, with missing values replaced by their
posterior expectations
# Two componets without missingness
mean_list <- list(

c(-2, -2, -2),
c(2, 2, 2)

)
cov <- matrix(

c(1, 0.5, 0.5,
0.5, 1, 0.5,
0.5, 0.5, 1), nrow = 3

)

data <- rGMM(n = 1e3, d = 3, k = 2, means = mean_list, covs = cov)
fit <- fit.GMM(data, k = 2, maxit = 10, eps = 1e-8)

cat("\n")
show(fit)

cat("Cluster means:\n")
fit@Means

cat("Cluster covariances:\n")
fit@Covariances

cat("Cluster responsibilities:\n")
head(fit@Responsibilities)

cat("\nCluster assignments:\n")
head(fit@Assignments)

cat("\nCompleted data:\n")
head(fit@Completed)
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## Objective increment: 0.627
## Objective increment: 0.0673
## Objective increment: 0.0175
## Objective increment: 0.00462
## Objective increment: 0.00124
## Objective increment: 0.000331
## Objective increment: 8.86e-05
## Objective increment: 2.37e-05
## Objective increment: 6.37e-06
## Objective increment: 1.71e-06
## 10 update(s) performed without reaching tolerance limit.
##
##
## Normal Mixture Model with 2 Components.
## Cluster Proportions:
## k1 k2
## 0.514 0.486
##
## Final Objective:
## [1] -3019.68
##
## Cluster means:
## [[1]]
## y1 y2 y3
## 1.993715 2.044410 2.042874
##
## [[2]]
## y1 y2 y3
## -2.023218 -1.967009 -2.031333
##
## Cluster covariances:
## [[1]]
## y1 y2 y3
## y1 1.0421717 0.5260849 0.5547371
## y2 0.5260849 1.0938308 0.5580000
## y3 0.5547371 0.5580000 0.9795204
##
## [[2]]
## y1 y2 y3
## y1 0.9486886 0.4428439 0.4698537
## y2 0.4428439 0.9356663 0.4986851
## y3 0.4698537 0.4986851 1.0774598
##
## Cluster responsibilities:
## k1 k2
## 1 7.213209e-06 9.999928e-01
## 2 9.999999e-01 1.338099e-07
## 2 9.999770e-01 2.298827e-05
## 2 8.135063e-02 9.186494e-01
## 1 5.636022e-06 9.999944e-01
## 2 1.000000e+00 3.279117e-08
##
## Cluster assignments:
## Assignments Entropy
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## 1 2 1.336147e-04
## 2 1 3.248369e-06
## 2 1 3.873851e-04
## 2 2 4.069204e-01
## 1 2 1.064057e-04
## 2 1 8.625655e-07
##
## Completed data:
## y1 y2 y3
## 1 -3.5781991 -1.7243246 -0.7998434
## 2 2.4957664 3.1465942 1.6865892
## 2 1.4038862 1.7525323 2.0079278
## 2 -0.8862729 -1.2629163 1.0069399
## 1 -1.8648070 -0.7268469 -3.3138250
## 2 2.4270751 2.6503247 3.3227434

Four Components with Missingness

In this example, 103 observations are simulated from a four-component bivariate normal distribution with
10% missingness. Since the model has multiple components, the output is an object of class mix.
set.seed(200)

# Four components with missingness
mean_list <- list(

c(2, 2),
c(2, -2),
c(-2, 2),
c(-2, -2)

)
sigma <- 0.5 * diag(2)
props <- c(0.35, 0.15, 0.15, 0.35)
data <- rGMM(

n = 1000,
d = 2,
k = 4,
pi = props,
miss = 0.1,
means = mean_list,
covs = sigma

)
fit <- fit.GMM(data, k = 4, maxit = 10, eps = 1e-8)
show(fit)

cat("Cluster means:\n")
fit@Means

cat("Cluster covariances:\n")
fit@Covariances

cat("\nCluster assignments:\n")
head(fit@Assignments)

## Objective increment: 1.57
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## Objective increment: 0.161
## Objective increment: 0.0334
## Objective increment: 0.00726
## Objective increment: 0.0016
## Objective increment: 0.000341
## Objective increment: 7.46e-05
## Objective increment: 1.59e-05
## Objective increment: 3.48e-06
## Objective increment: 7.47e-07
## 10 update(s) performed without reaching tolerance limit.
##
## Normal Mixture Model with 4 Components.
## Cluster Proportions:
## k1 k2 k3 k4
## 0.149 0.388 0.130 0.332
##
## Final Objective:
## [1] -1888.25
##
## Cluster means:
## [[1]]
## y1 y2
## -2.046472 2.074567
##
## [[2]]
## y1 y2
## -2.026168 -1.983955
##
## [[3]]
## y1 y2
## 2.026073 -2.075973
##
## [[4]]
## y1 y2
## 1.973530 1.981959
##
## Cluster covariances:
## [[1]]
## y1 y2
## y1 0.43656741 0.02040745
## y2 0.02040745 0.45492340
##
## [[2]]
## y1 y2
## y1 0.567726041 0.003079349
## y2 0.003079349 0.575620933
##
## [[3]]
## y1 y2
## y1 0.39075316 -0.06937548
## y2 -0.06937548 0.37947376
##
## [[4]]
## y1 y2
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## y1 0.484058646 0.002193949
## y2 0.002193949 0.525919652
##
##
## Cluster assignments:
## Assignments Entropy
## 1 4 2.226854e-10
## 4 2 4.292356e-01
## 2 3 6.473445e-02
## 2 3 1.011832e-07
## 1 4 2.032369e-08
## 4 2 3.292494e-04

Cluster Number Selection

Clustering Quality

The function ClustQual provides several metrics for internally assessing the quality of cluster assignments
from a fitted GMM. The input is an object of class mix. The output is a list containing the metrics: BIC,
CHI, DBI, and SIL.

• BIC is the Bayesian Information Criterion, which is a penalized version of the negative log likelihood.
A lower value indicates better clustering quality.

• CHI is the Calinski-Harabaz Index, a ratio of the between cluster to within cluster variation. A higher
value indicates better clustering quality.

• DBI is the Davies-Bouldin Index, an average of cluster similarities. A lower value indicates better
clustering quality.

• SIL is the average Silhouette width, a measure of how well an observation matches its assigned cluster.
A higher value indicates better clustering quality.

set.seed(105)

# Four components without missingness
mean_list <- list(

c(2, 2),
c(2, -2),
c(-2, 2),
c(-2, -2)

)
cov <- 0.5 * diag(2)
data <- rGMM(n = 100, d = 2, k = 4, means = mean_list)
fit <- fit.GMM(data, k = 4, maxit = 100, eps = 1e-8, report = F)

# Quality metrics
clust_qual = ClustQual(fit)

cat("BIC:\n")
clust_qual$BIC

cat("\nCHI:\n")
clust_qual$CHI
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cat("\nDBI:\n")
clust_qual$DBI

cat("\nSIL:\n")
clust_qual$SIL

## BIC:
## [1] 358.6248
##
## CHI:
## [1] 6.546848
##
## DBI:
## [1] 0.5617234
##
## SIL:
## [1] 0.545614

Choosing the Number of Clusters

In applications, the number of clusters k is often unknown. The function ChooseK is designed to assist in
choosing the number of clusters. The inputs include the data matrix data, the minimum cluster number
to assess k0, the maximum cluster number to assess k1, and the number of bootstrap replicates at each
cluster number boot. For each cluster number k between k0 and k1, boot bootstrap data sets are generated.
A GMM with k components is fit, and the quality metrics are calculated. The bootstrap replicates are
summarized by their mean and standard error (SE). For each quality metric, the cluster number kopt that
had the optimal quality, and the smallest cluster number whose quality was within 1 SE of the optimum k1se,
are reported. The output is a list Choices containing the cluster numbers selected by each metric, and the
complete set of bootstrap Results.
# Cluster number selection
choose_k = ChooseK(data, k0 = 2, k1 = 6, boot = 10)

cat("\nCluster number choices:\n")
choose_k$Choices

cat("\nAll results:\n")
head(choose_k$Results)

## Cluster size 2 complete. 11 fit(s) succeeded.
## Cluster size 3 complete. 11 fit(s) succeeded.
## Cluster size 4 complete. 11 fit(s) succeeded.
## Cluster size 5 complete. 11 fit(s) succeeded.
## Cluster size 6 complete. 11 fit(s) succeeded.
##
## Cluster number choices:
## Metric k_opt Metric_opt k_1se Metric_1se
## 1 BIC 6 289.8829238 6 289.8829238
## 2 CHI 6 10.2082679 6 10.2082679
## 3 DBI 4 0.5584643 4 0.5584643
## 4 SIL 4 0.5657591 4 0.5657591
##
## All results:
## Clusters Fits Metric Mean SE
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## 1 2 11 BIC 449.9947433 5.233711804
## 2 2 11 CHI 1.6024639 0.039332235
## 3 2 11 DBI 1.0222610 0.012683919
## 4 2 11 SIL 0.4372601 0.004176608
## 5 3 11 BIC 369.7079292 9.428310875
## 6 3 11 CHI 3.4225779 0.111995937
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