Many Geographical Analysis utilizes spatial autocorrelation, that allows us to study the geographical evolution from different points of view. One measurement for spatial autocorrelation is Moran’s I, that is based on Pearson’s correlation coefficient in general statistics (Chen 2009)
This package offers a straight fordward to perform the whole analisys by using the function rescaleI
which requires an input file with a specific format you can see it at Loading data section
library(Irescale)
#> Loading required package: Rdpack
#> Loading required package: sp
#> Loading required package: e1071
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
data<-loadFile(fileInput)
scaledI<-rescaleI(data,samples=1000, scalingUpTo="MaxMin")
fn = file.path(tempdir(),"output.csv",fsep = .Platform$file.sep)
saveFile(fn,scaledI)
if (file.exists(fn))
#Delete file if it exists
file.remove(fn)
#> [1] TRUE
The analysis can be done following the steps
The input file1 should have the following format.
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
head(read.csv(fileInput))
#> City Latitude Longitude Population
#> 1 Beijing 39.90420 116.4074 9496688
#> 2 Tianjin 39.34336 117.3616 5313702
#> 3 Shijiazhuang 39.34336 117.3616 1930579
#> 4 Taiyuan 37.87059 112.5489 2538336
#> 5 Hohehot 40.82192 111.6581 990954
#> 6 Shenyang 41.80570 123.4315 4344933
To load data to performe the analysis is quite simple. The function loadFile
provides the interface to make it. loadFile returns a list with two variables, data
and varOfInterest
, the first one represents a vector with latitude and longitude; varOfInterest
is a matrix with all the measurements from the field.
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
head(input$data)
#> Latitude Longitude
#> Beijing 39.90420 116.4074
#> Tianjin 39.34336 117.3616
#> Shijiazhuang 39.34336 117.3616
#> Taiyuan 37.87059 112.5489
#> Hohehot 40.82192 111.6581
#> Shenyang 41.80570 123.4315
head(input$varOfInterest)
#> Population
#> Beijing 9496688
#> Tianjin 5313702
#> Shijiazhuang 1930579
#> Taiyuan 2538336
#> Hohehot 990954
#> Shenyang 4344933
If the data has a chessboard shape,the file is organized in rows and columns, where the rows represent latitute and columns longitude, the measurements are in the cell. The function loadChessBoard
can be used to load into the analysis.
library(Irescale)
fileInput<-"../inst/testdata/chessboard.csv"
input<-loadChessBoard(fileInput)
#> [1] 21
head(input$data)
#> [,1] [,2]
#> [1,] 1 1
#> [2,] 1 2
#> [3,] 1 3
#> [4,] 1 4
#> [5,] 1 5
#> [6,] 1 6
head(input$varOfInterest)
#> [1] 1 1 1 1 1 1
Once the data is loaded, The distance matrix, the distance between all the points might be calcualted. The distance can be calculated using `calculateEuclideanDistance’ if the points are taken in a geospatial location.
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
distM<-calculateEuclideanDistance(input$data)
distM[1:5,1:5]
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.000000 1.106865 1.106865 4.361616 4.837197
#> [2,] 1.106865 0.000000 0.000000 5.033068 5.892130
#> [3,] 1.106865 0.000000 0.000000 5.033068 5.892130
#> [4,] 4.361616 5.033068 5.033068 0.000000 3.082845
#> [5,] 4.837197 5.892130 5.892130 3.082845 0.000000
If the data is taken from a chessboard a like field, the Manhattan distance can be used.
library(Irescale)
fileInput<-"../inst/testdata/chessboard.csv"
input<-loadChessBoard(fileInput)
#> [1] 21
distM<-calculateManhattanDistance(input$data)
distM[1:5,1:5]
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0 1 2 3 4
#> [2,] 1 0 1 2 3
#> [3,] 2 1 0 1 2
#> [4,] 3 2 1 0 1
#> [5,] 4 3 2 1 0
The weighted distance matrix can be calculated it using the function calculateWeightedDistMatrix
, however it is not required to do it, because ‘calculateMoranI’ does it.
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
distM<-calculateEuclideanDistance(input$data)
distW<-calculateWeightedDistMatrix(distM)
distW[1:5,1:5]
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.000000000 0.009745774 0.009745774 0.002473224 0.002230063
#> [2,] 0.009745774 0.000000000 0.000000000 0.002143276 0.001830791
#> [3,] 0.009745774 0.000000000 0.000000000 0.002143276 0.001830791
#> [4,] 0.002473224 0.002143276 0.002143276 0.000000000 0.003499124
#> [5,] 0.002230063 0.001830791 0.001830791 0.003499124 0.000000000
It is time to calculate the spatial autocorrelation statistic Morans’ I. The function calcualteMoranI
, which requires the distance matrix, and the variable you want are interested on.
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
distM<-calculateEuclideanDistance(input$data)
I<-calculateMoranI(distM = distM,varOfInterest = input$varOfInterest)
I
#> [1] -0.04800907
The scaling process is made using Monte Carlo resampling method. The idea is to shuffle the values and recalculate I for at least 1000 times. In the code below, after resampling the value of I, a set of statistics are calculated for that generated vector.
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
distM<-calculateEuclideanDistance(input$data)
I<-calculateMoranI(distM = distM,varOfInterest = input$varOfInterest)
vI<-resamplingI(1000,distM, input$varOfInterest) # This is the permutation
statsVI<-summaryVector(vI)
statsVI
#> $mean
#> [1] -0.03474837
#>
#> $sd
#> [1] 0.03680553
#>
#> $max
#> [1] 0.1530533
#>
#> $min
#> [1] -0.1608135
#>
#> $Q1
#> 0.1%
#> -0.1491478
#>
#> $Q99
#> 99.99%
#> 0.1529057
#>
#> $median
#> [1] -0.03759511
#>
#> $skew
#> [1] 0.7520348
#>
#> $kurt
#> [1] 2.389568
To see how the value of I is distribuited, the method plotHistogramOverlayNormal
provides the functionality to get a histogram of the vector generated by resampling with a theorical normal distribution overlay.
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
distM<-calculateEuclideanDistance(input$data)
I<-calculateMoranI(distM = distM,varOfInterest = input$varOfInterest)
vI<-resamplingI(1000,distM, input$varOfInterest) # This is the permutation
statsVI<-summaryVector(vI)
plotHistogramOverlayNormal(vI,statsVI, main=colnames(input$varOfInterest))
Once we have calculated the null distribution via resampling, you need to scale by centering and streching. The method iCorrection
, return an object with the resampling vector rescaled, and all the summary for this vector, the new value of I is returned in a variable named newI
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
distM<-calculateEuclideanDistance(input$data)
I<-calculateMoranI(distM = distM,varOfInterest = input$varOfInterest)
vI<-resamplingI(1000,distM, input$varOfInterest) # This is the permutation
statsVI<-summaryVector(vI)
corrections<-iCorrection(I,vI)
corrections$newI
#> 0.1%
#> -0.1278999
In order to provide a significance to this new value, you can calculate the pvalue using the method calculatePvalue
. This method requires the scaled vector, you get this vector,scaledData
, the scaled I, newI
and the mean of the scaledData
.
library(Irescale)
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
distM<-calculateEuclideanDistance(input$data)
I<-calculateMoranI(distM = distM,varOfInterest = input$varOfInterest)
vI<-resamplingI(1000,distM, input$varOfInterest) # This is the permutation
statsVI<-summaryVector(vI)
corrections<-iCorrection(I,vI)
pvalueIscaled<-calculatePvalue(corrections$scaledData,corrections$newI,corrections$summaryScaledD$mean)
pvalueIscaled
#> [1] 0.3936064
In order to determine how many iterations it is necessary to run the resampling method, it is possible to run a stability analysis. This function draw a chart in log scale (10^x) of the number of interations needed to achieve the stability in the Monte Carlo simulation.
fileInput<-system.file("testdata", "chen.csv", package="Irescale")
input<-loadFile(fileInput)
resultsChen<-buildStabilityTable(data=input, times=100, samples=1000, plots=TRUE)
Chen, Yan-guang. 2009. “Reconstructing the Mathematical Process of Spatial Autocorrelation Based on Moran’s Statistics.” Geographic Research 28 (6): 1449–63.
The data used in this example is taken from (Chen 2009).↩