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Abstract

In this exercise, you will become familiar with the GenABEL library,
designed for GWA analysis. Compared to dgc.genetics package, it pro-
vides specific facilities for storage and manipulation of large amounts of
data, very fast tests for GWA analysis, and special functions to analyse
and graphically present the results of GWA analysis (thus ”analysis of
analysis”).

GenABEL is rather new (first public release in mid-2006) and still de-
veloping (you can check http://mga.bionet.nsc.ru/nlru/GenABEL to see
the history); the latest release was done in the beginning of March. This
means there may still be (hopefully few) bugs or inconsistencies in the
program. We will appreciate your suggestions on improving GenABEL .

In the first part of this exercise you will be guided through a GWA
analysis of a small data set. In the second part you will investigate a
larger data set by yourself, do a verification study and will answer the
questions. All data sets used assume a study in a relatively homogeneous
population. Try to finish the first part in the morning and the second part
in the afternoon.

Though only few thousands of markers located at four chromosomes
are used in the scan, we still going to call it Genome-Wide (GW), as the
amount of data we will use is approaches the amount to be expected in a
real experiment.
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1 Example GWA session

Copy the file ge03d2ex.RData to your desktop and start R by double-clicking
on it. Start GenABEL library by typing

> library(GenABEL)

You can read short overview of the package by asking for help(GenABEL).
Investigate the objects loaded by command

> ls()

[1] "ge03d2ex"

The ge03d2ex is a special data object of the class gwaa.data, as can be
seeing from

> class(ge03d2ex)

[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"

As usual, if you are interested in details of this data type, you can get
help by using command help("gwaa.data-class"); however, it is not strictly
necessary to understand details of this data type to do GWA analysis in general
and this exercise in particular. The only important thing to remember is that
objects of this type contain a slot phdata which is a data frame with phenotypic
information.

To check the variables in this data frame, you can use

> names(ge03d2ex@phdata)

[1] "id" "sex" "age" "dm2" "height" "weight" "diet" "bmi"

Of cause, all standard R procedures will work on this data frame, e.g. we
can check the summary for the age variable by

> summary(ge03d2ex@phdata$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
23.84 38.33 48.71 49.07 58.57 81.57

We can also attach this data frame to the R search path by

> attach(ge03d2ex@phdata)

1.1 Data descriptives and first round of GWA analysis

Let us investigate what are the traits presented in the data frame loaded and
what are the characteristics of the distribution by using specific GenABEL func-
tion

> descriptives.trait(ge03d2ex)
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No Mean SD
id 136 NA NA
sex 136 0.529 0.501
age 136 49.069 12.926
dm2 136 0.632 0.484
height 135 169.440 9.814
weight 135 87.397 25.510
diet 136 0.059 0.236
bmi 135 30.301 8.082

You can see that this frame contains the data on 136 people; the data on sex,
age, height, weight, diet and body mass index (BMI) are available. Our trait of
interest is dm2 (type 2 diabetes). Note that every single piece of information in
this data set is simulated; however, we tried to keep our simulations in a way
we think the control of T2D works.

You can produce a summary for cases and controls separately and compare
distributions of the traits by

> descriptives.trait(ge03d2ex, by = dm2)

No(by=1) Mean SD No(by=0) Mean SD Ptt Pkw Pexact
id 86 NA NA 50 NA NA NA NA NA
sex 86 0.593 0.494 50 0.420 0.499 0.053 0.052 0.074
age 86 50.250 12.206 50 47.038 13.971 0.179 0.205 NA
dm2 86 NA NA 50 NA NA NA NA NA
height 86 170.448 10.362 49 167.671 8.586 0.097 0.141 NA
weight 86 93.587 27.337 49 76.534 17.441 0.000 0.000 NA
diet 86 0.058 0.235 50 0.060 0.240 0.965 0.965 1.000
bmi 86 32.008 8.441 49 27.304 6.463 0.000 0.001 NA

here, the by argument specifies the grouping variable. You can see that cases
and controls are different in weight, which is expected, as T2D is associated
with obesity.

Similarly, you can produce grand GW descriptives of the marker data by
using

> descriptives.marker(ge03d2ex)

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 146.000 684.000 711.000 904.000 1555.000
Prop 0.036 0.171 0.178 0.226 0.389

$`Distribution of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 X>0.05

No 46.000 71.000 125.000 275.000 4000
Prop 0.011 0.018 0.031 0.069 1

$`Distribution of porportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 1.000 0 0 135.000 0
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Prop 0.007 0 0 0.993 0

$`Distribution of porportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 6.000 996.000 1177.000 1784.000
Prop 0.009 0.002 0.249 0.294 0.446

$`Mean heterozygosity for a SNP`
[1] 0.2582298

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1592255

$`Mean heterozygosity for a person`
[1] 0.2476507

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04291038

It is of note that we can see inflation of the proportion of the tests for HWE at
particular threshold, as compared to expected. This may indicate poor geno-
typing quality and/or genetic stratification.

We can test the GW marker characteristics in controls by

> descriptives.marker(ge03d2ex, ids = (dm2 == 0))

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 233.000 676.000 671.000 898.000 1522.000
Prop 0.058 0.169 0.168 0.225 0.381

$`Distribution of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 X>0.05

No 0 3.000 14.000 98.000 4000
Prop 0 0.001 0.003 0.025 1

$`Distribution of porportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 0 0 50 0
Prop 0 0 0 1 0

$`Distribution of porportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 49.000 1523.000 0 2391.000
Prop 0.009 0.012 0.381 0 0.598

$`Mean heterozygosity for a SNP`
[1] 0.2555009

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1618707
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$`Mean heterozygosity for a person`
[1] 0.2525720

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04714886

Apparently, HWE distribution holds better in controls than in the total sample.
Let us check whether there are indications that deviation from HWE is due

to cases. At this stage we are only interested in HWE distribution table, and
therefore will ask to report only table two:

> descriptives.marker(ge03d2ex, ids = (dm2 == 1))[2]

$`Distribution of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 X>0.05

No 45.000 79.00 136.000 268.000 4000
Prop 0.011 0.02 0.034 0.067 1

It seems that indeed excessive number of markers are out of HWE in cases. If
no laboratory procedure (e.g. DNA extraction, genotyping, calling) were done
for cases and controls separately, this may indicate possible heterogeneity in
cases. However, it is also possible that we detect more deviation from HWE in
cases simply because the number of cases is larger than controls, yielding higher
detection power.

It may be interesting to plot a χ2−χ2 plot contrasting observed and expected
distributions for the test for HWE in cases. First, we need to compute exact
test for HWE by

> s <- summary(ge03d2ex@gtdata[(dm2 == 1), ])

Note the you have produced the summary for the gtdata slot of ge03d2ex;
this is the slot which actually contain all genetic data in special compressed
format.

You can see first 10 elements of this very long table by

> s[1:10, ]

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Chromosome
rs7435137 84 0.9767442 0.52380952 17 46 21 0.510978370 1
rs7725697 85 0.9883721 0.01176471 83 2 0 1.000000000 3
rs664063 86 1.0000000 0.08720930 71 15 0 1.000000000 2
rs4670072 60 0.6976744 0.11666667 53 0 7 0.001701645 X
rs546570 84 0.9767442 0.89880952 1 15 68 1.000000000 2
rs7908680 83 0.9651163 0.03012048 78 5 0 1.000000000 1
rs166732 83 0.9651163 0.04216867 76 7 0 1.000000000 1
rs4257079 86 1.0000000 0.07558140 73 13 0 1.000000000 1
rs5150804 84 0.9767442 0.39880952 31 39 14 0.820496827 2
rs3508821 83 0.9651163 0.20481928 52 28 3 1.000000000 2

Note that the column before the last provides P-exact we need. We can extract
these to a separate vector by
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Figure 1: χ2−χ2 plot for the exact test for HWE. Black line of slope 1: expected
under no inflation; Red line: fitted slope.

> pexcas <- s[, "Pexact"]

and produce the χ2 − χ2 plot and estimate inflation factor by command est-
lambda(), which operates with a vector of P-values or χ2s:

> estlambda(pexcas)

$estimate
[1] 1.068184

$se
[1] 0.02614764

By default, this function also produces a χ2 − χ2 plot, at which you can see
some extreme deviation of observed from expected. The resulting plot (figure 1)
shows extreme deviation for high values of the test. Looking at the λ estimate,
we indeed see inflation of the test statistics.

You can repeat this test for the controls, if time permits.
Let us first try do GWA scan using raw (before quality control) data. We

will use the score test, as implemented in the qtscore() funcrtion of GenABEL
for testing:

> an0 <- qtscore(dm2, ge03d2ex)
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The first argument used describes the model; here it is rather simple — the
affection status, dm2, is supposed to depend on SNP genotype only.

You can see what objects are returned by this function by using

> names(an0)

[1] "P1df" "P2df" "Pc1df" "lambda" "effB"
[6] "effAB" "effBB" "snpnames" "map" "chromosome"
[11] "idnames" "formula" "family"

Here, P1df, P2df and Pc1df are most interesting; the first two are vectors of 1
and 2 d.f. P-values obtained in the GWA analysis, the last one is 1 d.f. P-value
corrected for inflation factor λ (which is presented in lambda object).

Let us see if there is evidence for the inflation of the test statistics

> an0$lambda

$estimate
[1] 1.047846

$se
[1] 0.0009700066

The estimate of λ is 1.05, suggesting inflation of the test.
We can plot the results of analysis by

> plot(an0)

The resulting plot is presented in the figure 2. By default, −log10(P −value) on
1 d.f. are presented; see help to figure out how this behaviour can be changed.

You can also generate a descriptive table for the ”top” (as ranked by P-value)
results by

> descriptives.scan(an0)

Chromosome Position effB P1df Pc1df effAB effBB
rs1719133 1 4495479 -0.189730 0.000280 0.000386 -0.102941 -0.632353
rs2975760 3 10518480 0.182573 0.000298 0.000411 0.141182 0.274763
rs7418878 1 2808520 0.170464 0.000974 0.001274 0.154881 0.200980
rs5308595 3 10543128 0.223766 0.001054 0.001375 0.170057 0.375940
rs4804634 1 2807417 -0.079119 0.001197 0.001552 0.061353 -0.203788
rs3224311 2 6009769 0.142522 0.001329 0.001716 0.133082 0.170370
rs26325 3 10617781 -0.447811 0.001331 0.001719 -0.447811 -0.895623
rs8835506 2 6010852 0.142857 0.001532 0.001966 0.135566 0.163636
rs3925525 2 6008501 0.139601 0.001940 0.002464 0.128991 0.170370
rs2521089 3 10487652 0.108577 0.002052 0.002601 0.056511 0.170655

P2df
rs1719133 0.000633
rs2975760 0.001143
rs7418878 0.002264
rs5308595 0.004593
rs4804634 0.003696
rs3224311 0.002941
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Figure 2: −log10(P − value) from the genome scan before QC procedure

rs26325 0.001331
rs8835506 0.003162
rs3925525 0.004555
rs2521089 0.006966

Here you see top 10 results, sorted by P-value with 1 d.f.. If you want to sort
by the corrected P-value, you can use descriptives.scan(an0,sort="Pc1df");
to see more then 10 (e.g. 25) top results, use descriptives.scan(an0,top=25).
You can combine all these options.

Note: The descriptives family of functions was developed to facilitate
production of tables which can be directly used in a manuscript — it is possible
to save the output as a file, which can be open by Excel or Word. See e.g.
help(descriptives.trait) for details.

Now let us apply emp.qtscore() function, which computes empirical GW
(or experiment-wise) significance

> an0.e <- emp.qtscore(dm2, ge03d2ex)

100%

> descriptives.scan(an0.e, sort = "Pc1df")
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Chromosome Position effB P1df Pc1df effAB effBB P2df
rs1719133 1 4495479 -0.189730 0.30 0.47 -0.102941 -0.632353 0.49
rs2975760 3 10518480 0.182573 0.36 0.49 0.141182 0.274763 0.76
rs7418878 1 2808520 0.170464 0.84 0.92 0.154881 0.200980 0.96
rs5308595 3 10543128 0.223766 0.89 0.93 0.170057 0.375940 1.00
rs4804634 1 2807417 -0.079119 0.91 0.94 0.061353 -0.203788 1.00
rs3224311 2 6009769 0.142522 0.93 0.95 0.133082 0.170370 1.00
rs26325 3 10617781 -0.447811 0.93 0.95 -0.447811 -0.895623 1.00
rs8835506 2 6010852 0.142857 0.93 0.96 0.135566 0.163636 1.00
rs3925525 2 6008501 0.139601 0.96 0.99 0.128991 0.170370 1.00
rs4921788 2 6973141 0.129195 0.99 0.99 0.110902 0.179084 1.00

None of the SNPs hits GW significance. If any did we could not trust the
results, because the distribution of the HWE test and presence of inflation factor
for the association test statistics suggest that the data may contain multiple
errors (indeed they do). Therefore our first step should be rigorous Quality
Control (QC).

1.2 Genetic data QC: simple checks

The major genetic data QC function of GenABEL is check.marker(). We will try
to run it; the output is rather self-explaining. As it was detailed at the lecture,
in the first round of the QC we do not want to check for HWE. This can be
achieved by setting HWE P-value selection threshold to zero (p.level=0):

> qc1 <- check.marker(ge03d2ex, p.level = 0)

4000 markers and 136 people in total
Running sex (X-chromosome) checks...
Wrong male X genotypes (heterozygous) found for 198 genotypes
Error table is saved in Xerrtab
Marker rs4351348 is likely to be not an X marker (Odds> 1000 )
Person id3374 is likely to be female (Odds> 1000 )
Person id8410 is likely to be female (Odds> 1000 )
If these people / snps are removed no errors are detected
RUN 1
4000 markers and 136 people in total
0 (0%) markers excluded as redundant (option = "no")
279 (6.975%) markers excluded as having low (<1.838235%) minor allele frequency
43 (1.075%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
1 (0.7352941%) people excluded because of low (<95%) call rate
4 (2.941176%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.2742305 (s.e. 0.04145819), people excluded had HET >= 0.5019168
1 (0.7352941%) people excluded because of too high IBS (>=0.95)
Mean IBS was 0.7874666 (s.e. 0.02043948), as based on 2000 autosomal markers
In total, 3682 (92.05%) markers passed all criteria
In total, 130 (95.58824%) people passed all criteria
RUN 2
3681 markers and 129 people in total
0 (0%) markers excluded as redundant (option = "no")
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101 (2.743820%) markers excluded as having low (<1.937984%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.2744468 (s.e. 0.01706392)
0 (0%) people excluded because of too high IBS (>=0.95)
Mean IBS was 0.7770808 (s.e. 0.01754550), as based on 2000 autosomal markers
In total, 3580 (97.25618%) markers passed all criteria
In total, 129 (100%) people passed all criteria
RUN 3
3580 markers and 129 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<1.937984%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.2744468 (s.e. 0.01706392)
0 (0%) people excluded because of too high IBS (>=0.95)
Mean IBS was 0.7704076 (s.e. 0.0184253), as based on 2000 autosomal markers
In total, 3580 (100%) markers passed all criteria
In total, 129 (100%) people passed all criteria

Note: The computation of all pairwise proportion of alleles identical-by-
state (IBS) by ibd() function, which is also called by check.markers() may
take quite some time, which is proportional to the square of the number of
subjects. This is not a problem with the small number of people we use for this
example or when modern computers are used. However, the computers in the
Nihes computer room are very old. Therefore be prepared to wait for long time
when you will do a self-exercise with 1,000 people.

From the output you can see that QC starts with checking the data for X-
chromosome; it finds out that all errors are due to two people with wrong sex
assigned and one marker, which looks like an autosomal one. This actually could
be a marker from pseudoautosomal region, which should have been arranged as
a separate ”autosome”.

Then, the procedure finds the markers with low call rate (≤ 0.95) across
people, markers with low MAF (by default, low MAF is defined as 10 or less
copies of the rare allele); people with low call rate (≤ 0.95) across SNPs, people
with extreme heterozygosity (at FDR 0.01) and these who have GW IBS ≥ 0.95.
These default parameters may be changed if you wish (consult help).

Because some of the people fail to pass the tests, the data set is not guaran-
teed to be really ”clean”after single iteration, e.g. some marker may not pass the
call threshold after we exclude few informative (but apparently wrong) people.
Therefore the QC is repeated iteratively until no further errors are found.

You can generate short summary of QC by marker and by person through
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> summary(qc1)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 39 4 0 0 0
NoMAF NA 376 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 1

$`Per-person fails statistics`
IDnoCall HetFail IBSFail Xidfail

IDnoCall 1 0 0 0
HetFail NA 3 0 1
IBSFail NA NA 1 0
Xidfail NA NA NA 1

As you can see from the output, some markers and people fail to pass multiple
criteria.

Note that the original data, ge03d2ex, are not modified during the proce-
dure; rather, check.markers() generate a list of markers and people which pass
or do not pass certain QC criteria. The objects returned by check.markers()
are:

> names(qc1)

[1] "nofreq" "nocall" "nohwe" "snpok" "idnocall" "hetfail"
[7] "ibsfail" "idok" "Pex.nohwe" "call" "Xmrkfail" "Xidfail"
[13] "Xerrtab"

The element idok provides the list of people who passed all QC criteria,
and snpok provides the list of SNPs which passed all criteria. You can easily
generate a new data set, which will consist only of these people and markers by

> data1 <- ge03d2ex[qc1$idok, qc1$snpok]

If there are any residual sporadic X-errors (male heterozygosity), these can
be fixed by

> data1 <- Xfix(data1)

no X-errors to fix

Applying this function does not make any difference for the example data set,
but you will need to use it for the bigger data set.

At this point, we are ready to work with the new, cleaned, data set data1.
However, if we try

> table(dm2)

dm2
0 1
50 86
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we can see that the original phenotypic data are attached to the search path.
Therefore we need to detach the data by

> detach(ge03d2ex@phdata)

At this stage, let us check if the first round of QC solves the problem of
inflated test for HWE, which may be the case if this inflation is due to genotypic
errors we managed to eliminate:

> descriptives.marker(data1)[2]

$`Distribution of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 X>0.05

No 44.000 65.000 121.000 240.000 3580
Prop 0.012 0.018 0.034 0.067 1

> descriptives.marker(data1[data1@phdata$dm2 == 1])[2]

$`Distribution of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 X>0.05

No 46.000 72.00 125.000 235.000 3580
Prop 0.013 0.02 0.035 0.066 1

> estlambda(summary(data1@gtdata[data1@phdata$dm2 == 1, ])[, "Pexact"])

$estimate
[1] 1.103741

$se
[1] 0.02787467

Apparently, the distribution (figure 3) looks better (note the scale difference
between the graphs), but the test statistics is still quite inflated.

1.3 Finding genetic sub-structure

Now, we are ready for the second round of QC, detection of genetic outliers which
may contaminate our data. We will detect genetic outliers using a technique,
which resembles the one suggested by Price at al. (Nat Genet, 2006; to be
discussed in the afternoon lecture session on March 20 and also very likely by
David Evans). The difference is that we will not normalise genotypes in our
analysis.

As a first step, we will compute a matrix of IBS between all pairs of people,
using only autosomal markers by

> data1.ibs <- ibs(data1[, data1@gtdata@chromosome != "X"])

You can see the 5x5 upper left sub-matrix by

> data1.ibs[1:5, 1:5]

id199 id300 id403 id415 id666
id199 0.7194529 3261.0000000 3260.0000000 3248.0000000 3264.0000000
id300 0.7733824 0.7191386 3267.0000000 3256.0000000 3270.0000000
id403 0.7674847 0.7823691 0.7254248 3254.0000000 3269.0000000
id415 0.7747845 0.7917690 0.7725876 0.7396468 3258.0000000
id666 0.7552083 0.7614679 0.7766901 0.7579804 0.7399212
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Figure 3: χ2−χ2 plot for the exact test for HWE. Black line of slope 1: expected
under no inflation; Red line: fitted slope.

Note: This may take few minutes on large data sets or when using old
computers!

The numbers below the diagonal show IBS, the numbers above the diagonal
tell how many SNPs were typed successfully for both (thus the IBS estimate is
derived using this number of SNPs).

Second, we transform this matrix to a distance matrix using standard R
command

> data1.dist <- as.dist(1 - data1.ibs)

Finally, we perform Classical Multidimensional Scaling by

> data1.mds <- cmdscale(data1.dist)

by default, the first two principal components are computed and returned.

Note: This may take few minutes on large data sets or when using old
computers!

We can present the results graphically by
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> plot(data1.mds)

The resulting plot is presented in figure 4. Each point on the plot corresponds
to a person, and the 2D distances between points were fitted to be as close as
possible to these presented in the original IBS matrix. You can see that study
subjects clearly cluster in two groups.

You can identify the points belonging to clusters by

> km <- kmeans(data1.mds, centers = 2, nstart = 1000)

> cl1 <- names(which(km$cluster == 1))

> cl2 <- names(which(km$cluster == 2))

> cl1

[1] "id199" "id300" "id403" "id415" "id666" "id689" "id765" "id830"
[9] "id908" "id980" "id994" "id1193" "id1423" "id1505" "id1737" "id1827"
[17] "id1841" "id2068" "id2094" "id2115" "id2151" "id2317" "id2618" "id2842"
[25] "id2894" "id2985" "id3354" "id3368" "id3641" "id3831" "id3983" "id4097"
[33] "id4328" "id4380" "id4395" "id4512" "id4552" "id4710" "id4717" "id4883"
[41] "id4904" "id4934" "id4961" "id5014" "id5078" "id5274" "id5275" "id5454"
[49] "id5853" "id5926" "id5969" "id6237" "id6278" "id6352" "id6501" "id6554"
[57] "id6663" "id6723" "id7499" "id7514" "id7541" "id7598" "id7623" "id7949"
[65] "id8059" "id8128" "id8281" "id8370" "id8400" "id8433" "id8772" "id8880"
[73] "id8890" "id8957" "id8996" "id9082" "id9901" "id9930" "id1857" "id2528"
[81] "id4862" "id9184" "id5677" "id6407" "id5472" "id2135" "id8545" "id4333"
[89] "id1670" "id1536" "id6917" "id6424" "id3917" "id9628" "id9635" "id4729"
[97] "id5190" "id6399" "id6062" "id620" "id1116" "id6486" "id41" "id677"
[105] "id4947" "id9749" "id6428" "id7488" "id5949" "id2924" "id5783" "id4096"
[113] "id903" "id9049" "id185" "id1002" "id362" "id9014" "id5044" "id2749"
[121] "id2286" "id4743" "id4185" "id8330" "id6934"

> cl2

[1] "id2097" "id6954" "id2136" "id858"

Four outliers are presented in the smaller cluster.

Note: Now you will need to use the BIGGER cluster for to select study
subjects. Whether this will be cl1 or cl2 in you case, is totally random.

We can form a data set which is free from outliers by using only people from
the bigger cluster:

> data2 <- data1[cl2, ]

After we dropped the outliers, we need to repeat QC using check.markers().
At this stage, we want to allow for HWE checks (we will use only controls and
exclude markers with FDR ≤ 0.2):

> qc2 <- check.marker(data2, hweids = (data2@phdata$dm2 == 0),

+ fdr = 0.2)
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Figure 4: Mapping samples on the space of the first two Principle Components
resulting from analysis of genomic IBS. Red dots identify genetic outliers

3580 markers and 125 people in total
Running sex (X-chromosome) checks...
No sex errors found
RUN 1
3580 markers and 125 people in total
0 (0%) markers excluded as redundant (option = "no")
40 (1.117318%) markers excluded as having low (<2%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <20%)
0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.2776398 (s.e. 0.01655241)
0 (0%) people excluded because of too high IBS (>=0.95)
Mean IBS was 0.7730585 (s.e. 0.01232383), as based on 2000 autosomal markers
In total, 3540 (98.88268%) markers passed all criteria
In total, 125 (100%) people passed all criteria
RUN 2
3540 markers and 125 people in total
0 (0%) markers excluded as redundant (option = "no")
0 (0%) markers excluded as having low (<2%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <20%)
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0 (0%) people excluded because of low (<95%) call rate
0 (0%) people excluded because too high autosomal heterozygosity (FDR <1%)
Mean autosomal HET was 0.2776398 (s.e. 0.01655241)
0 (0%) people excluded because of too high IBS (>=0.95)
Mean IBS was 0.7733529 (s.e. 0.01238634), as based on 2000 autosomal markers
In total, 3540 (100%) markers passed all criteria
In total, 125 (100%) people passed all criteria

> summary(qc2)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 0 0 0 0 0
NoMAF NA 40 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail Xidfail

IDnoCall 0 0 0 0
HetFail NA 0 0 0
IBSFail NA NA 0 0
Xidfail NA NA NA 0

Note: If the procedure did not run, check previous Note.

Indeed, in the updated data set few markers do not pass our QC criteria and
we need to drop a few markers. This is done by

> data2 <- data2[qc2$idok, qc2$snpok]

This is going to be our final analysis data set, therefore let us attach the phe-
notypic data to the search path, then we do not need to type data2@phdata$...
to access dm2 status or other variables:

> attach(data2@phdata)

1.4 GWA association analysis

Let us start again with descriptives of the phenotypic and marker data

> descriptives.trait(data2, by = dm2)

No(by=1) Mean SD No(by=0) Mean SD Ptt Pkw Pexact
id 78 NA NA 47 NA NA NA NA NA
sex 78 0.603 0.493 47 0.426 0.500 0.057 0.056 0.065
age 78 50.508 12.406 47 45.752 13.313 0.050 0.066 NA
dm2 78 NA NA 47 NA NA NA NA NA
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height 78 170.454 10.580 46 167.911 8.689 0.150 0.203 NA
weight 78 94.047 26.806 46 77.015 17.528 0.000 0.000 NA
diet 78 0.064 0.247 47 0.064 0.247 0.995 0.995 1.000
bmi 78 32.188 8.291 46 27.424 6.598 0.001 0.001 NA

You can see that relation to weight is maintained in this smaller, but hope-
fully cleaner, data set; moreover, relation to age becomes boundary significant.

If you check descriptives of markers (only HWE part shown)

> descriptives.marker(data2)[2]

$`Distribution of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 X>0.05

No 1 2.000 22.000 108.000 3540
Prop 0 0.001 0.006 0.031 1

you can see that the problems with HWE are apparently fixed; we may guess
that these were caused by the Wahlund’s effect.

Run the score test on the cleaned data by

> data2.qt <- qtscore(dm2, data2)

and check lambda

> data2.qt$lambda

$estimate
[1] 1.041588

$se
[1] 0.001353060

there is still some inflation, but it is in an acceptable range.
Produce the plot by

> plot(data2.qt)

(figure 5).
Produce the scan summary by

> descriptives.scan(data2.qt, sort = "Pc1df")

Chromosome Position effB P1df Pc1df effAB effBB
rs1719133 1 4495479 -0.202947 0.000192 0.000258 -0.113362 -0.624000
rs4804634 1 2807417 -0.083944 0.000893 0.001133 0.084741 -0.228214
rs1013473 1 4487262 0.096930 0.001031 0.001302 0.026794 0.163879
rs4534929 1 4474374 -0.160678 0.001085 0.001366 -0.047637 -0.295699
rs2521089 3 10487652 0.120968 0.001389 0.001733 0.077864 0.180492
rs1048031 1 4485591 -0.107834 0.001500 0.001866 0.003016 -0.251016
rs8835506 2 6010852 0.146630 0.001501 0.001868 0.146630 0.146630
rs7522488 3 11689797 0.091153 0.001854 0.002289 -0.054301 0.212366
rs3925525 2 6008501 0.143123 0.001926 0.002374 0.139636 0.153778
rs3224311 2 6009769 0.143123 0.001926 0.002374 0.139636 0.153778

P2df
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Figure 5: −log10(P − value) from the genome scan after the QC procedure

rs1719133 0.000542
rs4804634 0.001785
rs1013473 0.003396
rs4534929 0.004386
rs2521089 0.004068
rs1048031 0.005530
rs8835506 0.002440
rs7522488 0.005067
rs3925525 0.003664
rs3224311 0.003664

Comparison with the top 10 from the scan before QC shows that results
changed substantially with only few markers overlapping.

You can see similar results when accessing empirical GW significance:

> data2.qte <- emp.qtscore(dm2, data2)

100%

> descriptives.scan(data2.qte, sort = "Pc1df")

Chromosome Position effB P1df Pc1df effAB effBB P2df
rs1719133 1 4495479 -0.202947 0.33 0.37 -0.113362 -0.624000 0.52
rs4804634 1 2807417 -0.083944 0.74 0.86 0.084741 -0.228214 0.91
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rs1013473 1 4487262 0.096930 0.81 0.92 0.026794 0.163879 0.98
rs4534929 1 4474374 -0.160678 0.84 0.93 -0.047637 -0.295699 1.00
rs2521089 3 10487652 0.120968 0.93 0.97 0.077864 0.180492 0.98
rs1048031 1 4485591 -0.107834 0.93 0.98 0.003016 -0.251016 1.00
rs8835506 2 6010852 0.146630 0.93 0.98 0.146630 0.146630 0.97
rs7522488 3 11689797 0.091153 0.98 0.98 -0.054301 0.212366 1.00
rs7435137 1 4259040 0.051301 1.00 1.00 0.005898 0.109801 1.00
rs664063 2 7288020 -0.082333 1.00 1.00 -0.033091 -0.624000 1.00

Again, none of the SNPs hits GW 5% significance. Still, you can see that
after QC top markers achieve somewhat ”better” significance.

In the last part, we will do several adjusted and stratified analyses. Only
empirical P-values will be estimated to make the story shorter. To adjust for
sex and age, we can

> data2.qtae <- emp.qtscore(dm2 ~ sex + age, data2)

100%

> descriptives.scan(data2.qtae)

Chromosome Position effB P1df Pc1df effAB effBB P2df
rs1719133 1 4495479 -0.194133 0.38 0.54 -0.127725 -0.506248 0.80
rs7522488 3 11689797 0.094809 0.85 0.91 -0.053820 0.218666 0.97
rs4804634 1 2807417 -0.079615 0.91 0.98 0.083219 -0.218880 0.97
rs1037237 3 11690145 0.091975 0.92 0.98 -0.056653 0.215832 1.00
rs1013473 1 4487262 0.090639 0.97 0.98 0.022312 0.155861 1.00
rs4534929 1 4474374 -0.147568 0.98 0.99 -0.050301 -0.263748 1.00
rs1048031 1 4485591 -0.101474 0.98 1.00 0.010523 -0.246136 1.00
rs2398949 1 4828375 -0.298964 0.98 0.99 -0.361330 0.324702 0.66
rs3925525 2 6008501 0.135069 0.99 1.00 0.141363 0.115838 1.00
rs8835506 2 6010852 0.136169 0.99 1.00 0.145357 0.108603 1.00

You can see that there is little difference between adjusted and unadjusted
analysis, but this is not always the case; adjustment may make your study much
more powerful when covariates explain a large proportion of environmental trait
variation.

Finally, let us do stratified (by BMI) analysis. We will contracts obese
(BMI ≥ 30) cases to all controls.

> data2.qtse <- emp.qtscore(dm2 ~ sex + age, data2, ids = ((bmi >

+ 30 & dm2 == 1) | dm2 == 0))

100%

> descriptives.scan(data2.qtse, sort = "Pc1df")

Chromosome Position effB P1df Pc1df effAB effBB P2df
rs1891586 1 2297398 -0.084356 0.91 0.96 0.074937 -0.190551 1.00
rs1037237 3 11690145 0.113080 0.91 0.96 -0.065015 0.279560 0.96
rs7522488 3 11689797 0.113080 0.91 0.96 -0.065015 0.279560 0.96
rs9630764 1 3897972 0.089230 0.96 0.99 -0.053133 0.168546 1.00
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rs7435137 1 4259040 0.046788 1.00 1.00 0.020447 0.083977 1.00
rs664063 2 7288020 -0.029805 1.00 1.00 0.025357 -0.498680 1.00
rs546570 2 6120257 -0.006164 1.00 1.00 -0.006164 -0.012327 1.00
rs7908680 1 2311762 0.199311 1.00 1.00 0.199311 0.398622 1.00
rs166732 1 4716343 0.009887 1.00 1.00 0.009887 0.019774 1.00
rs4257079 1 3455895 -0.008578 1.00 1.00 -0.008578 -0.017155 1.00

Again, noting interesting at GW significance level. If we would have had
found something, naturally, we would not known if we mapped a T2D or obesity
gene (or a gene for obesity in presence of T2D, or the one for T2D in presence
of obesity).

At this point, you acquired the knowledge necessary for the self-exercise.
Please close R by q() command and proceed to the next section.
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2 GWA exercise

During the exercise, you will work with a larger data set (approximately 1,000
people and 7,000+ SNPs). You are to do complete three-round QC; perform
GWA analysis with dm2 as the outcome of interest and identify 10 SNPs which
you would like to take to the confirmatory stage two scan. You will do confir-
matory analysis using a confirmatory data set. If you did everything right, the
SNPs which you identified as significant or replicated will be located in know
T2D genes.

Please keep in mind that the data are simulated, and do not take your
findings too seriously!

Start R by going to ”Start -> Programs -> R -> R-2.4.1”. Load GenABEL
library by

> library(GenABEL)

The two data sets we will use in this exercise are part of the GenABEL distri-
bution. The first one (”discovery” set) can be loaded by

> data(ge03d2)

Please move along the lines detailed in the guided exercise and try to answer
following questions:

Question 1 How many cases and controls are presented in the original data
set?

Question 2 How many markers are presented in the original data set?

Question 3 Is there evidence for inflation of the HWE test staistics?

Question 4 Perform GWA analysis of the raw data, using assimptotic test and
plot the results. Try to think how you can produce χ2 −χ2 plot for the P-values
on 1 d.f.. What is the estimate of λ for the 1 d.f. test?

Question 5 Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor? Write down
the names of these SNPs for further comparison.

Perform complete three steps of the genetic data QC.

Question 6 How many male turned apparently female?

Question 7 How many sporadic X errors do you still observe even when the fe-
male male and non-X X-markers are removed? (do not forget to Xfix() these!)

Question 8 How many ”twin” DNAs did you discover?

Question 9 How many genetic outliers did you discover?

After you have finished QC, answer the questions:

Question 10 How many cases and controls are presented in the data after QC?
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Question 11 How many markers are presented in the data after QC?

Question 12 Is there evidence for inflation of the HWE test staistics?

Question 13 Perform GWA analysis of the cleaned data, using assimptotic
test and plot the results. What is the estimate of λ for the 1 d.f. test?

Question 14 Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor? Do these
SNPs overlap much with the ones ranked at the top before the QC? If not, what
could be the reason?

If time permits, do analysis with adjustment for covariates and stratified
analysis.

Select 10 SNPs which you would like to follow-up. Say, you’ve selected
rs1646456, rs7950586, rs4785242, rs4435802, rs2847446, rs946364, rs299251,
rs2456488, rs1292700, and rs8183220.

Make a vector of these SNPs with

> vec12 <- c("rs1646456", "rs7950586", "rs4785242", "rs4435802",

+ "rs2847446", "rs946364", "rs299251", "rs2456488", "rs1292700",

+ "rs8183220")

Load the confirmatory data set by

> data(ge03d2c)

and select the subset of SNPs you need by

> confdat <- ge03d2c[, vec12]

Analyse the confdat for association with dm2.

Question 15 Given the two-stage design, and applying the puristic criteria
specified in the lecture, for how many SNPs you can claim a significant find-
ing?

Question 16 Using the same criteria, for how many SNPs you can claim a
replicated finding?

You can check if any of the SNPs you have identified as significant or repli-
cated are the ones which were simulated to be associated with dm2 by using the
command

> show.ncbi(c("snpname1", "snpname2", "snpname3"))

where snpnameX stands for the name of your identified SNP. The ”true” SNPs
can be found on NCBI and are located in known T2D genes (just because we
used these names to name the ”significant” ones).

If time permits, characterise the mode of inheritance of the significant SNPs.
You can convert data from GenABEL format to the format used by dgc.genetics
and genetics libraries by using as.genotype() function. Consult help for
details. Please do not attempt to convert more then few dozens SNPs: the
format of genetics is not compressed, which means conversion may take long
and your low-memory computer may even crash if you attempt to convert the
whole data set.

If time permits, try to do first round of QC allowing for HWE checks (assume
FDR of 0.1 for total sample). In this case, can you still detect stratification in
the ”cleaned” data?
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