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Abstract

This work describes the R package GET that implements global envelopes for a general
set of d-dimensional vectors T in various applications. A 100(1 — «)% global envelope
is a band bounded by two vectors such that the probability that T falls outside this
envelope in any of the d points is equal to . Global means that the probability is
controlled simultaneously for all the d elements of the vectors. The global envelopes can be
employed for central regions of functional or multivariate data, for graphical Monte Carlo
and permutation tests where the test statistic is multivariate or functional, and for global
confidence and prediction bands. Intrinsic graphical interpretation property is introduced
for global envelopes, and the global envelopes included in the GET package that have
the property are described. Examples of different uses of global envelopes and their
implementation in the GET package are presented, including global envelopes for single
and several one- or two-dimensional functions, Monte Carlo goodness-of-fit tests for simple
and composite hypotheses, comparison of distributions, graphical functional analysis of
variance, and general linear model, and confidence bands in polynomial regression.

Keywords: functional linear model, central region, goodness-of-fit, graphical normality test,
Monte Carlo test, multiple testing, permutation test, R, spatial point pattern.

Preface

This vignette corresponds to Myllyméki and Mrkvicka (2020, GET: Global envelopes in R.
arXiv:1911.06583 [stat.ME]) available at https://arxiv.org/abs/1911.06583. When citing
the vignette and package please cite Myllyméaki and Mrkvicka (2020) and references given by
typing citation("GET") in R.

1. Introduction

Global envelopes are useful for the graphical interpretation of results from tests based on
functional or multivariate statistics, for determining central regions of functional or mul-
tivariate data, and also for determining confidence or prediction bands. Global envelopes
have shown their usefulness already in many areas, e.g., spatial statistics (Myllyméaki, M-
rkvicka, Grabarnik, Seijo, and Hahn 2017; Mrkvicka, Myllymé&ki, and Hahn 2017; Mrkvic-
ka, Soubeyrand, Myllyméki, Grabarnik, and Hahn 2016; Mgller and Waagepetersen 2017;
Myllymaéki, Kuronen, and Mrkvicka 2020; Pollington, Tildesley, Hollingsworth, and Chap-
man 2020), functional data analysis (Narisetty and Nair 2016; Mrkvicka, Myllymaki, Jilek,
and Hahn 2020; Dai and Genton 2018; Dai, Mrkvicka, Sun, and Genton 2020; Mrkvicka,
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Roskovec, and Rost 2021), image analysis (Mrkvicka, Myllyméki, Kuronen, and Narisetty
2022; Gotovac, Helisova, and Ugrina 2016; Koubek, Pawlas, Brereton, Kriesche, and Schmidt
2016) and point pattern analysis (Mgller, Ghorbani, and Rubak 2016a; Mgller, Safavinanesh,
and Rasmussen 2016b; Rajala, Murrell, and Olhede 2018) with applications to agriculture
(Mrkvicka et al. 2016; Chaiban, Biscio, Thanapongtharm, Tildesley, Xiao, Robinson, Van-
wambeke, and Gilbert 2019), architecture and art (Stoyan 2016), astronomy and astrophysic-
s (Kruuse, Tempel, Kipper, and Stoica 2019; Retter, Hatchell, and Naylor 2019), ecology
(Veldzquez, Martinez, Getzin, Moloney, and Wiegand 2016; Després, Vitkova, Bace, Cada,
Janda, Mikolas, Schurman, Trotsiuk, and Svoboda 2017; Wang, Wiegand, Anderson-Teixeira,
Bourg, Hao, Howe, Jin, Orwig, Spasojevic, Wang, Wolf, and Myers 2018; Gusman-M., de la
Cruz, Espinosa, and Escudero 2018) and evolution (Murrell 2018), economics (Mrkvicka et al.
2020), eye movement research (Ylitalo, Sirkki, and Guttorp 2016), fisheries (Smejkal, Ri-
card, Vejrik, Mrkvicka, Vebrova, Baran, Blabolil, Sajdlova, Vejiikova, Marie, and Kubecka
2017), forestry (Erfanifard, Sterenczak, and Miscicki 2019), geography (Clark, Ely, Spag-
nolo, Hahn, Hughes, and Stokes 2018), material science (Habel, Rajala, Marucci, Boissier,
Schladitz, Redenbach, and Sarkka 2017), and medicine, health and neurosciences (Rafati,
Safavimanesh, Dorph-Petersen, Rasmussen, Mgller, and Nyengaard 2016; Lee, Séarkka, Mad-
hyastha, and Grabowski 2017; Mgller, Christensen, Cuevas-Pacheco, and Christoffersen 2019;
Biscio and Mgller 2019; Mrkvicka et al. 2022; Brown, Rai, La Vecchia, Rodriguez, Qu,
Brown, Shin, Tang, Newcombe, Suraweera, Schultz, Bogoch, Gelband, Nagelkerke, and Jha
2020). To make these methods easily accessible, the R (R Core Team 2020) package GET
has been developed that is available from the Comprehensive R Archive Network (CRAN)
at https://cran.r-project.org/package=GET. A development version of the package is
available via the repository https://github.com/myllym/GET. The package provides an
implementation of global envelopes in various settings.

To be more specific, global envelopes can be used for producing

(i) a central region: a central region is constructed for a set of vectors or functions in
order to find central or outlying vectors or functions (e.g., outlier detection, functional
boxplot);

(ii) a global envelope test: a graphical Monte Carlo goodness-of-fit test where the test
statistic is multivariate or a function of any dimension (e.g., goodness-of-fit test for
point patterns or random sets, for a family of distributions);

(iii) a global envelope test: a graphical permutation test where the test statistic is multi-
variate or a function of any dimension (e.g., functional analysis of variance (ANOVA),
functional general linear model (GLM), n-sample test of correspondence of distribution
functions);

(iv) global confidence or prediction bands: a confidence or prediction band is produced
from a set of vectors or functions obtained by bootstrap or sampling from Bayesian
posterior distribution (e.g., confidence band in polynomial regression, Bayesian posterior
prediction).

In each case global means that the envelope is given with the prescribed coverage 100(1 —
a)% simultaneously for all the elements of the multivariate or functional statistic. Global
envelopes are constructed for a general multivariate statistic, so in the case when the data are
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purely functional, they first have to be discretized. The discretization of the functions can
be arbitrary, as long as it is the same for each function. Therefore, let Ty, To,..., Ts be d-
dimensional vectors, T; = (T;1, Tio, ..., T;q) fori =1,...,s. Then an envelope is considered to
be a band bounded by the vectors Tiow = (Tiow1; - - - Liowd) and Tupp = (Tupp1,-- > Tuppd),
and a 100(1 — a)% global envelope is a set (Tﬁ‘)w,Tﬁpp) of envelope vectors such that the
probability that T; falls outside this envelope in any of the d points is equal to «, for a € (0, 1),

i.e.,

P(T;; ¢ [Tio) ;. T ] for any j € {1,....d}) = o (1)

Here the probability depends on the situation (i)-(iv). In case (i), all the vectors T; are
assumed to follow the same distribution and the probability is taken under this distribution.
In cases (ii) and (iii), the probability is taken under the null hypothesis Hy, and, in case (iv),
the probability is taken under the distribution of the random vector T; generated under the
given bootstrap or Bayesian scheme. It should be noted that in a pointwise (or local) envelope
the probability to fall out of the envelope is controlled instead individually for every element
of the vector T;.

Given the set of vectors Tq, T, ..., T, the task in all the above mentioned examples in (i)-
(iv) is to order the d-dimensional vectors T; (or functions) from the most extreme to the least
extreme. For this purpose, many different measures exist. However, the GET package focuses
on such measures for which it is possible to construct the global envelope with a practically
interesting graphical interpretation, which we call intrinsic graphical interpretation.

Definition 1.1 Let it be assumed that a general ordering < of the vectors T;,i = 1,...,s,
is induced by a univariate measure M;. That is, M; > M; iff T; < T;, which means that
T; is less extreme or as extreme as T;. (The smaller the measure M;, the more extreme the
T; is.) The 100(1 — )% global envelope [T 1(0‘2,], ngi)j] has intrinsic graphical interpretation
(IGI) with respect to the ordering < if

1. M, € R is the largest of the M; such that the number of those i for which M; < M,
is less or equal to as;

2. T;; < Tl(gv)vj or T;; > T(upzoj for some j =1,...,d iff M; < My for everyi=1,...,s;

3. T < Ty < T

lo

appj Jor all j=1,....d iff M; > M) for everyi=1,...,s

The global envelope with IGI provides a solution to the tasks (i)-(iv) in a graphical manner.
In other words, the IGI property means that the vector T; is outside the global envelope in
any of its components if and only if the vector is considered to be extreme by the measure M
at the level a, and the vector T; is completely inside the global envelope if and only if the
vector is not extreme at the level a.

For tasks (ii) and (iii), the data vector T is compared with a global envelope constructed from
the data vector T and vectors To, ..., Ty simulated under a null hypothesis Hy, in order to
decide if the data vector is extreme (Hj is rejected) or not extreme (Hy is not rejected). For
these tasks, in addition to a global envelope, a Monte Carlo p value is computed according to
the measure M;: p = Y7 1(M; < M)/s (see, e.g., Myllyméki et al. 2017; Mrkvicka et al.
2017; Mrkvicka et al. 2020, 2022; Mrkvicka et al. 2021).
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In order to obtain an exact Monte Carlo test, i.e., a test that achieves the prescribed family-
wise error rate, the exchangeability of the test vectors T; is required. All the examples in
Section 3 satisfy exchangeability, except the functional GLM where the permutation of the
residuals from the null model (Freedman and Lane 1983) is used. This permutation scheme
is commonly used in univariate permutation GLMs and widely accepted as the best available
solution (Anderson and Robinson 2001; Anderson and Ter Braak 2003; Winkler, Ridgway,
Webster, Smith, and Nichols 2014).

The second part of this introductory section describes the competing and complementary
methods and software. Thereafter, in Section 2, seven global envelopes with IGI are described
and their usage in GET is discussed. In Section 3, several examples of applications of global
envelopes are shown, namely 1) the computation of central regions and functional boxplots
for a set of functions or jointly for several sets of functions (Section 3.1); 2) the Monte
Carlo goodness-of-fit test for simple hypotheses with application to spatial statistics (Section
3.2); 3) the Monte Carlo goodness-of-fit test for composite hypotheses with application to
graphical normality testing (Section 3.3); 4) the graphical n-sample test of correspondence
of distribution functions, n > 2 (Section 3.4); 5) the graphical functional one-way ANOVA
(Section 3.5); 6) the functional GLM for images (Section 3.6); and 7) the computation of the
confidence band in polynomial regression (Section 3.7). The final section, Section 4, is left
for discussion.

1.1. Competing and complementary methods and software

Below are listed the other R packages (or code) that we know to provide functions for some
global envelopes or central regions. Further, as already mentioned, the problems (i)-(iv) can
be solved by other methods as well, not just by global envelopes. The relation of these
methods to the global envelope methods are also discussed below.

Global envelopes and central regions:

o The R package fda (Ramsay, Wickham, Graves, and Hooker 2017) provides the function
foplot () for the computation of the central region and functional boxplot according to
two different orderings than those described here, namely the band depth and modified
band depth (MBD) (Lépez-Pintado and Romo 2009; Sun, Genton, and Nychka 2012),
but these depths do not allow for IGI.

o The R package depthTools (L6pez-Pintado and Torrente 2013; Torrente, Lopez-Pintado,
and Romo 2013) similarly allows for central regions based on MBD (no IGI).

o The R package spatstat (Baddeley, Rubak, and Turner 2015) provides the function
envelope() for the simulation of envelopes based on a given summary function of
a spatial point pattern. By default, envelope() provides a pointwise envelope, but
the option global = TRUE allows one to compute the global envelope of Ripley (1981),
which corresponds to the *unscaled’ envelope in GET (see Table 1). It has been shown
that this unscaled global envelope test has generally lower power than the other methods
of Table 1 (Myllyméki, Grabarnik, Seijo, and Stoyan 2015; Myllyméki et al. 2017).
The corresponding adjusted unscaled global envelope (Dao and Genton 2014; Baddeley,
Hardegen, Lawrence, Milne, Nair, and Rakshit 2017) for composite hypotheses is also
provided in spatstat (the function dg.envelope()).
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o Aldor-Noiman, Brown, Buja, Rolke, and Stine (2013) presented a global envelope for
a Q-Q plot (and provided a link to an R script). The shape of the envelope is derived
theoretically, but the size of the envelope has to be computed from simulations. The
methods of the GET package can be used for this purpose as well, both for simple
and composite hypotheses, but the theoretical achievement for simple hypotheses has
apparent advantages.

o The R package boot (Canty and Ripley 2017; Davison and Hinkley 1997) provides
the function envelope() for the computation of a global envelope from bootstrapped
functions. This envelope has the same shape as the global rank envelope (’rank’ in
Table 1), but the appropriate envelope (I of Equation 3) is chosen in boot experimentally
(Davison and Hinkley 1997). Since the differences in the nominal levels of the subsequent
(I-)envelopes from which the choice is made can be large, the predetermined level is
reached only approximately.

o The package dbmss (Marcon, Traissac, Puech, and Lang 2015) provides similar glob-
al envelopes as the boot package (Duranton and Overman 2005) but for the global
confidence envelopes of spatial summaries.

e There are other R packages with the ability to compute simultaneous confidence bands
for various models, e.g., excursions (Bolin and Lindgren 2015, 2017, 2018) for Gaus-
sian processes, AdaptFitOS (Wiesenfarth, Krivobokova, Klasen, and Sperlich 2012) for
semiparametric regression models and SCBmeanfd (Degras 2016) for nonparametric re-
gression models with functional data using a functional asymptotic normality result.
Instead, the global envelopes of the GET package (see Table 1) are constructed non-
parametrically from a set of vectors.

Multiple testing: The global envelope tests can be seen as a general solution to the multiple
testing problem in Monte Carlo tests (Mrkvicka et al. 2017). There are several other methods
and R packages to the multiple testing problem controlling the family-wise error rate. The
few packages mentioned below have a link to the methods of GET:

o The R packages coin (Hothorn, Hornik, van de Wiel, and Zeileis 2008, 2006) and multtest
(Pollard, Dudoit, and van der Laan 2005) enable one to compute the p value adjusted
for multiple testing in a multiple permutation test based on the minimum p value
computed from all individual tests. The null distribution of the minimum p values or
the maximum of a test statistic is obtained from permutations. The minimum p value
method corresponds to the conservative rank test based on the p, value (see global rank
envelope in Section 2.1).

o General multiple test procedures are also provided by the package sgof (Conde and
de Una Alvarez 2016) for goodness-of-fit testing and by the package stats (R Core Team
2020) for adjusting the p values for multiple comparisons by Bonferroni type methods
(the function p.adjust()).

Functional GLM: The global envelope tests can also be used for functional GLM using a
permutation strategy to generate samples under the null hypothesis. There are several other
methods and software to the functional GLM problem:
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o The PALM software (Winkler et al. 2014) allows for the computation of various func-
tional GLM designs using permutation tests. The multiple testing problem is solved by
an unscaled envelope constructed for the test statistic (e.g., F' statistic).

o The R packages fda.usc (Febrero-Bande and Oviedo de la Fuente 2012) and f{dANOVA
(Gorecki and Smaga 2017) allow for the computation of functional ANOVA designs
by several methods together with the computation of factor’s significances. Similarly
the package fda (Ramsay et al. 2017) allows for computations in functional regression
designs. However, to the best of our knowledge, these do not provide the IGI of tests
of a factor significance.

2. Types of global envelopes and software

This section introduces seven global envelopes with intrinsic graphical interpretation as they
are implemented in GET. All of these have been defined in earlier works as specified in Ta-
ble 1, together with their short descriptions and specifications in the GET functions. The first
four envelopes in Table 1 (’rank’, ’erl’, ’cont’, ’area’) are completely non-parametric en-
velopes and are called global rank envelopes, because the extreme rank length, continuous and
area envelopes are refinements to the rank envelope in order to treat the ties in the extreme
rank measure on which the rank envelope is based. The ’st’ and ’qdir’ envelopes parame-
terize the marginal distributions of T, k = 1,...,d, by one or two parameters, respectively.
Thus they can be regarded as approximations of the first four envelopes.

As described above, the construction of a global envelope is based on a measure M. The
calculation of different measures in the GET package is provided by the function forder ()
(functional ordering). Most often, the user however calls either central_region() for con-
structing central regions with IGI or global_envelope_test () for performing global envelope
tests (equipped with p values as well). Both functions utilize forder () for the calculation of
the measures M. The most important arguments of these functions are

central_region(curve_sets, type = 'erl', coverage = 0.50, ...)
global_envelope_test(curve_sets, type = 'erl', alpha = 0.05, ...)

where the multivariate or functional data are provided in curve_sets, type specifies type
of the global envelope (see Table 1 and descriptions in Section 2.1), and the coverage or
level of the global envelope is specified by coverage or alpha (= 1—coverage), respectively.
Additionally, one can, for example, specify the one or two-sided alternative, i.e., whether
only small or large values of T; or both should be considered extreme. These two functions
are the core functions for global envelopes in the package GET: given an appropriate set of
curves, or, in fact vectors, they can be used for producing global envelopes of Table 1 in all
tasks (i)-(iv) listed in Section 1.

Different objects are supported for the data in curve_sets (see help files of the functions and
examples below), but the basic form provided by the GET package is a curve_set object that
can be constructed by the function create_curve_set () simply providing a list containing
the observed and/or simulated curves, and optionally the (one- or two-dimensional) argument
values where the curves have been observed (see Section 3.2 for an example). The function
create_curve_set () takes care of checking the appropriateness of the data, and saving the
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Description

Type Introduced in
’rank’ Myllymaki et al. (2017)
‘erl’ Myllymaki et al.

(2017); Narisetty and
Nair (2016); Mrkvicka
et al. (2020)

’cont’ Hahn (2015); Mrkvicka
et al. (2022)

’area’ Mrkvicka et al. (2022)

’qdir’ Myllymaéki et al. (2017,
2015)

‘st Myllymaki et al. (2017,
2015)

’unscaled’ Ripley (1981)

Global rank envelope corresponding to the extreme
rank measure (with ties); unique ordering (or p val-
ue) provided additionally as specified in the argument
ties, e.g., ’erl’ for extreme rank lengths

Global rank envelope corresponding to extreme rank
length (ERL) measure

Global rank envelope corresponding to the continuous
rank measure

Global rank envelope corresponding to the area mea-
sure

Directional quantile envelope test corresponding to
the directional quantile maximum absolute deviation
(MAD) measure

Studentized envelope test corresponding to the stu-
dentized MAD measure

Unscaled envelope test corresponding to the classical,
unscaled MAD measure. The envelope has a constant

width.

Table 1:  Overview of different types of global envelopes in the GET package. The types
’erl’, ’cont’ and ’area’ refine the type >rank’ by breaking the ties in the extreme ranks.

data in the form that contains the relevant information of the curves for global envelope
methods, in particular for plotting the results with graphical interpretation (see examples in
Section 3).

In addition to constructing global envelopes from a set of curves, the central_region() and
global_envelope_test() functions provide combined central regions or combined global
envelope tests (see Section 2.2) if the user provides a list consisting of (appropriate) sets of
curves in the argument curve_sets. The GET package also provides functions for specific
tasks (see Table 2 and the examples in Section 3). These functions utilize central_region()
and global_envelope_test() for the global envelope construction. In addition, many of
these functions take care of preparing the simulations or permutations for the specific task.
The print () and plot () methods are available for the objects obtained as the output of the
global envelope methods of GET. The plots present the results with IGI. They are produced
using the ggplot2 package (Wickham 2016).

After defining the different types of global envelopes in Section 2.1, combined global envelopes
and adjusted global envelope tests for composite null hypothesis are described in Sections 2.2
and 2.3, respectively. Further, guidance is given for choosing the type of the global envelope
in Section 2.4.

2.1. Definitions of global envelopes

Here different types of global envelopes are defined for the general vectors T; = (Tj1, ..., Tiq),
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Function name Description
create_curve_set () Create a curve set out of a list in the right form
central_region() Central regions or global envelopes or confidence bands with

IGI (see types in Table 1)
global_envelope_test() Global envelope tests (see types in Table 1)

forder() Different measures for ordering the multivariate statistics
from the most extreme to least extreme one

fBoxplot () Functional boxplot based on a central region with IGI

graph.fanova() One-way ANOVA tests for functional data with graphical
interpretation (Mrkvicka et al. 2020)

frank.fanova() One-way functional ANOVA tests based on the global en-
velopes applied to F' values (Mrkvicka et al. 2020)

graph.f1m() Non-parametric graphical tests of significance in functional
general linear model (GLM) (Mrkvicka et al. 2021)

frank.f1m() F-rank functional GLM, i.e., global envelope tests applied to
F values in permutation inference for the GLM (Mrkvicka
et al. 2022)

GET. composite() Adjusted global envelope tests for composite null hypotheses

GET.necdf () Graphical n sample test of correspondence of distribution
functions

GET.spatialF () Testing global and local covariate effects in point process

models (Myllyméki et al. 2020)

Table 2: Key functions in the GET package.

1 =1,...,s. Some of the measures have been defined for functions in original publications
(e.g., Myllymaki et al. 2017; Narisetty and Nair 2016), however here it is assumed that the
functions have already been discretized as demanded in practice.

Global rank envelope

The extreme rank R; of the vector T; is defined as the minimum of its pointwise ranks, namely

R; = kirlllnd Ry, (2)
where the pointwise rank R;j is the rank of the element T;;, among the corresponding elements
Tig, Tog, . .., Tse of the s vectors such that the lowest ranks correspond to the most extreme
values of the statistics. How the pointwise ranks are determined depends on whether a one-
sided or a two-sided global envelope (test) is to be constructed: Let 7k, 7ok, ..., sk be the
raw ranks of Ty, Tog, ..., Tsk, such that the smallest T} has rank 1. In the case of ties, the
raw ranks are averaged. The pointwise ranks are then calculated as

Tiks for the one-sided case, where small T is considered extreme
Rix =<¢s+1—ry, for the one-sided case, where large T is considered extreme

min(rg, s + 1 —r), for the two-sided case.

The extreme rank measure R; induces an ordering of T; = (T}1,...,T;q) which can be used
to detect the extremeness of the vectors among each other. Given that T; is the observed
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vector in the Monte Carlo of permutation test, the (conservative) p value of the test is equal
to pyr = 51 1(R; < Ry)/s. Since the extreme rank can have many ties, the test is also
equipped with the liberal p value, p_ = 5| 1(R; < Ry)/s. Then, when « falls inside the
p-interval (p—,p4], the decision of the test is not defined.

The 100(1 — )% global rank envelope induced by this measure is defined through

Tl((l)zﬁk = iininl Ty, and 7"

1,8 uppk iElaXl Ty fork=1,....d, (3)

=1,...,s

by taking [ = R(q), according to the point 1. of IGI (see Definition 1.1). Here min’ and max’

denote the [-th smallest and largest values, respectively, and [ = 1,2,...,|s/2].
Since the extreme rank can achieve many ties, it is necessary to have a large s for the global

rank envelope. The following three refinements of the extreme rank solve the ties problem
and enable use of a smaller s.

Global extreme rank length (ERL) envelope

The extreme rank length (ERL) measure (Myllyméki et al. 2017; Narisetty and Nair 2016)
refines the extreme rank measure by breaking the ties in the extreme ranks R; by taking into
account also the number of R;; which are equal to R;. Further, the numbers of ranks equal
to R; +1, R; 4+ 2, ... are used to break any remaining ties.

Formally, the ERL measure of T; is defined based on the vector of the pointwise ordered
ranks R; = (1), Rifg)s - - -, Rifq)), where the ranks are arranged from smallest to largest, i.e.,
Ry < Ryjpr) whenever k < k’. While the extreme rank given in Equation 2 corresponds to
R; = R;|1), the ERL measure takes all these ranks into account by the reverse lexical ordering.
The ERL measure of T; is defined as

1 S
E=-5 1Ry <R, 4
; L 1Ry <R) (4)

where

R, < R; — dn<d: Rz’[k] = Rl[k]Vk <n, Rz/[n} < Rz[n]
The division by s leads to normalized ranks that obtain values between 0 and 1. Consequently,
the ERL measure corresponds to the extremal depth of Narisetty and Nair (2016).

The probability of having a tie in the ERL measure is rather small, thus practically the ERL
solves the ties problem. The final p value of a Monte Carlo test is per = Y51 L(E; < Ey)/s.

Let E(,) be defined according to the point 1. of IGI and I, = {i € 1,...,s: E; > E(,)} be the
index set of vectors less or as extreme as F,). Then the 100(1 — a)% global ERL envelope
induced by F; is

(@ (@  _ _
Tlgwk = zrel}g T:. and Tu(_f)pk = Izléé}i{ Ty fork=1,...,d, (5)
see Narisetty and Nair (2016) and Mrkvicka et al. (2020).

Global continuous rank envelope

The ties can alternatively be broken by the continuous rank measure (Hahn 2015; Mrkvicka
et al. 2022) which refines the extreme rank measure by considering instead of the (discrete)
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pointwise ranks R;, continuous pointwise ranks Cj; defined by the ratios of Tj; to the closest
other T, j =1,...,5,j #1.
Formally, the continuous rank measure is

1 .
C; == min Cy,
S k=1,..,d

where s scales the values to interval from 0 to 1. The definition of pointwise continuous
ranks Cj; depends again on whether a one-sided or two-sided global envelope (test) is to be
constructed. The pointwise continuous ranks can be calculated as

Ciks for the one-sided case, where small T is considered extreme
Cik =< s — ¢, for the one-sided case, where large T is considered extreme

min (¢, s — ¢), for the two-sided case.

where ¢;, is defined as follows: Let T}y, < 1oy < - -+ < Tj, denote the ordered set of values
Ti,o=1,2,...,s. Then

Tk — Tii-1k

e =1—1+ , fori=23,...,5s—1,

Tivre — L1k

and

i = exp [ 2 ZE TR s ep (b Tl )
Tige —Tige )~ ° Totr — T

If the probability to have ties among T;x,7 = 1,... s, is zero, then the probability of ties among
Cir is zero as well. If ties appear among Tj,t = 1,...s, such that Tj;_y, < Ty = -+ =
Tijik < 1j41)x, then the continuous rank is defined as ¢ = HT] — % forl =4,...,5. If there
are no ties, then ceil(cmk) = 4, which is the ordinary rank of T};),. For the ties ¢, = rjjx — %,

where 7, is the ordinary rank of Ty

The p value of the univariate Monte Carlo test is peont = Y11 1(C; < C1)/s. The 100(1—a)%
global continuous rank envelope induced by C; is constructed in the same way as global ERL
envelope (see Equation 5), i.e., as a hull of T; which have measured C; > Cla), Where C,) is
defined according to the point 1. of IGI.

Global area rank envelope

Another refinement of rank envelope is the area rank measure (Mrkvicka et al. 2022),

d

1 1
A= 5 <RZ~ — =Y (Ri — Cip)1(Cig, < Ri)) :
k=1

Thus, the area measure breaks the ties in the extreme ranks by the sum (area) of the differences
between the extreme rank R; and the pointwise continuous rank Cj from those k =1,...,d
where the continuous rank is smaller than the extreme rank. The univariate Monte Carlo
test is performed based on A; with parea = >5—1 1(A; < A1)/s. The 100(1 — )% global area
rank envelope induced by A; is constructed similarly as the global ERL and continuous rank
envelopes (see Equation 5).
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Global directional quantile, studentized and unscaled envelope

The above four global envelopes are based on the whole distributions of Ty, £k =1,...,d. It
is also possible to approximate the distribution by a few sample characteristics. The sample
characteristics are in the package GET estimated from Tj;, ¢ = 1,..., s, for each k.

The global directional quantile envelope uses the expectation Ty, 8% upper T.; and lower
T ;. quantiles to approximate the distributions. Setting § = 2.5 was used in Myllymaki et al.
(2017); setting 5 = 25 can also be useful especially for defining the 50% central region from
a low number of functions. Note that § has to be greater than 100/s in order to be able to
estimate the 5 and 1 — 3 quantiles. The directional quantile measure (Myllymaki et al. 2015,
2017) D; is defined as

Tie — Tok Top, — Tig
D; =max ( 1(Tj > Top) = + V(T < Tok) 77— |, 6
i = me ( (Tik Ok)|T-k Tl (Tik Ok)‘zk o (6)

From historical reasons, D; is defined to be bigger for more extreme vectors. The same holds
for the following two measures. The univariate Monte Carlo test is performed based on D;
with pgair = Yi—1 1(D; > D1)/s, and the 100(1 — )% global directional quantile envelope
induced by D; is defined by

T = To — D()|T.; — Tox| and T!)

lowk — uppk — Tor + D(a)’Tk — TOk" for k=1,...,d, (7)

where D, is taken according to the point 1. of IGI.

The global studentized envelope approximates the distribution of Ty, k = 1,...,d, instead by
the expectation Ty and the standard deviation sd(7';). The studentized measure (Myllyméki
et al. 2015, 2017) is
Tix — Tok ‘
sd(T'x)

and the univariate Monte Carlo test is performed based on s; with ps = >.7_1 1(S; > S1)/s.
The 100(1 — a)% global studentized envelope induced by S; is defined by

(8)

S; = max
k

)

low k

= TOk - S(a)Sd(T.k) and Tgr))pk = Tgk + S(a)sd(T.k) for k = 1, N ,d, (9)

where S, is taken according to the point 1. of IGI.
The global unscaled envelope considered for the sake of completeness has its origin in the
classical Kolmogorov-Smirnov statistic. The unscaled measure U; can be defined as U; =
maxy, |T;x — Tox|, the univariate Monte Carlo test performed based on U; has the p value
Punse = Yi—1 1(U; > Uy)/s, and the 100(1 — )% global unscaled envelope induced by u; is
given by

Tl((l)sz =Tor — U(a) and T(l) E = Tor + U(a) fork=1,...,d, (10)

upp

where U(q) is taken according to the point 1. of IGL. A problem of this envelope is that its
width is the same along the whole domain, thus it cannot account for the changes in the
variability of the distributions T’y across different ks (Myllymaki et al. 2015, 2017).

2.2. Combined global envelopes

11
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Assume that there are G vectors Tg = (Tijl,...,ﬂ?éj),j =1,...,G, 1 =1,...,s, and the
construction of a global envelope is wanted jointly for all of them. A combined global envelope
test can be made in two different ways.

In the two-step combining procedure, first, a measure is chosen for each j = 1,...,G and
computed for the vectors T/, ¢ = 1,...,s. Let the resulting measures be m;]. As the second
step, the one-sided extreme rank length is applied to the new vector T = (m},m2,...,m{)
of the measures. As a result, a joint sorting of vectors Tj,... TZ-G,i =1,...,s, is obtained
and a joint extreme rank length measure E; is attached to every ¢ = 1,...,s. The p value of
the combined Monte Carlo test is pen = > i—; 1(E; < E1)/s, and the common 100(1 — «)%
global envelope is constructed similarly as the 100(1—a)% global extreme rank length envelope
(Equation 5): Let E(, be defined according to the point 1. of IGland I, = {i € 1,...,s: E; >
E(,)} be the index set of vectors less or as extreme as F,). Then the common 100(1 — )%
global envelope is

(Ol),j — 3 j (a)hj — .] — .
T i = min T} and Toppk = max Ty fork=1,....d;,j=1,...,G. (11)
The extreme rank length measure is chosen in the second step because it gives the same weight
to every component (even when dj,j = 1,...,G, are different or even if different measures
are used in the first step), it is based on ranks only and it achieves almost no ties.

In cases where d; = ... = dg (= d), it is also possible to use a simple one-step combining
procedure. Then the global envelope (any of those in Table 1) is constructed for the long
vectors

T, = (T4h,.... T T3, ....T4, ...... TS, TS, i=1,...,s.
An example of using the one-step combining is when T; = (T51,...,T54),i = 1,...,s, is a
multivariate vector and Tj, = (t}k, el t;]k) are vectors of J elements. Then it is possible to
separate the dimensions into a set of J marginal vectors, i.e., (th,...,t5), ..., (t, ... ,t;]d),
and apply the one-step combining procedure. Further, it is possible to add other vectors
expressing the correlation between the elements of the vectors, e.g., (tht% —th,t3,, ... tht?, —

tste,). Here ték denotes the expectation of tjk

The graphical functional ANOVA and GLM (see the functions in Table 2) use the one-step
combining procedure to merge the mean or contrast vectors under inspection, because in
this case all the vectors have the same structure (see Sections 3.5 and 3.6 and Mrkvicka
et al. 2020; Mrkvicka et al. 2021). On the other hand, for generality, the default combining
procedure of global envelope construction functions in GET is the two-step procedure, which
is presented for the first time here as an improvement of the combined tests of Mrkvicka
et al. (2017) (see an example in Section 3.1). The combined envelopes are implemented in
the central_region() and global_envelope_test () functions as mentioned above, and the
one- or two-step procedure can be specified in the argument nstep (either 1 or 2).

2.3. Adjusted global envelopes for composite null hypotheses

The Monte Carlo tests for which the global envelopes are constructed are exact only in the
case when the null hypothesis is simple, i.e., when no parameters have to be estimated. This
is the case in permutation tests of task (iii), but in task (ii) the null hypothesis can often be
composite, i.e., some parameters of the null model have to be estimated. In such a composite
case, the classical Monte Carlo test can be liberal or conservative. This problem can be
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solved by a two-stage procedure, where in the first stage the level of the test is estimated.
Such a procedure was first introduced by Dao and Genton (2014) for Monte Carlo tests.
Myllymaéki et al. (2017) extended this adjusted method for global envelopes. Baddeley et al.
(2017) improved the procedure further in order to obtain an exact significance level. Here
the procedure of Baddeley et al. (2017) is summarized and extended for global envelopes as
implemented in GET.

Let M denote the chosen measure and « the chosen significance level. Let T be the test
vector computed from the data.

1. Estimate the parameters 6 of the null model.

2. Simulate so —1 replicates of the data from the null model with the estimated parameters

él, and compute the test vectors T1 = Ty, T3, ... ,Tiz (create a curve_set of vectors,
Ch).

3. Simulate another s — 1 replicates of the data from the null model with the parameters
01 and estimate the parameters of the null model from each of them (6;,i = 2,...,s),

4. For every i = 2,...,s, simulate sy — 1 replicates from the null model with parameters
0;, and compute the test vectors T%, T%, . .. ,Ti,Q (create a curve_set object of vectors,
Ci).

5. For each set of curves C;, i = 1,2,...,s, compute the Monte Carlo p value p; =

Py 1(sz < MY})/sa, where M{, ..., M! are the chosen measure computed for T4, ..., T% .
6. The adjusted MC p value is pagy = 3271 1(p; < p1)/s.

7. Let p®* denote the lower « quantile of the sample pq,...,ps. Construct the chosen
100(1 — p*)% global envelope from T1,..., T},.

This adjusted test is implemented in the GET.composite () function of the GET package. If
the user provides the required sets of curves, the function prepares the steps 5.-7. For spatial
point pattern testing, simulations (steps 2.-4.) can also be performed utilizing the spatstat
package. Examples can be found in the help page of GET.composite() in R and in Section
3.3.

2.4. Which measure to use for computing the global envelope?

In a typical application one needs to choose one of the measures with IGI (see Table 1). In
general, the first five types of Table 1 instead of the last two, *st’ and ’unscaled’, can
be recommended based on previous studies (Myllyméki et al. 2015, 2017). Regarding the
choice between the first five types, when one can afford a large number of simulations in
cases (ii)-(iv) of Section 1, one can very well use the type ’erl’ that is based only on the
ranks, thus also suiting particularly well for combined tests (see Section 2.2). On the other
hand, any other choice is also fine, because the >rank’, erl’, >cont’ and ’area’ measures
lead to an equivalent outcome for a large number of simulations or permutations. However,
the definition of large depends on the situation. A simulation study presented in Myllymaéki
and Mrkvicka (2020) gives guidance on the required number of simulations under different
scenarios (see also the supplement S2 of Myllyméki et al. 2017).
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Another situation arises in case (i) with a low number of vectors or functions, or in cases
(ii)-(iv) where the simulations or permutations are too time consuming to have large number
of them. Then the choice of the measure plays a role. Based on our experience supported by
the simulation study of Myllymaéki and Mrkvicka (2020), the *erl’ and ’area’ measures are
typically good choices for the integral type of extremeness where the vector T; is extreme in
the set of vectors for a large range of its components. On the other hand, the ’cont’ and
’qdir’ measures are most sensitive to the maximum type of extremeness, i.e., the case where
T, is extreme only for a few of its components, but also the ’area’ measure performs well.
Thus, if no particular type of extremeness is expected a priori, the ’area’ measure is often a
good compromise, since it is sensitive to the amount of outlyingness (similarly as ’erl’) and
to the value of outlyingness (similarly as >cont’ and ’qdir?).

3. Illustrations

3.1. Central regions for sets of functions

The R package fda contains Berkeley Growth Study data (Ramsay and Silverman 2005)
of the heights of 39 boys and 54 girls from ages 1 to 18 and the ages at which the data
were collected. As an example, we investigated whether there are any outliers in the girls
regarding their annual heights and changes within years. First two curve_set objects were
created containing the raw heights and the differences within the years (see Figure 1):

R> library("fda")

R> years <- paste(1:18)

R> curves <- growth[['hgtf']] [years,]

R> csetl <- create_curve_set(list(r = as.numeric(years), obs = curves))
R> cset2 <- create_curve_set(list(r = as.numeric(years[-1]),

+ obs = curves[-1,] - curves[-nrow(curves),]))

Ordering the functions from the most extreme to the least extreme by the ’area’ measure,
the 8th girl was observed to have the most extreme heights and the 15th girl the most extreme

changes (below the first ten most extreme girl indices are printed):

R> A1 <- forder(csetl, measure = 'area'); order(A1)[1:10]
[1] 8 13 29 48 42 25 7 38 18 40

R> A2 <- forder(cset2, measure = 'area'); order(A2)[1:10]
[1] 15 7 3 8 2552 19 16 24 5

Generally, ordering with respect to heights or height differences leads to two different orderings
of the girls. Joint ordering can be done by combining these two by the ERL measure as
described in Section 2.2. In R, the two sets of curves need to be provided in a list to the
function forder():
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R> csets <- list(Height = csetl, Change = cset2)
R> A <- forder(csets, measure = 'area'); order(4)[1:10]

[1] 8 15 7 13 3 29 48 25 42 52

Figure 1 highlights the curves of the three most extreme girls. The plots of the two sets of
curves were produced using the GET and ggplot2 packages and combined by the patchwork
package (Pedersen 2020):

R> library("ggplot2")

R> library("patchwork")

R> cols <- c("#21908CFF", "#440154FF", "#5DC863FF")

R> p1 <- plot(csetl, idx = order(A)[1:3], col_idx = cols) +
+ labs(x = "Age (years)", y = "Height")

R> p2 <- plot(cset2, idx = order(A)[1:3], col_idx = cols) +
+ labs(x = "Age (years)", y = "Change")

R> p1 + p2 + plot_layout(guides = "collect")

180 - 201
150+ 151 \
— @irl08
— (0]
ey (@)
.% S 101 — girl15
T 120- < \
(@) girl07
Other
5.
N \\
0.
5 10 15 5 10 15
Age (years) Age (years)

Figure 1: The heights (left) and height differences (right) of the 54 girls of the growth data
of the R package fda at ages from 1 to 18. Three girls having the most extreme curves (joint
ordering by the area measure) are highlighted with the colors specified in the legend.

The labels were above redefined for the default plots by the function labs() of the ggplot2
package. In general, parts of the default plots of GET can be edited in this manner using
ggplot2 functions such as labs().

By using the functional boxplot (Sun and Genton 2011) with the same measure, an investi-
gation can be made into whether the most extreme girls are outliers with respect to height
or its change. Figure 2 shows the 50% central region and the functional boxplot with the
inflation factor 1.5 jointly for the heights and their changes obtained by:
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R> res <- fBoxplot(csets, type = 'area', factor = 1.5)
R> plot(res) + labs(x = "Age (years)", y = "Value")

Combined functional boxplot based on 50% central region (area)

Height Change

200
30 1

150 4
Outliers

Value

— girlt5

100 1

504

Age (years)

Figure 2: The functional boxplot (entire gray band) using the 50% central region (inner dark
gray band) and the expansion factor 1.5 jointly for the heights and changes of heights of the
54 girls (see Figure 1). The solid line is an observed data function (vector) that goes outside
the functional boxplot (the 15th girl in the data).

One can see that one of the girls (the 15th girl in fact) is an outlier, because she has grown
extraordinarily much in her sixth year. However, the highest height curve of Figure 1 (left)
is not regarded as an outlier with the given specifications.

It is important to note that the combined central region computed using any measure of
Table 1 has IGI. On the contrary, central regions computed with the use of band depths in
the fda package do not satisfy IGI. Narisetty and Nair (2016) proposed central regions and
functional boxplots based on the ERL measure (see Table 1) and compared them to those
based on band depths.

3.2. Monte Carlo goodness-of-fit testing for simple hypotheses: complete
spatial randomness

Figure 3 shows the locations of 67 large trees (with height > 25 m) in an area of size 75 m x
75 m from an uneven aged multi-species broadleaf nonmanaged forest in Kaluzhskie Zaseki,
Russia (Grabarnik and Chiu 2002; van Lieshout 2010). The z- and y-coordinates of the
locations are available in the data adult_trees in the GET package.

The test of complete spatial randomness (CSR) is a typical first step in analyzing a spatial
point pattern such as the tree pattern of Figure 3. CSR along with other hypotheses for
spatial point patterns are commonly tested using an estimator of a summary function that is
a function of distance r, e.g., Ripley’s K function or its transformation L(r) = /K (r)/m —r
for r > 0 (Ripley 1977; Besag 1977). In this context, one typically resorts to the Monte Carlo
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Figure 3: Locations of 67 trees with height > 25 m observed in an area of 75 m x 75 m.

simulation (see, e.g., [llian, Penttinen, Stoyan, and Stoyan 2008; Diggle 2013; Myllymaiki et al.
2017). First, this example is used to show the general steps to prepare a global envelope test
for testing a simple hypothesis. Second, it is shown how the same example of testing a simple
hypothesis for a spatial point pattern can be performed by utilizing the R package spatstat.

The testing of a simple hypothesis does not require the estimation of any model parameters,
and the one-stage test illustrated below can be used. In the case of a composite null hypothesis,
the level of the test needs to be adjusted, see Sections 2.3 and 3.3.

General setup for simple hypotheses

The first step of a Monte Carlo test is to generate nsim simulations under the null hypothesis
and to calculate the chosen test function (vector) for the data and simulations. Here the
functions runifpoint () and Lest() of spatstat are used to generate a simulation from the
binomial process (CSR with the number of points fixed to the observed number of points in
the pattern X) and to estimate the centred L-function for a pattern, respectively:

R> library("spatstat.core")

R> data("adult_trees")

R> X <- as.ppp(adult_trees, W = square(75))

R> nsim <- 999

R> obs.L <- Lest(X, correction = '"translate")
R> r <- obs.L[['r']]

R> obs <- obs.L[['trans']] - r

R> sim <- matrix(nrow = length(r), ncol = nsim)
R> for(i in 1:nsim) {

sim.X <- runifpoint(ex = X)
sim[, i] <- Lest(sim.X, correction

}

"translate", r = r)[['trans']] - r

17



18 GET: Global Envelopes in R

Thereafter, a curve_set object can be constructed by the function create_curve_set ()
providing a list of the argument values where the test vectors were evaluated (r), the observed
vector (obs) and the simulated vectors (sim_m):

R> cset <- create_curve_set(list(r = r, obs = obs, sim_m = sim))
The final step is to make the global envelope test on the given set of vectors:
R> res <- global_envelope_test(cset, type = "erl")

R> plot(res) + ylab(expression(italic(hat(L)(r)-r)))

Global envelope test: p = 0.299

— — Central function —— Data function

Figure 4: The global envelope test for the CSR of the tree pattern of Figure 3 using the
centred L-function. The gray band represents the 95% global envelope (ERL).

In this manner, the global envelope test can be constructed for any simple hypothesis and
any test vector, as long as one can generate the simulations and calculate the test vectors.

The test output is shown in Figure 4 (left), which shows no evidence against CSR (see more
detailed description in Myllyméki et al. 2017, Section S4).

Simple hypothesis for a point pattern utilizing the R package spatstat

For point process testing, the GET package and global_envelope_test () support the use
of the R package spatstat (Baddeley et al. 2015) for the simulations and calculations of the
summary functions by the function envelope(): the object returned by envelope() can
simply be given to the function global_envelope_test() in the argument curve_sets.
Importantly, the functions must be saved setting savefuns = TRUE in the envelope() call:

R> env <- envelope(X, nsim = 999, fun = "Lest", correction = "translate",

+ transform = expression(.-r), simulate = expression(runifpoint(ex = X)),
+ savefuns = TRUE, verbose = FALSE)

R> res <- global_envelope_test(env, type = "erl")
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Above the arguments fun, correction and transform define the summary function to be
calculated (the latter two parameters are passed to the function Lest ()) and simulate spec-
ifies how the patterns are simulated under the null hypothesis (here CSR). The result can be
plotted similarly as above.

Further examples of use of the GET package for point pattern analysis are given in an accom-
panying vignette available in R by typing 1ibrary ("GET") and vignette ("pointpatterns").

3.3. Monte Carlo goodness-of-fit testing for composite hypotheses: graphi-
cal normality test

Aldor-Noiman et al. (2013) provided a graphical test for normality for simple hypotheses
(i.e., known parameters of sample distribution) based on a qq-plot envelope, whose shape
was derived from theoretical properties of quantiles of the uniform distribution. They also
provided a version of this algorithm for composite hypotheses (i.e., unknown parameters
of sample distribution). However, according to our unpublished study, this test does not
achieve the required significance level. Therefore, the example of the exact adjustment for
the composite hypothesis is provided here, based on the two-stage procedure of Baddeley
et al. (2017) (see Section 2.3). For simplicity, in this example, this adjustment is applied
directly to the empirical distribution functions. Apparently, the adjustment could also be
applied to the qg-plot envelopes of Aldor-Noiman et al. (2013).

The normality test is illustrated for nitrogen oxides (NO, ) emission levels available in the data
poblenou from the R package fda.usc (Febrero-Bande and Oviedo de la Fuente 2012). The
data contains NO, emission levels (ug/m®) measured every hour by a control station close
to an industrial area in Poblenou in Barcelona (Spain) for 115 days from 23 February to 26
June, 2005. NO; is a pollutant which is caused by combustion processes in sources that burn
fuels, e.g., motor vehicles, electric utilities, and industries (Febrero, Galeano, and Gonzélez-
Manteiga 2008). In Section 3.5, the whole functional trajectories of 24 h observations are
studied, but for illustration purposes, here the attention is restricted to the NO, levels at 10
am.

A general solution to make the adjusted test is to prepare all the required simulations and
provide them to the function GET.composite() in arguments X and X.1s. Let

R> library("fda.usc")

R> data("poblenou")

R> dat <- poblenou[['nox']J][['data'l][,'H10']
R> n <- length(dat)

Thus dat is a vector containing the data values and n is the number of observations. First,
the parameters of the normal distribution are estimated (1. step of the algorithm of Section
2.3)

R> mu <- mean(dat)
R> sigma <- sd(dat)

and, using the function ecdf () of the R package stats (R Core Team 2020), the empirical
cumulative distribution functions are calculated for the data and for nsimsub replicates of n
simulations from the fitted normal distribution (2. step):

19
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R> nsim <- nsimsub <- 199 # The number of simulations
R> r <- seq(min(dat), max(dat), length = 100)

R> obs <- stats::ecdf(dat) (r)

R> sim <- sapply(1:nsimsub, function(i) {

+ x <- rnorm(n, mean = mu, sd = sigma)
+ stats::ecdf (x) (r)
+ 3

R> cset <- create_curve_set(list(r = r, obs = obs, sim_m = sim))

Here the last command creates a curve_set object of the observed and simulated empirical
cumulative distribution functions. Thereafter, another nsim replicates of the n simulations
from the fitted model are simulated, and the same calculations as above for the data are done
for each of these simulations (steps 3.-4. of the algorithm of Section 2.3):

R> cset.l1ls <- list()

R> for(rep in 1:nsim) {

x <- rnorm(n, mean = mu, sd = sigma)

mu2 <- mean(x)

sigma2 <- sd(x)

obs2 <- stats::ecdf(x)(r)

sim2 <- sapply(1:nsimsub, function(i) {
x2 <- rnorm(n, mean = mu2, sd = sigma2)
stats::ecdf (x2) (r)

»)

cset.ls[[rep]] <- create_curve_set(list(r = r, obs = obs2,
sim_m = sim2))

+ + + + + + + + + + +

}

Thus, the list cset.1ls contains all the simulations from the second stage of the algorithm.
As a final step, GET.composite() can be used to prepare the adjusted test:

R> res <- GET.composite(X = cset, X.1s = cset.ls, type = 'erl')
R> plot(res) + labs(x = "NOx", y = "Ecdf")

Figure 5 (left) shows the test result for the NO, levels at 10 am. One can see that the
normality does not hold according to the test: the estimated distribution function is skewed
to the right with respect to the normal envelope. Therefore, we further applied the same
normality test to the logarithm of the NO, values as well, and then the normality hypothesis
was not rejected (Figure 5, right).

3.4. Graphical n-sample test of correspondence of distribution functions

The graphical n-sample test of correspondence of distribution functions serves as a simple
example of permutation tests. Figure 6 shows the empirical cumulative distribution functions
(ECDFs) obtained by the ecdf () of the R package stats (R Core Team 2020) for the heights
of the 54 girls and 39 boys of the growth data (see above, and Ramsay and Silverman 2005) at
ages 10 (left) and 14 (right). A global envelope test can be performed to investigate whether
the two (or more generally n) distribution functions differ from each other significantly and
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Adjusted global test: p = 0.005 Adjusted global test: p = 0.07
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Figure 5: Graphical normality test for the NO, (left) and logarithm of the NO, (right) levels
at 10 am. The gray band represents the 95% global envelope (ERL). Red dots are attached
to the data function outside the envelope.

how they differ. This test is a generalization of the two-sample Kolmogorov-Smirnov test
with a graphical interpretation. Here it is assumed that the heights in the sample ¢ are an
i.i.d. sample from the distribution F;(r), i = 1,...,n, and the hypothesis Fy(r) = --- = F,(r)
is to be tested. The simulations under the null hypothesis that the distributions are the same
can be obtained by permuting the individuals of the groups. The GET package provides
the wrapper function GET.necdf () that can be used to compare n distribution functions
graphically, n = 2,3,.... The (default) test vector is

T = (By(r), ..., Eu(r)),

where Fi(r) = (Fi(r1),...,Fi(ry)) is the ECDF of the ith sample evaluated at argument
values r = (r1,...,7%). To test the equality of distributions, one simply needs to provide the
samples as a list (code for age 10 shown here) for GET.necdf () and plot the object returned
by GET.necdf () (Figure 7, left):

R> fm10.1 <- 1list(Girls = growth$hgtf["10",], Boys = growth$hgtm["10",])
R> res10 <- GET.necdf(fm10.1, nsim = 1999)
R> plot(resi10)

The height distributions at age 10 do not differ from each other significantly, but at age 14
the boys are taller, particularly with a difference that the proportion of girls reaching a height
of around 175 cm is much lower (Figure 7, right).

3.5. Graphical functional one-way ANOVA

The use of the function graph.fanova() of the GET package for the graphical functional
one-way ANOVA is illustrated using the data set poblenou of the R package fda.usc (Febrero-
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Figure 6: The empirical cumulative distribution functions of the heights of the 54 girls and
39 boys of the growth data of the R package fda at ages 10 (left) and 14 (right).

Combined global test: p = 0.312 Combined global test: p = 0.001
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Figure 7: Global envelope tests for comparison of the empirical cumulative distribution func-
tions of the heights of the girls and boys (see Figure 6). Red color indicates the heights where
the observed distribution functions go outside the 95% global envelope (ERL; gray bands).
Left: Age 10; Right: Age 14.

Bande and Oviedo de la Fuente 2012, see also Section 3.3 above). The trajectories of the 24 h
observations of the NO,, levels for Monday-Thursday (MonThu), Friday (Fri) and non-working
days (Free) including weekend and festive days (Figure 8) are compared. For the purposes of
this example, a factor vector Type was prepared containing the type of the day for each of
the 115 days having levels "MonThu", "Fri" and "Free":
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R> library("fda.usc")

R> data("poblenou")

R> fest <- poblenou$df$day.festive; week <- as.integer (poblenou$df$day.week)
R> Type <- vector(length = length(fest))

R> Typel[fest == 1 | week >= 6] <- "Free"

R> Typel[fest == 0 & week J,inj; 1:4] <- "MonThu"

R> Typel[fest == 0 & week == 5] <- "Fri"

R> Type <- factor(Type, levels = c("MonThu", "Fri", "Free"))

MonThu Fri Free

400

Max

300

300
x

O 200+
pd 200

1004 100

Figure 8: The NO, levels for Monday-Thursday (Mon-Thu), Friday (Fri) and non-working
days (Free) including weekend and festive days in Poblenou for 115 days from 23 February to
26 June, 2005. The color of the daily curves is according to the maximum NO,, level (ug/m?)
of the day.

Assuming that the NO, levels T;;(r) at times r € R = [0, 24] are i.i.d. samples from stochastic
processes SP(uj,7;) with mean functions p;(r), r € R, and covariance functions 7;(s, t),
s,t € R, for j = 1,...,J, the groups of NO, levels can be compared by means of the
graphical functional ANOVA (Mrkvicka et al. 2020). The hypothesis

Ho:pa(r) =...=py(r),r €R,
can be tested by the test statistic

T = (T1(r), T2(r),...,T(r)), (12)
where T';(r) = (T(r1),...,Tj(rk)) is the mean of functions in the jth group at the arguments
r € R evaluated in practice at the discrete number of arguments ri,...,rg (here each hour

of the day). The hypothesis can be equivalently expressed as
Hy:pje(r) —pi(r)=0,reR,j'=1,...,0-1,5=4,...,J

and an alternative test statistic is

T = (Ty(r) — Ta(r), Tu(r) — Ts(r),..., Ty_1(r) — Ty(r)). (13)
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The latter test statistic (Equation 13) can be obtained by setting contrasts = TRUE in the
call of graph.fanova().

Febrero et al. (2008) assumed heteroscedasticity of working and non-working days, therefore
we also applied correction for unequal variances to the three groups by rescaling the functions
T;;(r) of J groups (here J = 3) containing n1,...,n s functions observed on the finite interval
R = [0, 24] by the transformation

Y;i(r) = m -/ Var(T(r)) +Ti(r), j=1,....J,i=1,...,n,, (14)

where the group sample mean Tj(r) and overall sample variance Var(T'(r)) are involved to
keep the mean and variability of the functions at the original scale. The group sample variance
Var(Tj(r)) corrects the unequal variances. This scaling is applied to the set of curves given
to the function graph.fanova() if the user specifies variances = "unequal" (the default
is no correction, variances = "equal"). Because these test vectors (Equations 12 and 13)
are asymptotically exchangeable for permutations for the case of unequal variances and the
null hypothesis of equal means only under the assumption of normality of stochastic processes
SP(pj,7;) (Mrkvicka et al. 2020), the log transformation was applied to the NO, values prior
to the transformation (Equation 14):

R> cset <- create_curve_set(list(r = 0:23,
+ obs = t(log(poblenou[['nox']J]1[['data']]))))

To sample from the null hypotheses, the simple permutation of raw functions among the
groups is performed. The permutations and the global envelope test can be done by the
graph.fanova() function (Figure 9):

R> res.c <- graph.fanova(ansim = 2999, curve_set = cset, groups = Type,
+ variances = "unequal", contrasts = TRUE)
R> plot(res.c)

Thus, the test rejects the null hypothesis H|, that the differences between the groups would
be zero and shows that on Monday-Thursday and Friday the (log) NO,, levels are significantly
larger than on free days basically during the whole day with peaks around 8 am and 4 pm.
The difference between Monday-Thursday and Friday was not significant.

The graphical functional ANOVA allows one to detect either a) which groups deviate from
the mean (default) or b) which specific groups are different (option contrasts = TRUE). The
example above was for the latter. Note that this test directly has the nature of a post hoc
test. Furthermore, both versions of the test allow one to identify which r values lead to the
potential rejection of the null hypothesis.

When a graphical interpretation for group specific differences is not of interest but the area
of rejection is, instead of graph.fanova() it is possible to apply the one-way functional
ANOVA based on the r-wise F statistics, r € R. This test is implemented in the function
frank.fanova(). For the log NO, data, the test result was that there are differences between
the groups for the hours from 5 am to 6 pm (figure omitted).

3.6. Functional GLM



Mari Myllyméki, Tomas Mrkvicka

Graphical functional ANOVA: p < 0.001
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Figure 9: The output of the graphical functional ANOVA to test the difference between the
type of the day on the log NO, levels observed each hour (r) of the day. The 95% global
envelope (ERL; gray band) accompanied with the observed differences between the group
means (solid line with red dots when outside the envelope).

Similar type of methods as in the functional one-way ANOVA above can be used in a more
general setup of functional general linear models (GLMs). The global envelopes for functional
GLMs are illustrated here by an example of a small subset of the autism brain imaging data
collected by resting state functional magnetic resonance imaging (R-fMRI) (Di Martino, Yan,
Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto, and et al. 2014).
The preprocessed fMRI data contains measurements from 514 individuals with the autism
spectrum disorder (ASD) and 557 typical controls (TC), where subjects with low quality
on imaging data or having a large proportion of the missing values were removed. The
imaging measurement for local brain activity at resting state was fractional amplitude of low
frequency fluctuations (Zou, Zhu, Yang, Zuo, Long, Cao, Wang, and Zang 2008). The data
considered here and available as the data object abide_9002_23 in the GET package contains
data from one of the 116 different anatomical regions in the brain partitioning being based
on the anotomical automatic labeling system of Tzourio-Mazoyer, Landeau, Papathanassiou,
Crivello, Etard, Delcroix, Mazoyer, and Joliot (2002). The studied region is the right Crus
Cerebellum 1 region of the brain at one slice (23) accompanied with three subject-specific
factors, i.e., group (autism and control), sex and age. Figure 10 obtained by

R> data("abide_9002_23")
R> plot(abide_9002_23$curve_set, idx = c(1, 27))

shows the data for two subjects, illustrating the small region used as the example. In the
examples below, the effect of the group on the images is studied in the presence of nuisance
factors sex and age.

25
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50 60 70 50 60 70

Figure 10: The example brain image data in the right Crus Cerebellum 1 region at a slice
for one subject from the autism group (subject number 1) and one from the control group
(subject number 27).

Graphical functional GLM

The functional GLM is the general linear model
Y (r) = X(r)B(r) + Z(r)y(r) + €(r) (15)

where the argument r € {1,...,d} determines the component of the vector or the spatial point
or pixel of an image. For every argument r, a one-dimensional GLM is considered with X(r)
being a n x k matrix of regressors of interest (here z), Z(r) being a n x [ matrix of nuisance
regressors (here the constant 1 and group), Y(r) being a n x 1 vector of observed data, and
e(r) being a n x 1 vector of random errors with a mean of zero and a finite variance o%(r) for
every r € I. Further, 8(r) and ~y(r) are the regression coefficient vectors of dimensions k x 1
and [ x 1, respectively, and the null hypothesis to be tested is

Hy:Bi(r)=0, Vr=1,....d, Vi=1,...,k,

where §;(r) are the elements of the §(r). For a continuous factor of interest £k = 1 and 5(r)
serves as the test statistic. For a discrete factor of interest, in the default setup, k is equal to
the number of groups of the discrete factor, adding the additional condition that Y, 5;(r) =0
for all » € {1,...d}. Similarly, for interaction of a continuous and a discrete factor, k is also
equal to the number of groups of the categorical factor, adding the same additional condition.
For the interaction of two discrete factors, k is equal to the product of the numbers of groups
of the discrete factors, adding the same additional condition. The default test statistic for a
discrete factor consist of §;(r) for all r =1,...,d and i = 1,..., k. This test allows to detect
which groups deviate from the zero (mean). An alternative test statistic is obtained by the
setting the argument contrasts of the function graph.f1m() to TRUE: then the test statistic
is formed by all the pairwise differences between the group effects, §;(r) — 8;(r) for all » and
1# 7,1 <i< j<k. This test specifies which specific groups are different in the post hoc
nature. Note that this also holds for interaction terms. Furthermore, all the options allow
one to identify which of the components of the vector, r € {1,...,d}, lead to the potential
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rejection of the null hypothesis. Permutations under the null hypothesis are obtained using
the Freedman-Lane procedure (Freedman and Lane 1983; Mrkvicka et al. 2022; Mrkvicka
et al. 2021).

Often factors are given for the whole function, i.e., they do not depend on argument r, and
so the matrices X(r) and Z(r) are identical for every r. These kind of constant factors (such
as z and group in the considered example) can be provided in the argument factors of the
graph.f1m() function. However, this simplification is not necessary and factors varying in
space can be provided in the argument curve_sets, along with the data curves in a named
list.

The functional GLM is performed by the function graph.flm():

R> res <- graph.flm(nsim = 999, formula.full = Y ~ Group + Sex + Age,
+ formula.reduced = Y ~ Sex + Age,

+ curve_sets = 1ist(Y = abide 9002 23[['curve_set']]),

+ factors = abide_9002_23[['factors']], contrasts = TRUE,

+ GET.args = list(type = "area"))

Here the arguments formula.full and formula.reduced specify the full GLM and the GLM
where the interesting factor has been dropped out, and the number of simulations is given in
nsim. Further arguments to global_envelope_test() can be passed in GET.args, e.g., the
type of the global envelope.

The r component of the abide_9002_23[[’curve_set’]] object is a data frame with columns
X, y, width and height, where the width and height give the width and height of the pixels
placed at x and y. When such two-dimensional argument values are provided in a curve_set
object, the resulting default envelope plots produced by

R> plot(res)

are two-dimensional as well (Figure 11). Here only two groups were compared, and the plot
shows that the brain measurements were lower in the autism group than in the control group
in a part of the small example region (red locations in Figure 11).

When the basic assumption of the homoscedasticity in the linear model (15) for every argu-
ment r is violated, it is important to handle it. One possibility is to apply transformations
to the functions a priori as suggested by Mrkvicka et al. (2020) and Mrkvicka et al. (2021)
(see Equation (14)). Alternatively weighted least squares might be used for estimation of
regression coefficients.

F-rank GLM

In the F-rank GLM, the same linear model (Equation 15) is fitted at each r € {1,...,d}
and permutations under the null hypothesis are obtained similarly by the Freedman-Lane
procedure as in the graphical functional GLM (Freedman and Lane 1983; Mrkvicka et al.
2022). However, the test statistic is the classical F' statistic (see, e.g., Winkler et al. 2014)
which is calculated for the hypothesis that the data follows the simpler reduced model of the
two proposed linear models that are nested within each other (given in formula.full and
formula.reduced). The use of the function frank.f1lm() is similar to that of graph.flm():
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Graphical functional GLM: p = 0.024
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Figure 11: Graphical functional GLM for testing the effect of the group (autism, control)
in the brain image example: the observed difference (autism-control), the lower and upper
bounds of the 95% global envelope (area), and the significant regions (red) where the observed
coefficient goes below or above the envelope.

R> res.F <- frank.flm(nsim = 999, formula.full =Y ~ Group + Age + Sex,

+ formula.reduced = Y ~ Age + Sex,

+ curve_sets = 1list(Y = abide_9002_23[['curve_set']]),

+ factors = abide_9002_23[['factors']], GET.args = list(type = "area"))
R> plot(res.F)

Figure 12 shows the test result of the F-rank GLM, which found significant differences between
the groups approximately at the same pixels r € {1,...,d} of the brain image as the graphical
functional GLM above. In general, for a factor with more than two groups, the F-rank GLM
is however not able to tell between which specific groups of a discrete factor the differences
occur (or which of the groups deviate from the mean). In the case of heteroscedasticy, the
weighted least squares test statistics can be used instead (Christensen 2002).

3.7. Confidence band in polynomial regression

The bootstrap procedure described in Narisetty and Nair (2016) can be used to compute the
95% global confidence band for the fitted curve in the linear or polynomial regression. In this
example, regression data was simulated according to the cubic model f(x) = 0.8z — 1.822 +
1.0523 for z € [0, 1] with i.i.d. random noise (circles in Figure 13). Then the data was fitted
with cubic regression (black solid line in Figure 13) and by permuting the residuals 2000
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Global envelope test: p = 0.015
Alternative = "greater”

Observed Upper envelope Sign.: above
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Figure 12: F-rank functional GLM for testing the effect of the group (autism, control) in the
brain image example: the observed F statistic, the upper bound of the one-sided 95% global
envelope (area), and the significant region (red) where the observed F statistic exceeds the
envelope.

bootstrap samples were obtained and functions fitted (see more details about the bootstrap
procedure in Narisetty and Nair 2016). Finally a ‘curve_set’ object was constructed of these
bootstrapped functions by the create_curve_set() function and the central_region()
function was applied to this set to obtain the 95% global confidence band.

The result of the procedure is shown in Figure 13. The code can be found in the help file of
the function central_region() in R.

Remark 3.1 Let one consider a theoretical 95% confidence band under the given bootstrap
scheme. Based on a simulation experiment where the theoretical confidence band was computed
from 200000 bootstrapped functions, we observed that the 95% confidence region computed as
a convexr hull from s functions converged to the theoretical one from inside for increasing
s. The 95% confidence band computed as the extreme rank envelope from s functions (see
Equation 3) converged to the theoretical one from outside instead. Both these envelopes are
finite approximations of the theoretical envelope. On the other hand, in the sense of Barnard’s
Monte Carlo test (Barnard 1963), the global envelope test (convex hull) is exact for the given
set of simulated functions. In the same sense, the confidence band reaches the given global
level exactly under the given set of functions.

4. Summary and discussion

We presented the GET package which was designed for global envelopes that are constructed
for a general vector and have IGI (Definition 1.1). The great advantage of these methods is
their graphical output, which helps one to interpret the results in the various applications.

29
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Figure 13: The global 95% confidence band (ERL) for the cubic regression (gray band), the
true function (solid line) from which the data points (dots) were simulated and the median
calculated from the simulations (dashed line).

The package implements different types of global envelopes (see Table 1) and their usage in
general and for several specific problems (see Table 2). Because the global envelopes can be
used for so many different purposes specified in cases (i)-(iv) in Section 1, there are several
other software, particularly other R packages, that deal with methods that can be used for
the same purposes as the methods in GET. However, to the best of our knowledge, GET is
the first package specializing to the global envelopes with IGI.

Besides the graphical interpretation, another advantage of the proposed global rank envelopes
is their non-parametric (rank-based) nature, which ensures that the functional or multivariate
data coming into the analysis can be inhomogeneous across the domain of their arguments
and this phenomenon does not influence the result of the analysis. For example, before the
methods discussed in this paper appeared, formal goodness-of-fit testing in spatial statistic
was commonly based on the unscaled MAD test (Ripley 1981) or its non-graphical integrated
counterpart (Diggle 1979). However, the result of these tests is influenced by unequal vari-
ability of the test function across its domain leading in general to loss of power (Myllymaki
et al. 2015, 2017). A similar situation appears in the permutation GLM tests which, in the
functional data analysis or neuroimage analysis (see, e.g., Winkler et al. 2014), are commonly
based on the F statistic that standardizes the first and second moments of the data but not the
high quantiles. Thus, when the data are inhomogeneous across the domain and non-normal,
the commonly used F-max test (which is similar to the unscaled MAD test) is influenced by
the inhomogeneous quantiles. The rank-based tests discussed here can then lead to higher
power (for details see Mrkvicka et al. 2022). Similarly, the rank based methods can adjust the
shape of the central region to inhomogeneous distribution of the studied functions. Therefore,
the global rank envelopes are a valuable tool in all these situations.

A further advantage of the rank tests is that it allows one to give equal weights to the
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components fed in. Thus, the method is particularly well suited also for multiple testing with
several univariate or functional test statistics (Mrkvicka et al. 2017), for constructing central
regions jointly for various transformations of the functions (for details see Dai et al. 2020),
and for combining various dimensions of multidimensional functions or various functional
elements of multivariate functions.

Finally, the good properties of the methods presented here are retained also in the case of
testing a composite hypothesis: the two-stage Monte Carlo test is applicable to these graphical
methods.

We are committed to developing the GET package further. For example, new types of global
envelopes can be added, if such are invented, and support for specific applications or different
type of data will be extended.
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