
A Guide to the FuzzyNumbers 0.02 Package for R

Marek Gagolewski

Systems Research Institute, Polish Academy of Sciences

ul. Newelska 6, 01-447 Warsaw, Poland

Email: gagolews@ibspan.waw.pl

www.ibspan.waw.pl/∼gagolews/FuzzyNumbers/

December 27, 2012

The package, as well as this tutorial, is still in its early days – any suggestions are welcome!

Contents

1 Getting started 2

2 How to create instances of fuzzy numbers 2

2.1 Arbitrary fuzzy numbers . 2

2.1.1 Definition by side functions . 2

2.1.2 Definition by α-cut bounds . 5

2.1.3 Definition with generating functions omitted: shadowed sets 6

2.2 Using numeric approximations of α-cut or side generators 7

2.3 Fuzzy numbers with discontinuities . 8

2.4 Trapezoidal fuzzy numbers . 9

2.5 Piecewise linear fuzzy numbers . 10

2.6 Fuzzy numbers with sides given by power functions 13

3 Depicting fuzzy numbers 14

4 Basic computations on and characteristics of fuzzy numbers 17

4.1 Support and core, and other α-cuts . 17

4.2 Evaluation of the membership function . 18

4.3 “Typical” value . 18

4.4 Measures of “nonspecificity” . 19

5 Approximation of fuzzy numbers 20

5.1 Metrics in the space of fuzzy numbers . 20

5.2 Approximation by trapezoidal fuzzy numbers . 20

5.2.1 Naïve approximation . 20

5.2.2 L2-nearest approximation . 20

5.2.3 Expected interval preserving approximation 21

5.2.4 Approximation with restrictions on support and core 22

5.3 Approximation by piecewise linear fuzzy numbers 23

5.3.1 Naïve approximation . 23

5.3.2 L2-nearest approximation . 24

6 NEWS/CHANGELOG 28

1

http://www.ibspan.waw.pl/~gagolews/FuzzyNumbers/

Bibliography 29

1 Getting started

Fuzzy set theory lets us effectively and quite intuitively represent imprecise or vague information.

Fuzzy numbers (FNs), introduced by Dubois and Prade in [6], form a particular subclass of fuzzy

sets of the real line. They play a significant role in many important theoretical and practical

considerations (cf. [12]) since we often describe our knowledge about objects through numbers,

e.g. “I’m about 180 cm tall” or “The rocket was launched between 2 and 3 p.m.”.

R is a free, open sourced software environment for statistical computing and graphics, which

includes an implementation of a very powerful and quite popular high-level language called S. It

runs on all major operating systems, i.e. Windows, Linux, and MacOS. To install R and/or find

some information on the S language please visit R Project’s Homepage at www.R-project.org.

Perhaps you may also wish to install RStudio, a convenient development environment for R. It

is available at www.rsudio.org.

FuzzyNumbers is an Open Source (licensed under GNU LGPL 3) package for R ≥ 2.15 to

which anyone can contribute. It has been created in order to deal with fuzzy numbers. To install

its latest “official” release available on CRAN we type:

install.packages("FuzzyNumbers")

Alternatively, we may fetch its current development snapshot (without man pages, but see our

homepage1) from RForge:

install.packages("FuzzyNumbers", repos="http://R-Forge.R-project.org")

Each session with FuzzyNumbers should be preceded by a call to:

require("FuzzyNumbers") # Load the package

To view the main page of the manual we type:

library(help="FuzzyNumbers")

For more information please visit the package’s homepage [8]. In case of any problems, com-

ments, or suggestions feel free to contact the author. Good luck!

2 How to create instances of fuzzy numbers

2.1 Arbitrary fuzzy numbers

A fuzzy number A may be defined by specifying its core, support, and either its left/right side

functions or lower/upper α-cut bounds. Please note that many algorithms that deal with FNs

assume we provide at least the latter, i.e. α-cuts.

2.1.1 Definition by side functions

A fuzzy number A specified by side functions2 has a membership function of the form:

1www.ibspan.waw.pl/∼gagolews/?page=resources&subpage=FuzzyNumbers&manpage=00Index.
2Side functions are sometimes called branches or shape functions in the literature.

2

http://www.R-project.org
http://rstudio.org/
http://www.ibspan.waw.pl/~gagolews/?page=resources&subpage=FuzzyNumbers&manpage=00Index

µA(x) =



































0 if x < a1,

left
(

x−a1
a2−a1

)

if a1 ≤ x < a2,

1 if a2 ≤ x ≤ a3,

right
(

x−a3
a4−a3

)

if a3 < x ≤ a4,

0 if a4 < x,

(1)

where a1, a2, a3, a4 ∈ R, a1 ≤ a2 ≤ a3 ≤ a4, left : [0, 1] → [0, 1] is a nondecreasing function

(called left side generator of A), and right : [0, 1] → [0, 1] is a nonincreasing function (right

side generator of A). In our package, it is assumed that these functions fulfill the conditions

left(0) ≥ 0, left(1) ≤ 1, right(0) ≤ 1, and right(1) ≥ 0.

Please note that by using side generating functions defined on [0, 1] we really make (in

author’s humble opinion) the process of generating examples for our publications much easier.

A similar concept was used e.g. in [13] (LR-fuzzy numbers).

An example: a fuzzy number A1 with linear sides (a trapezoidal fuzzy number, see also

Sec. 2.4).

A1 <- FuzzyNumber(1, 2, 4, 7,

left=function(x) x,

right=function(x) 1-x

)

This object is an instance of the following R class:

class(A1)

[1] "FuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

We may print some basic information on A1 by calling print(A1) or simply by typing:

A1

Fuzzy number with:

support=[1,7],

core=[2,4].

To depict A1 we call:

plot(A1)

3

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

If we would like to generate figures for our publications, then we will be interested in storing

them as PDF files. This may be done by calling:

pdf("figure1.pdf", width=8, height=5) # create file

plot(A1)

dev.off() # close graphical device and save the file

Postscript (PS) files are generated by substituting the call to pdf() for the call to the

postcript() function.

Remark. Assume we are given two fancy side functions f : [a1, a2] = [−4,−2] → [0, 1], and

g : [a3, a4] = [−1, 10]→ [1, 0], for example:

f <- splinefun(c(-4,-3.5,-3,-2.2,-2), c(0,0.4,0.7,0.9,1), method="monoH.FC")

g <- splinefun(c(-1,0,10), c(1,0.5,0), method="monoH.FC")

Let us convert them to side generating functions, which shall be defined on the interval [0, 1].

This may easily be done with the convert.side() function. It returns a new function that calls

the original one with linearly transformed input.

convert.side(f, -4, -2)(c(0,1))

[1] 0 1

convert.side(g, -1, 10)(c(0,1))

[1] 1 0

convert.side(g, 10, -1)(c(0,1)) # interesting!

[1] 0 1

These functions may be used to define a fuzzy number, now with arbitrary support and core.

A <- FuzzyNumber(10,20,20,30,

left=convert.side(f, -4, -2),

right=convert.side(g, -1, 10)

)

plot(A, xlab="x", ylab="$\\alpha$")

4

10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

2.1.2 Definition by α-cut bounds

Alternatively, a fuzzy number A may be defined by specifying its α-cuts. We have (for α ∈ (0, 1)

and a1 ≤ a2 ≤ a3 ≤ a4):

Aα := [AL(α), AU (α)] (2)

=
[

a1 + (a2− a1) · lower(α), a3 + (a4− a3) · upper(α)
]

, (3)

where lower : [0, 1] → [0, 1] is a nondecreasing function (called lower α-cut bound generator

of A), and upper : [0, 1] → [0, 1] is a nonincreasing function (upper bound generator). In our

package, we assumed that lower(0) = 0, lower(1) = 1, upper(0) = 1, and upper(1) = 0.

It is easily seen that for α ∈ (0, 1) we have the following relationship between generating

functions:

lower(α) = inf{x : left(x) ≥ α}, (4)

upper(α) = sup{x : right(x) ≥ α}. (5)

Moreover, if side generating functions are continuous and strictly monotonic, then α-cut bound

generators are their inverses.

An example:

A2 <- FuzzyNumber(1, 3, 4, 7,

lower=function(alpha) pbeta(alpha, 5, 9), # CDF of a beta distr.

upper=function(alpha) pexp(1/alpha-1) # transformed CDF of an exp. distr.

)

plot(A1, col="blue")

plot(A2, col="red", lty=2, add=TRUE)

legend("topright", c(expression(mu[A1]), expression(mu[A2])),

col=c("blue", "red"), lty=c(1,2));

5

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

µA1

µA2

Remark. The convert.alpha() function works similarly to convert.side(). This tool,

however, scales the output values of a given function, thus it may be used to create an alpha-cut

generator conveniently.

2.1.3 Definition with generating functions omitted: shadowed sets

Please note that in the above examples we passed to the constructor of each FuzzyNumber class

instance either side generating functions or α-cut generators. Let us study what happens, if we

omit both of them.

A3 <- FuzzyNumber(1, 2, 4, 5)

A3

Fuzzy number with:

support=[1,5],

core=[2,4].

The object seems to be defined correctly: R does not make any complaints. However. . .

plot(A3)

6

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

It turns out that we have obtained a shadowed set! Indeed, this behavior is quite reasonable: we

have provided no information on the “partial knowledge” part of our fuzzy number. In fact, the

object has been initialized with generating functions always returning NA (Not-Available or any

value). Does it mean that when we define a FN solely by side generators, we cannot compute

its α-cuts? Indeed!

alphacut(A2, 0.5) # A2 has alpha-cut generators defined

[1] 2.733154 5.896362

alphacut(A1, 0.5) # A1 hasn't got them

[1] NA NA

Another example: evaluation of the membership function.

evaluate(A1, 6.5) # A1 has side generators defined

[1] 0.1666667

evaluate(A2, 6.5) # A2 hasn't got them

[1] NA

2.2 Using numeric approximations of α-cut or side generators

The reason for setting by default NAs3 as return values of generators (when omitted) is simple.

Finding a function inverse numerically requires lengthy computations and is always done locally

(for a given point, not for “whole” the function at once). R is not a symbolic mathematical solver.

If we had defined such procedures (it is really easy to do by using the uniroot() function), then

an inexperienced user would have used it in his/her algorithms and wondered why everything

runs so slow. To get more insight, let us look at the internals of A2:

A2["lower"]

function(alpha) pbeta(alpha, 5, 9)

<environment: 0x39f0fd8>

A2["upper"]

3To be precise, it’s NA_real_.

7

function(alpha) pexp(1/alpha-1)

<environment: 0x39f0fd8>

A2["left"]

function (x)

rep(NA_real_, length(x))

<environment: 0x2399140>

A2["right"]

function (x)

rep(NA_real_, length(x))

<environment: 0x2399140>

Note that all generators are properly vectorized (for input vectors of length n they always give

output of the same length). Thus, general rules are as follows. If you want α-cuts (e.g. for finding

trapezoidal approximations of FNs), specify them. If you would like to access side functions (by

the way, the plot() function automatically detects what kind of knowledge we have), assure

they are provided.

However, we we provide some convenient short-cut methods to interpolate generating func-

tions of one type to get some crude numeric approximations of their inverses. These are sim-

ple wrappers to R’s approxfun() (piecewise linear interpolation, the "linear" method) and

splinefun() (monotonic splines: methods "hyman" and "monoH.FC"; the latter is default and

recommended). They are available as the approx.invert() function4, and may of course be

used on results returned by convert.alpha() and convert.side().

l <- function(x) pbeta(x, 1, 2)

r <- function(x) 1-pbeta(x, 1, 0.1)

A4 <- FuzzyNumber(-2, 0, 0, 2,

left = l,

right = r,

lower = approx.invert(l),

upper = approx.invert(r)

)

x <- seq(0,1,length.out=1e5)

max(abs(qbeta(x, 1, 2) - A4["lower"](x))) # sup-error

[1] 0.0001389811

max(abs(qbeta(1-x, 1, 0.1) - A4["upper"](x))) # sup-error

[1] 0.0008607773

2.3 Fuzzy numbers with discontinuities

... TO BE DONE

A1 <- FuzzyNumber(0,1,1,1,

lower=function(a) floor(3*a)/3,

upper=function(a) 1-a

) # no info on discontinuities

A2 <- DiscontinuousFuzzyNumber(0,1,1,1,

4The n argument, which sets the number of interpolation points, controls the trade-off between accuracy and

computation speed. Well, world’s not ideal, remember that “any” is better than “nothing” sometimes.

8

lower=function(a) floor(3*a)/3,

upper=function(a) 1-a,

discontinuities.lower=c(0, 1/3, 2/3, 1),

discontinuities.upper=numeric(0)

) # discontinuities info included

... TO BE DONE

2.4 Trapezoidal fuzzy numbers

A trapezoidal fuzzy number (TFN) is a FN which has linear side generators and linear α-cut

bound generators. To create a trapezoidal fuzzy number T1 with, for example, core(T1) = [2, 4]

and supp(T1) = [1, 7] we call:

T1 <- TrapezoidalFuzzyNumber(1,2,4,7)

This object is an instance of the following R class:

class(T1)

[1] "TrapezoidalFuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

To depict T1 we call:

plot(T1)

1 2 3 4 5 6 7

0.
0

0
.2

0.
4

0.
6

0.
8

1.
0

x

α

T1 is (roughly) equivalent to the trapezoidal fuzzy number A1 defined in the previous subsec-

tion. The TrapezoidalFuzzyNumber class inherits all the goodies from the FuzzyNumber class,

but is more specific (guarantees faster computations, contains more detailed information, etc.).

Of course, in this case the generating functions are known a priori (A1 had no α-cut generators)

so there is no need to provide them manually (what is more, this has been disallowed for safety

reasons). Thus, is we wanted to define a trapezoidal FN next time, we would rather not do it

like with A1 but as with T1.

9

T1["lower"]

function (alpha)

alpha

<environment: namespace:FuzzyNumbers>

T1["upper"]

function (alpha)

1 - alpha

<environment: namespace:FuzzyNumbers>

T1["left"]

function (x)

x

<environment: namespace:FuzzyNumbers>

T1["right"]

function (x)

1 - x

<environment: namespace:FuzzyNumbers>

Trapezoidal fuzzy numbers are among the simplest FNs. Despite their simplicity, however, they

include triangular FNs, “crisp” real intervals, and “crisp” reals. Please note that currently no

separate classes for these particular TFNs types are implemented in the package.

TrapezoidalFuzzyNumber(1,2,2,3) # triangular FN

Trapezoidal fuzzy number with:

support=[1,3],

core=[2,2].

TrapezoidalFuzzyNumber(2,2,3,3) # `crisp' interval

Trapezoidal fuzzy number with:

support=[2,3],

core=[2,3].

TrapezoidalFuzzyNumber(5,5,5,5) # `crisp' real

Trapezoidal fuzzy number with:

support=[5,5],

core=[5,5].

2.5 Piecewise linear fuzzy numbers

Trapezoidal fuzzy numbers are generalized by piecewise linear FNs (PLFNs), i.e. fuzzy numbers

which side generating functions and α-cut generators are piecewise linear functions. Each PLFN

is given by:

• four coefficients a1 ≤ a2 ≤ a3 ≤ a4 defining its support and core,

• the number of “knots”, knot.n≥ 0,

• a vector of α-cut coordinates, knot.alpha, consisting of knot.n elements ∈ [0, 1],

• a nondecreasingly sorted vector knot.left consisting of knot.n elements ∈ [a1, a2], defin-

ing interpolation points for the left side function, and

• a nondecreasingly sorted vector knot.right consisting of knot.n elements ∈ [a2, a3],

defining interpolation points for the right side function.

10

If knot.n≥ 1, then the membership function of a piecewise linear fuzzy number P is defined

as:

µP (x) =























































0 if x < a1,

αi + (αi+1 − αi)
(

x−li
li+1−li

)

if li ≤ x < li+1

for some i ∈ {1, . . . , n+ 1},
1 if a2 ≤ x ≤ a3,

αn−i+2 + (αn−i+3 − αn−i+2)
(

1− x−ri
ri+1−ri

)

if ri < x ≤ ri+1

for some i ∈ {1, . . . , n+ 1},
0 if a4 < x,

(6)

and its α-cuts for α ∈ [αi, αi+1] (for some i ∈ {1, . . . , n+ 1}) are given by:

PL(α) = li + (li+1 − li)
(

α− αi
αi+1 − αi

)

, (7)

PU , (α) = rn−i+2 + (rn−i+3 − rn−i+2)

(

1− α− αi
αi+1 − αi

)

, (8)

where n = knot.n, (l1, . . . , ln+2) = (a1, knot.left, a2), (r1, . . . , rn+2) = (a3, knot.right, a4),

and (α1, . . . , αn+2) = (0, knot.alpha, 1).

PLFNs in our package are represented by the PiecewiseLinearFuzzyNumber class.

P1 <- PiecewiseLinearFuzzyNumber(0, 1, 2, 3,

knot.n=1, knot.alpha=0.25, knot.left=0.5, knot.right=2.25)

class(P1)

[1] "PiecewiseLinearFuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

P1

Piecewise linear fuzzy number with 1 knot(s),

support=[0,3],

core=[1,2].

P2 <- PiecewiseLinearFuzzyNumber(0, 1, 2, 3,

knot.n=2, knot.alpha=c(0.25,0.6),

knot.left=c(0.5,0.8), knot.right=c(2.25, 2.5))

P2

Piecewise linear fuzzy number with 2 knot(s),

support=[0,3],

core=[1,2].

plot(P1, type='b')

plot(P2, type='b', col=2, lty=2, pch=2, add=TRUE)

11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

The following operators return matrices with all knots of a PLFN. Each of them have three

columns, in order: α-cuts, left side coordinates, and right side coordinates.

P2["knots"]

alpha left right

knot_1 0.25 0.5 2.50

knot_2 0.60 0.8 2.25

P2["allknots"] # including a1,a2,a3,a4

alpha left right

supp 0.00 0.0 3.00

knot_1 0.25 0.5 2.50

knot_2 0.60 0.8 2.25

core 1.00 1.0 2.00

If knot.n is equal to 0 or all left and right knots lie on common lines, then a PLFN reduces

to a TFN. Please note that, however, the TrapezoidalFuzzyNumber class does not inherit from

PiecewiseLinearFuzzyNumber for efficiency reasons. If, however, we wanted to convert an

object of the first mentioned class to the other, we would do that by calling:

alpha <- c(0.2, 0.3, 0.5, 0.6, 0.9);

P3 <- as.PiecewiseLinearFuzzyNumber(T1,

knot.n=5, knot.alpha=alpha);

P3

Piecewise linear fuzzy number with 5 knot(s),

support=[1,7],

core=[2,4].

plot(P3)

abline(h=alpha, col="gray", lty=2)

abline(v=P3["knot.left"], col="gray", lty=3)

abline(v=P3["knot.right"], col="gray", lty=3)

text(7, alpha, sprintf("a=%g", alpha), pos=3)

12

1 2 3 4 5 6 7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

α = 0.2

α = 0.3

α = 0.5

α = 0.6

α = 0.9

More generally, each PLFN or TFN may be converted to a direct FuzzyNumber class instance if

needed (hope we will newer not).

(as.FuzzyNumber(P3))

Fuzzy number with:

support=[1,7],

core=[2,4].

On the other hand, to “convert” (with possible information loss) more general FNs to TFNs

or PLFNs, we may use the approximation procedures described in Sec. 5.

2.6 Fuzzy numbers with sides given by power functions

Fuzzy numbers which sides are given by power functions are defined with four coefficients a1 ≤
a2 ≤ a3 ≤ a4, and parameters p.left, p.right > 0 which determine exponets for the side

functions:

left(x) = xp.left, (9)

right(x) = (1− x)p.right. (10)

We also have:

lower(α) = p.left
√
α, (11)

upper(α) = 1− p.right
√
α. (12)

These fuzzy numbers are another natural generalization of trapezoidal FNs.
An example:

X <- PowerFuzzyNumber(-3, -1, 1, 3, p.left=2, p.right=0.1)

class(X)

[1] "PowerFuzzyNumber"

attr(,"package")

[1] "FuzzyNumbers"

X

13

Fuzzy number given by power functions, and:

support=[-3,3],

core=[-1,1].

plot(X)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0
.6

0
.8

1
.0

x

α

3 Depicting fuzzy numbers

To depict FNs we use the plot() method, which uses similar parameters as the R-built-in

curve() function. If you are new to R, you may wish to read the manual on the most popular

graphical routines by calling ?plot, ?plot.default, ?curve, ?abline, ?par, ?lines, ?points,

?legend, ?text (some of these functions have already been called in this tutorial).

In this and subsequent sections we consider the following fuzzy number for the sake of

illustration:

A <- FuzzyNumber(-5, 3, 6, 20,

left=function(x) pbeta(x,0.4,3),

right=function(x) 1-x^(1/4),

lower=function(alpha) qbeta(alpha,0.4,3),

upper=function(alpha) (1-alpha)^4

)

plot(A)

14

-5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

Side functions or α-cut bounds of objects of the FuzzyNumber class (not including its deriva-

tives) when plotted are naively approximated by piecewise linear functions with equidistant

knots at one of the axes. Therefore, if we probe them at too few points, we may obtain very

rough graphical representations. To control the number of points at which the interpolation

takes place, we use the n parameter (which defaults to 101 = quite accurate).

All three calls to the plot() method below depict the membership function of the same

fuzzy number, but with different accuracy.

plot(A, n=3, type='b')

plot(A, n=6, add=TRUE, lty=2, col=2, type='b', pch=2)

plot(A, n=101, add=TRUE, lty=4, col=4) # default n

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0
.6

0.
8

1
.0

x

α

Please note (if you have not already) that to draw the membership function we do not need

to provide necessarily the FN with side generators: the α-cuts will also suffice. The function is

smart enough to detect the internal representation of the FN and use the kind representation it

15

has. It both types of generators are given then side functions are used. If we want to, for some

reasons, use α-cuts, then we may do as follows:

plot(A, n=3, at.alpha=numeric(0), type='b') # use alpha-cuts

plot(A, n=3, type='b', col=2, lty=2, pch=2, add=TRUE) # use sides

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0
.6

0
.8

1
.0

x

α

We may also illustrate an α-cut representation of a fuzzy number:

plot(A, draw.alphacuts=TRUE)

0.0 0.2 0.4 0.6 0.8 1.0

-5
0

5
1
0

15
20

α

x

Finally, we leave you with a quite complex example from one of our papers:

X <- PiecewiseLinearFuzzyNumber(0, 1, 2, 5, knot.n=1,

knot.alpha=0.6, knot.left=0.3, knot.right=4)

plot.default(NA, xlab="x", ylab="$\\mu_S(x)$",

xlim=c(-0.3,5.3), ylim=c(0,1)) # empty window

16

xpos <- c(X["a1"], X["knot.left"], X["a2"],

X["a3"], X["knot.right"], X["a4"]);

xlab <- c("s_1", "s_2", "s_3",

"s_4", "s_5", "s_6");

abline(v=xpos, col="gray", lty=3)

text(xpos, 1.05, xlab, pos=3, xpd=TRUE)

abline(h=c(0, X["knot.alpha"], 1), col="gray", lty=2)

text(5.55, X["knot.alpha"], sprintf("$\\alpha_0$"), pos=4, xpd=TRUE)

plot(X, add=TRUE, type='l', from=-1, to=6)

plot(X, add=TRUE, type='p', from=-1, to=6)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

µ
S
(x

)

s1 s2 s3 s4 s5 s6

α0

Please note that we use TEX commands in plot labels. They are interpreted by the tikzDevice

package for R to generate beautiful figures, but setting this all up requires higher level of

skills. . . and patience.

4 Basic computations on and characteristics of fuzzy numbers

4.1 Support and core, and other α-cuts

The support of A, i.e. supp(A) = [a1, a4], may be obtained by calling:

supp(A)

[1] -5 20

We get the core of A, i.e. core(A) = [a2, a3], with:

core(A)

[1] 3 6

To compute arbitrary α-cuts we use:

alphacut(A, 0) # same as supp(A) (if alpha-cut generators are defined)

[1] -5 20

alphacut(A, 1) # same as core(A)

17

[1] 3 6

alphacut(A, c(0,0.5,1))

[,1] [,2]

[1,] -5.000000 20.000

[2,] -4.583591 6.875

[3,] 3.000000 6.000

Note that if we request to compute more than one α-cut at once, then a matrix with 2 columns

(instead of a numeric vector of length 2) is returned. The alphacut() method may only be used

when α-cut generators are provided by the user during the declaration of A, even for α = 0 or

α = 1.

4.2 Evaluation of the membership function

If side generators are defined, we may calculate the values of the membership function at different

points by calling:

evaluate(A, 1)

[1] 0.9960291

evaluate(A, c(-3,0,3))

[1] 0.8371139 0.9855322 1.0000000

evaluate(A, seq(-1, 2, by=0.5))

[1] 0.9624800 0.9760168 0.9855322 0.9919531 0.9960291 0.9983815 0.9995357

4.3 “Typical” value

Let us first introduce the notion of the expected interval of A [7].

EI(A) := [EIL(A),EIU (A)] (13)

=

[
∫ 1

0

AL(α) dα,

∫ 1

0

AU (α) dα

]

. (14)

To compute the expected interval of A we call:

expectedInterval(A)

[1] -4.058824 8.800000

Please note that in case of objects of the FuzzyNumber class the expected interval is approximated

by numerical integration. This method calls the integrate() function and its accuracy (quite

fine by default) may be controlled by the subdivisions, rel.tol, and abs.tol parameters

(call ?integrate for more details). On the other hand, for TFNs and PLFs this method returns

exact results.

The midpoint of the expected interval is called the expected value of a fuzzy number. It is

given by:

EV(A) :=
EIL(A) + EIU (A)

2
. (15)

Let us calculate EV(A).

expectedValue(A)

[1] 2.370588

18

Note that this method uses a call to expectedInterval(A), thus in case of FuzzyNumber class

instances it also uses numerical approximation.

Sometimes a generalization of the expected value, called weighted expected value, is useful.

For given w ∈ [0, 1] it is defined as:

EVw(A) := (1− w)EIL(A) + wEIU (A). (16)

It is easily seen that EV0.5(A) = EV(A).

Some examples:

weightedExpectedValue(A, 0.5) # equivalent to expectedValue(A)

[1] 2.370588

weightedExpectedValue(A, 0.25)

[1] -0.8441176

The value of A [5] is defined by:

val(A) :=

∫ 1

0

α (AL(α) +AU (α)) dα. (17)

It may be calculated by calling:

value(A)

[1] 1.736177

Please note that the expected value or value may be used for example to “defuzzify” A.

4.4 Measures of “nonspecificity”

The width of A [3] is defined as:

width(A) := EIU (A)− EIL(A). (18)

An example:

width(A)

[1] 12.85882

The ambiguity of A [5] is defined as:

amb(A) :=

∫ 1

0

α (AU (α)−AL(α)) dα. (19)

ambiguity(A)

[1] 5.197157

Additionally, to express “nonspecificity” of a fuzzy number we may use e.g. the width of its

support:

diff(supp(A))

[1] 25

19

5 Approximation of fuzzy numbers

5.1 Metrics in the space of fuzzy numbers

It seems that the most suitable metric for approximation problems is an extension of the Eu-

clidean (L2) distance (cf. [9]), d, defined by the equation:

d2(A,B) =

∫ 1

0

(AL(α)−BL(α))2 dα+

∫ 1

0

(AU (α)−BU (α))2 dα. (20)

distance(A, T1, type="Euclidean") # L2 distance (default)

[1] 7.20234

distance(A, T1, type="EuclideanSquared") # Squared L2 distance (default)

[1] 51.8737

Types available type: Euclidean, EuclideanSquared...

5.2 Approximation by trapezoidal fuzzy numbers

5.2.1 Naïve approximation

The "Naive" method generates a trapezoidal FN with the same core and support as A.

(T1 <- trapezoidalApproximation(A, method="Naive"))

Trapezoidal fuzzy number with:

support=[-5,20],

core=[3,6].

distance(A, T1)

[1] 5.761482

plot(A)

plot(T1, col="red", lty=2)

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

5.2.2 L2-nearest approximation

The "NearestEuclidean" method gives the nearest L2-approximation of A [2, Corollary 8].

20

(T2 <- trapezoidalApproximation(A, method="NearestEuclidean"))

Trapezoidal fuzzy number with:

support=[-5.85235,14.4],

core=[-2.26529,3.2].

distance(A, T2)

[1] 1.98043

plot(A)

plot(T2, col="red", lty=2)

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1
.0

x

α

5.2.3 Expected interval preserving approximation

The "ExpectedIntervalPreserving" method gives the nearest L2-approximation of A preserv-

ing the expected interval [1, 10, 14]. Note that if amb(A) ≥ width(A)/3, then we get the same

result as in the "NearestEuclidean" method.

(T3 <- trapezoidalApproximation(A, method="ExpectedIntervalPreserving"))

Trapezoidal fuzzy number with:

support=[-5.85235,14.4],

core=[-2.26529,3.2].

distance(A, T3)

[1] 1.98043

expectedInterval(A)

[1] -4.058824 8.800000

expectedInterval(T3)

[1] -4.058824 8.800000

Unfortunately, for highly skewed membership functions this method (as well as the above one)

reveals sometimes quite unfavorable behavior. E.g. if B is a FN such that Val(B) < EV1/3(B)

or Val(B) > EV2/3(B), then it may happen that the core of the output and the core of the

original fuzzy number B are disjoint, cf. [11].

21

(B <- FuzzyNumber(-1, 0, 1, 40,

lower=function(x) sqrt(x),

upper=function(x) 1-sqrt(x)))

Fuzzy number with:

support=[-1,40],

core=[0,1].

(TB1 <- trapezoidalApproximation(B, "NearestEuclidean"))

Trapezoidal fuzzy number with:

support=[-0.586667,29.0933],

core=[-0.586667,-0.586667].

(TB2 <- trapezoidalApproximation(B, "ExpectedIntervalPreserving"))

Trapezoidal fuzzy number with:

support=[-0.333333,28.3333],

core=[-0.333333,-0.333333].

distance(B, TB1)

[1] 1.938155

distance(B, TB2)

[1] 1.992579

plot(B)

plot(TB1, col="red", lty=2)

plot(TB2, col="blue", lty=3)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

α

µB
µTB1

µTB2

5.2.4 Approximation with restrictions on support and core

The "SupportCoreRestricted" method was proposed in [11]. It gives the L2-nearest trape-
zoidal approximation with constraints core(A) ⊆ core(T (A)) and supp(T (A)) ⊆ supp(A), i.e. for
which each point that surely belongs to A also belongs to T (A), and each point that surely does
not belong to A also does not belong to T (A).

(T4 <- trapezoidalApproximation(A, method="SupportCoreRestricted"))

Trapezoidal fuzzy number with:

support=[-5,11.6],

22

core=[-3.11765,6].

distance(A, T4)

[1] 2.603383

plot(A)

plot(T4, col="red", lty=2)

-5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0
.8

1
.0

x

α

5.3 Approximation by piecewise linear fuzzy numbers

5.3.1 Naïve approximation

The "Naive" method generates a PLFN with the same core and support as A and with sides

interpolating the membership function of A at given α-cuts.

P1 <- piecewiseLinearApproximation(A, method="Naive",

knot.n=1, knot.alpha=0.5)

P1["allknots"]

alpha left right

supp 0.0 -5.000000 20.000

knot_1 0.5 -4.583591 6.875

core 1.0 3.000000 6.000

print(distance(A, P1), 8)

[1] 2.4753305

plot(A)

plot(P1, col="red", lty=2)

23

-5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

5.3.2 L2-nearest approximation

Exact algorithm for fixed knot.alpha. For knot.n==1 the method proposed in [4] is used.

system.time(P2 <- piecewiseLinearApproximation(A,

method="NearestEuclidean", knot.n=1, knot.alpha=0.5))

user system elapsed

0.010 0.001 0.082

print(P2["allknots"], 6)

alpha left right

supp 0.0 -4.95920 17.305

knot_1 0.5 -4.95920 5.965

core 1.0 -1.35769 5.965

print(distance(A, P2), 12)

[1] 0.837361269482

plot(A)

plot(P2, col="red", lty=2)

24

-5 0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

α

Beware of numerical error in integration e.g. due to discontinuity.

A1 <- FuzzyNumber(0,1,1,1,

lower=function(a) floor(3*a)/3,

upper=function(a) 1-a

) # no info on discontinuities

A2 <- DiscontinuousFuzzyNumber(0,1,1,1,

lower=function(a) floor(3*a)/3,

upper=function(a) 1-a,

discontinuities.lower=c(0, 1/3, 2/3, 1),

discontinuities.upper=numeric(0)

) # discontinuities info included

a <- seq(1e-9, 1-1e-9, length.out=100) # many alphas from (0,1)

d1 <- numeric(length(a)) # distances #1 (to be calculated)

d2 <- numeric(length(a)) # distances #2 (to be calculated)

for (i in 1:length(a))

{

P1 <- piecewiseLinearApproximation(A1, method="NearestEuclidean",

knot.n=1, knot.alpha=a[i])

P2 <- piecewiseLinearApproximation(A2, method="NearestEuclidean",

knot.n=1, knot.alpha=a[i])

d1[i] <- distance(A1, P1)

d2[i] <- distance(A2, P2)

}

Warning: max(abs(d[K]))==3.20058e-07

Warning: max(abs(d[K]))==3.78765e-07

Warning: max(abs(d[K]))==4.5e-09

Warning: max(abs(d[K]))==4.5e-09

matplot(a, cbind(d1, d2), type='l')

legend("top", c("d(A1,P1)", "d(A2,P2)"), lty=c(1,2), col=c(1,2))

25

We note that in the first case the distance for α = 0 (trapezoidal approximation) is smaller

than e.g. for α ≃ 0.05, which, theoretically, is not possible. Moreover, the distance is not

continuous at some α (but it is in theory).

0.0 0.2 0.4 0.6 0.8 1.0

0.
08

6
0
.0

9
0

0
.0

9
4

α

d(A1, P1)

d(A2, P2)

Finding best knot.alpha numerically. Consider the following fuzzy number A:

A1 <- FuzzyNumber(0,0,0,1,

lower=function(a) a,

upper=function(a) (1-a)^2)

Let us depict the error function (L2 distance):

a <- seq(1e-9, 1-1e-9, length.out=100) # many alphas from (0,1)

d <- numeric(length(a)) # distances (to be calculated)

for (i in 1:length(a))

{

P1 <- piecewiseLinearApproximation(A1, method="NearestEuclidean",

knot.n=1, knot.alpha=a[i])

d[i] <- distance(A1, P1)

}

Warning: max(abs(d[K]))==7.14806e-08

Warning: max(abs(d[K]))==1.19959e-07

Warning: max(abs(d[K]))==3.57378e-07

Warning: max(abs(d[K]))==1.19209e-07

Warning: max(abs(d[K]))==2.38169e-07

plot(a, d, type='l', xlab=expression(alpha), ylab=expression(D[A](alpha)));

26

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

α

D
A
′
(α

)

We may find best knot.alpha using numerical optimization. We only know that the distance

function is continuous.

for (i in 1:5) # 5 iterations

{

a0 <- runif(1,0,1); # random starting point

optim(a0,

function(a)

{

P1 <- piecewiseLinearApproximation(A1, method="NearestEuclidean",

knot.n=1, knot.alpha=a)

distance(A1, P1);

}, method="L-BFGS-B", lower=1e-9, upper=1-1e-9) -> res;

cat(sprintf("%.9f %6g %.9f %.9f\n", a0, res$counts[1], res$par, res$value));

}

Warning: max(abs(d[K]))==1.19959e-07

Warning: max(abs(d[K]))==3.57378e-07

Warning: max(abs(d[K]))==1.19209e-07

Warning: max(abs(d[K]))==2.38169e-07

Warning: max(abs(d[K]))==1.19959e-07

Warning: max(abs(d[K]))==3.57378e-07

Warning: max(abs(d[K]))==1.19209e-07

Warning: max(abs(d[K]))==2.38169e-07

0.187746551 19 0.546146113 0.022294007

0.687958484 56 0.545856036 0.022293594

0.629934967 14 0.546148523 0.022294007

0.789465386 60 0.545856274 0.022293594

0.767003964 35 0.545856348 0.022293594

Approximate algorithm for fixed knot.alpha. This method uses a constrained version of

the Nelder-Mead algorithm. The procedure minimizes the target function numerically by calling

the optim() function. There is thus no guarantee that it will find to the global minimum (it

may fall into a neighborhood of a local minimum or even fail to converge to it). However, this

27

approach may be used for any number of knots.

system.time(P3 <- piecewiseLinearApproximation(A,

method="ApproximateNearestEuclidean", knot.n=1, knot.alpha=0.5))

user system elapsed

1.346 0.000 1.377

print(P3["allknots"], 6)

alpha left right

supp 0.0 -4.95921 17.30510

knot_1 0.5 -4.95921 5.96493

core 1.0 -1.35761 5.96493

print(distance(A, P3), 12)

[1] 0.837361274848

Please note that a call to this method may be time-consuming.

system.time(P4 <- piecewiseLinearApproximation(A,

method="ApproximateNearestEuclidean", knot.n=4,

knot.alpha=c(0.2, 0.3, 0.7, 0.9), verbose=TRUE))

Pass 1a,1b,DONE.

user system elapsed

35.515 0.014 36.227

plot(A)

plot(P4, col="red", lty=2)

-5 0 5 10 15 20

0.
0

0
.2

0.
4

0.
6

0.
8

1.
0

x

α

If the method fails to converge, you may try to call it e.g. with the optim.control=list(maxit=

5000) parameter to allow for greater number of iterations.

6 NEWS/CHANGELOG

FuzzyNumbers Package NEWS

28

0.02 /2012-12-27/

* approx.invert(): a new function to find the numerical

inverse of a given side/alpha-cut generating function

(by default via Hermite monotonic spline interpolation)

* convert.side(), convert.alpha():

new functions to convert sides and alpha cuts

to side generating funs and alpha cut generators

* FuzzyNumber class validity check for lower, upper, left, right:

* checks whether each function is properly vectorized

and gives numeric results

* does not check for the number of formal arguments,

but just uses the first from the list

* suggests `testthat`

* each object has been documented

0.01 /July 2012/

* initial release

Acknowledgments. This document has been generated with LATEX, knitr and the tikzDevice

package for R. Their authors’ wonderful work is fully appreciated. Many thanks also to Przemys-

law Grzegorzewski, Lucian Coroianu, and Pablo Villacorta Iglesias for stimulating discussion.

Bibliography

[1] Ban A.I., Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the

expected interval, Fuzzy Sets and Systems 159, 2008, pp. 1327–1344.

[2] Ban A.I., On the nearest parametric approximation of a fuzzy number – Revisited, Fuzzy

Sets and Systems 160, 2009, pp. 3027–3047.

[3] Chanas S., On the interval approximation of a fuzzy number, Fuzzy Sets and Systems 122,

2001, pp. 353–356.

[4] Coroianu L., Gagolewski M., Grzegorzewski P., Nearest Piecewise Linear Approximation

of Fuzzy Numbers, to appear in Fuzzy Sets and Systems, 2013.

[5] Delgado M., Vila M.A., Voxman W., On a canonical representation of a fuzzy number,

Fuzzy Sets and Systems 93, 1998, pp. 125–135.

[6] Dubois D., Prade H., Operations on fuzzy numbers, Int. J. Syst. Sci. 9, 1978, pp. 613–626.

[7] Dubois D., Prade H., The mean value of a fuzzy number, Fuzzy Sets and Systems 24,

1987, pp. 279–300.

29

[8] Gagolewski M., FuzzyNumbers: Tools to deal with fuzzy numbers in R,

www.ibspan.waw.pl/∼gagolews/FuzzyNumbers/, 2012.

[9] Grzegorzewski P., Metrics and orders in space of fuzzy numbers, Fuzzy Sets and Systems

97, 1998, pp. 83–94.

[10] Grzegorzewski P., Algorithms for trapezoidal approximations of fuzzy numbers preserving

the expected interval, In: Bouchon-Meunier B. et al (Eds.), Foundations of Reasoning

Under Uncertainty, Springer, 2010, pp. 85–98.

[11] Grzegorzewski P, Pasternak-Winiarska K., Trapezoidal approximations of fuzzy numbers

with restrictions on the support and core, In: Proc. EUSFLAT/LFA 2011, Atlantic Press,

2011, pp. 749–756.

[12] Klir G.J., Yuan B., Fuzzy sets and fuzzy logic. Theory and applications, Prentice Hall, New

Jersey, 1995.

[13] Stefanini L., Sorini L., Fuzzy arithmetic with parametric LR fuzzy numbers, In: Proc.

IFSA/EUSFLAT 2009, pp. 600–605.

[14] Yeh C.-T., Trapezoidal and triangular approximations preserving the expected interval,

Fuzzy Sets and Systems 159, 2008, pp. 1345–1353.

30

http://www.ibspan.waw.pl/~gagolews/FuzzyNumbers/

	Getting started
	How to create instances of fuzzy numbers
	Arbitrary fuzzy numbers
	Definition by side functions
	Definition by -cut bounds
	Definition with generating functions omitted: shadowed sets

	Using numeric approximations of -cut or side generators
	Fuzzy numbers with discontinuities
	Trapezoidal fuzzy numbers
	Piecewise linear fuzzy numbers
	Fuzzy numbers with sides given by power functions

	Depicting fuzzy numbers
	Basic computations on and characteristics of fuzzy numbers
	Support and core, and other -cuts
	Evaluation of the membership function
	``Typical'' value
	Measures of ``nonspecificity''

	Approximation of fuzzy numbers
	Metrics in the space of fuzzy numbers
	Approximation by trapezoidal fuzzy numbers
	Naïve approximation
	L2-nearest approximation
	Expected interval preserving approximation
	Approximation with restrictions on support and core

	Approximation by piecewise linear fuzzy numbers
	Naïve approximation
	L2-nearest approximation

	NEWS/CHANGELOG
	Bibliography

