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1 Introduction

To analyze the effects of a chemical drug, the dose-response relationship is
studied in pharmacology or toxicology. The determination of the effective
dose level is an important issue in this context. In quantal bioassay exper-
iments m different subjects are treated with different drug doses, and it is
observed if the subject reacts or not. So the response of these experiments is
binary or quantal, which means either the drug takes effect and the subject
has a reaction or not. The dose-response curve describes the probability of
success or response of the analyzed drug. Traditionally, parametric models
like the probit or logit model are used to estimate the dose response curve

p(x) = P (Y = 1|X = x) = 1− P (Y = 0|X = x).

The effective dose level for a given α is obtained by

EDα = p−1(α)

for an increasing probability function p. Parametric models suffer from the
drawback that the specific parametric form has to be known. In many ap-
plications the specific structure is not evident, then nonparametric methods
come into play.
The R-package ’EffectiveDose’ is an implementation of the nonparamet-
ric estimate of the effective dose in quantal bioassay developed by Dette,
Neumeyer, and Pilz (2005). In Section 2 the nonparametric estimate is intro-
duced and the method for the bootstrap confidence intervals is explained. In
the following section the usage and functionality of the package is discussed
in detail. Finally in Section 4, the accuracy of the Bootstrap confidence
intervals is scrutinized.
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2 The nonparametric estimate and Bootstrap con-
fidence intervals

Dette et al. (2005) proposed a strictly increasing estimator for the effective
dose level EDα, which is a combination of a regression and an integrate
kernel density estimate. First of all, the dose-response curve is estimated by
local linear techniques, i.e. the weighted sum of squares

m∑
i=1

{Yi − β0 − β1(xi − x)}2K
(
xi − x
h

)
(1)

is minimized with respect to the parameters β0 and β1. Here K is a kernel
function and h denotes a bandwidth, which converges to 0 with increasing
sample size. The resulting estimate is given by p̂LL(x) = β̂0 if (β̂0, β̂1)
minimizes the equation (1). As in the last two sections this estimate is
not necessarily monotone in x. The estimate of the effective dose level is
obtained by applying a method to p̂LL which deals simultaneously with this
lack and the issue of inversion. Precisely, we define the effective dose level
estimate for α ∈ (0, 1) by

p̂−1
I (α) = p̂−1

I (α) :=
1

Nhd

N∑
i=1

∫ α

−∞
Kd

(
p̂LL( i

N )− u
hd

)
du, (2)

where the kernel Kd is positive, symmetric, twice continuously differentiable,
and supported on [−1, 1]. The corresponding bandwidth hd converges to 0
with increasing sample size m. A detailed discussion of this estimate and its
asymptotic behavior can be found in Dette et al. (2005).
In order to obtain confidence intervals for the effective dose level p̂−1

I (α), we
suggest Bootstrap confidence intervals. Since the asymptotic distribution of
p̂−1
I contains unknown quantities like the second derivative of p, Bootstrap

methods are often preferred. In this package, we apply a wild bootstrap
method. We start to compute the residuals

ε̂j = Yj − p̂I(xj),

where p̂I is the inverse of p̂−1
I and by the way a strictly monotone estimate

of the dose-response function p. We draw random variables ε∗j with zero
mean and variances ε̂2j for each iteration. Additionally, we assume that

P (ε∗j = −ε̂j) = P (ε∗j = +ε̂j) = 1/2.

With these randomly drawn ε∗j , we construct a new data set by replacing Yj
with p̂I(xj) + ε∗j . Using this new data set, the effective dose level p̂∗−1

I (α) is
computed as described above. Then for each iteration, |p̂−1

I (α)− p̂∗−1
I (α)| is

calculated. For a given confidence level β, the corresponding quantile tβ of



|p̂−1
I (α)− p̂∗−1

I (α)| over all iteration is used to give the following confidence
interval

(p̂−1
I (α)− tβ, p̂−1

I (α) + tβ).

3 How to use ‘EffectiveDose’

The package EffectiveDose contains functions to calculate the effective
dose levels and Bootstrap confidence intervals. The function ED can be
applied to list, locfit, and locpoly objects. The output of this function
is an object of class fitED. The usage of this function is as follows. First of
all, we start the package and generate data of a binary response model with
a Normal distribution function as success probability.

> library(EffectiveDose)

locfit 1.5-4 2007-11-27

> ybin = function(x) {

+ n = length(x)

+ y = numeric(n)

+ p = pnorm(x, mean = 0.5, sd = 0.5)

+ for (i in 1:n) {

+ y[i] = rbinom(1, 1, prob = p[i])

+ }

+ return(y)

+ }

> x = seq(0, 1, length.out = 50)

> y = ybin(x)

The function ED can be used for a list object, where the data is combined.
In this case within the function ED a local linear estimate is fitted to the
orginial data. This interim estimator is used to obtain an estimate for the
effective dose. The user can adjust the local linear estimator himself and
fit a local linear estimate using the functions locfit or locpoly. In this
way, the local linear method inside of the effective dose estimate can be
controlled. This may be interesting for a more sophisticated user. We refer
to the locfit package about the specific options of the locfit function.

> fit = locfit(y ~ lp(x, deg = 1, h = 0.1, nn = 0))

> fit2 = locpoly(x, y, degree = 1, bandwidth = 0.1)

> res = ED(list(x, y), alpha = seq(0.2, 0.8, length.out = 40))

> res2 = ED(fit, alpha = seq(0.2, 0.8, length.out = 40))

> res3 = ED(fit2, alpha = seq(0.2, 0.8, length.out = 40))



Beside the first argument which is the list, locfit, or locpoly object,
the argument alpha specifies the α values where the effective dose is to
be computed. Additionally, there are the arguments bandwidth, N, mono,
and type for further specification. The arguments bandwidth and N are
utilized for the monotonizing inversion [see (2)]. If the values are missing,
the function ED uses a rule of thumb for the bandwidth and the default value
101 for N. The argument mono comes into play if the underlying model has
a decreasing dose-response curve, e.g. in toxicology. For such setups the
effective dose level EDα is in fact p−1(1 − α), such that the effective dose
levels are again monotone increasing. The function ED returns p−1(1−α) as
effective dose level in this case. We demonstrate this in an example.

> toxdata = data.frame(conc = c(0, 0.22, 0.355, 0.444, 0.887),

+ matured = c(12, 7, 8, 2, 0), total = c(12, 8, 11, 11, 11))

> with(toxdata, ED(list(x = conc, y = matured/total), alpha = c(0.1,

+ 0.2, 0.5, 0.8, 0.9), mono = "decreasing"))

Effective Dose level ED
CALL:
ED(fitprob = list(x = conc, y = matured/total), alpha = c(0.1,

0.2, 0.5, 0.8, 0.9), mono = "decreasing")
alpha-values:
[1] 0.1 0.2 0.5 0.8 0.9
effective dose levels:
[1] 0.1812546 0.2804774 0.3887513 0.4586600 0.5363481

Using the argument type, it is possible to treat continuous data like frequen-
cies. Default value is cont, but the value prob allows to compute 0 < α < 1
quantiles for continuous data.
For objects of the class fitED, it is possible to compute an Akaike’s Infor-
mation Criterion (aic), but only if the slot fitold is assigned with a list
or locfit object. In this cases, the function aic.ED.locfit computes the
Akaike’s Information Criterion in a similar way as the function aic in the
locfit package. This value gives a rough impression of the goodness of
fit. The function aic.ED.locfit can help to adjust the arguments of the
function ED and to define the local linear estimate.
The function Boot.CI is applied in a similar manner as the function ED, but
the confidence bands are computed for only one α value per time. Further-
more the confidence level can be specified using the argument level. The
argument R fixes the number of Bootstrap replications. The default value
is R=100. Since the accuracy of the Bootstrap confidence interval might
be problematic, the function Boot.CI gives a warning if the the estimate of
the dose-response function is too flat. See the help page of Boot.CI for an
example.



4 Simulation study about the accuracy of the Boot-
strap confidence intervals

In this section, we present a small simulation study about the accuracy of
the Bootstrap confidence intervals. A binary response model is considered
with 8 different shapes for the dose-response function p. In particular, we
investigate the functions

p1(x) = Φ
(
x− µ
σ

)
, µ = .5, σ = .5 (3)

p2(x) = Φ
(
x− µ
σ

)
, µ = .5, σ = .1 (4)

p3(x) = 1− exp{−xγ}, γ = .52876 (5)

p4(x) = ηΦ
(
x− µ1

τ

)
+ (1− η)Φ

(
x− µ2

τ

)
, (6)

µ1 = 0.4, µ2 = 1.0, η = .64946, τ = .13546

p5(x) =
1
2

+
1
π

arctan
(
x− µ
σ

)
, µ = 0.15, σ = 0.05 (7)

p′6(x) =
Γ(α+ β)
Γ(α)Γ(β)

(1− x)β−1xα−1, α = 2, β = 3. (8)

p7(x) = (1 + exp(5− 15x))−1 (9)

p8(x) =


2x if 0 ≤ x ≤ 0.3
0.4x+ 0.48 if 0.3 ≤ x ≤ 0.8
x if 0.8 ≤ x ≤ 1

(10)

Exemplarily for the dose-response function p1, we show how the simulation
study can be done using the EffectiveDose Package. First, we simulate the
data. Analyzing the different ways to apply the EffectiveDose package, the
function Boot.CI is used to calculate the confidence intervals for 10 different
α values for a list, locfit, and locpoly objects. At the end, we check for
each interval if the true value is inside of the interval or not.

> m = 1000

> s = 10

> alpha = seq(0.1, 0.9, length.out = s)

> ybeob = function(x) {

+ p = pnorm(x, mean = 0.5, sd = 0.5)

+ y = rbinom(1, 1, prob = p)



+ }

> qinv = qnorm(alpha, mean = 0.5, sd = 0.5)

> res = matrix(nrow = m, ncol = s)

> res2 = matrix(nrow = m, ncol = s)

> res3 = matrix(nrow = m, ncol = s)

> for (r in 1:m) {

+ for (l in 1:s) {

+ x = seq(0, 1, length.out = 50)

+ n = length(x)

+ y = numeric(n)

+ for (i in 1:n) {

+ y[i] = ybeob(x[i])

+ }

+ fit = locfit(y ~ lp(x, deg = 1, h = 0.1, nn = 0))

+ fit2 = locpoly(x, y, degree = 1, bandwidth = 0.1)

+ W = Boot.CI(list(x, y), alpha = alpha[l], bandwidth = 0.1)

+ W2 = Boot.CI(fit, alpha = alpha[l], bandwidth = 0.1)

+ W3 = Boot.CI(fit2, alpha = alpha[l], bandwidth = 0.1)

+ res[r, l] = (qinv[l] > W@CI[1]) & (qinv[l] < W@CI[2])

+ res2[r, l] = (qinv[l] > W2@CI[1]) & (qinv[l] < W2@CI[2])

+ res3[r, l] = (qinv[l] > W3@CI[1]) & (qinv[l] < W3@CI[2])

+ }

+ }

> apply(res, 2, mean)

> apply(res2, 2, mean)

> apply(res3, 2, mean)
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Figure 1: Accuracy level for the Bootstrap confidence interval with confidence
level .95 and 1000 simulation runs using the function Boot.CI for the dose-
response functions (3)-(10). The straight line corresponds to the accuracy
level of the fit with the list object, the dashed line to the locfit object, and the
dotted line to the locpoly object.


