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Abstract

The package EMSHS implements a scalable, yet adaptive Bayesian shrinkage approach
that exploits the prior network information for improved variable selection and prediction.
We attempt to simplify the understanding of this package using a hypothetical, high-
dimensional data with n = 25 observations and p = 50 predictors in R.
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EMSHS

1. Introduction

This vignette is written as a supplementary documentation to Chang, Kundu, and Long
(2018) in hopes of providing a more visual understanding for the motivation of our work to
develop a scalable structured variable selection approach. We use R code from the Expectation
Maximization estimator for bayesian SHrinkage approach with Structural information incor-
porated (EMSHS) package to illustrate this approach - in both the absence and presence of
graph information - on high-dimensional data from a hypothetical cancer genomics example.

The rest of the vignette is organized as follows. We introduce a hypothetical cancer genomics
example in section 2, the EM estimator for Bayesian Shrinkage approach in the absence of
graph information in section 2.1, the EM estimator for Bayesian Shrinkage approach in the
presence of graph information in section 2.2, and concluding remarks about the EMSHS
package in section 3.

2. Example

Microarray analysis and next generation sequencing in genomics yield increasingly large
amounts of data containing more than tens of thousands of variables. In genomics studies,
it is common to collect gene expressions from p ≈ 20, 000 genes, which is often considerably
larger than the number of subjects (n) in these studies, resulting in a classical small n large
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p problem.

Here, we present a hypothetical cancer genomics microarray example to elucidate the expla-
nation of the EMSHS package. Our hypothetical example is as follows:

As a group of cancer research scientists, we are interested in identifying
which set of human genes has a significant impact on the risk for
developing a specific breast cancer. We peruse through a genomics data
set and become dumbfounded by how big the data is - 20, 000 human
genes in a series of 100 primary breast cancers. We hear about this
scalable, adaptive Bayesian shrinkage approach that we can possibly
implement to more robustly select the variables (i.e., the human genes)
that are most significant. We load in the EMSHS package and perform
our analysis.

As you can see, we are dealing with a classical small n large p problem, where n = 100 primary
breast cancers and p = 20, 000 human genes. For simplicity, we will consider a smaller n and
p: n = 25 primary breast cancers and p = 50 human genes.

We now present our EMSHS function which has the following input parameters

EMSHS <- function(y,X,mus,nu,E=NULL,

a_sigma=1,b_sigma=1,a_omega=2,b_omega=1,

w=1,eps=1e-5){}

where the input parameter - X - can be initialized based on our aforementioned observations
(n = 25) and predictors (p = 50). We generate y as X ∗B + e, where B represents our sparse
true beta matrix and e represents the error term. Additionally, we can initialize our shrinkage
and adaptivity parameters, mus and nu, respectively. Although our function accepts a vector
of shrinkage parameters, for our example, we will use a single value for mus. Our goal is to
produce estimated betas(B̂) that are close to our true beta (B)

set.seed(100)

X <- matrix(rnorm(25*50), ncol = 50) # An n by p design matrix

B <- matrix(c(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0), ncol = 1) # True beta

e <- matrix(rnorm(25*1), ncol = 1) # error

y <- matrix(X %*% B + e, ncol = 1) # An n by 1 response vector

mus <- 2.3 # The shrinkage parameter

nu <- 0.3 # The adaptivity parameter

2.1. EM Estimator: Absence of Graph Information

Let’s first consider the case where we are unaware of any structural graph information among
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the p = 50 human genes. Therefore, we would initialize the following parameters with the
default values

E <- NULL # An e by 2 matrix of edges. NULL implies there are no edges

a_sigma <- 1 # The shape parameter of the prior for residual variance

b_sigma <- 1 # The rate parameter of the prior for residual variance

a_omega <- 2 # The shape parameter of the prior for nonzero omega values

b_omega <- 1# The rate parameter of the prior for nonzero omega values

w <- 1 # A weight vector for samples

eps <- 1e-5 # The algorithm stops if relative improvement goes below eps

where E is set to NULL, suggesting that there are no prior graph information of connections
among predictors (i.e., certain human genes are not linked or correlated with other human
genes for measuring the risk of primary breast cancer, in this context), the shape parame-
ters - a sigma and a omega - and rate parameters - b sigma and b omega - are set to the
above default values because we have no specific prior distribution of the connectivity of the
predictors (i.e., genes), the weight vector w is is set to 1 because we are considering that all
predictors (i.e., human genes) are as significant as the other predictors (i.e., human genes) in
our data, and eps is set to 1e−5.

Figure 1 depicts an unstructured graph of p = 50 human genes. We now run our EMSHS

function for unstructured graph information

em_no_edge <- EMSHS(y,X,mus,nu,E=NULL,

a_sigma=1,b_sigma=1,a_omega=2,b_omega=1,

w=1,eps=1e-5)

and obtain the following outputs - niter, beta, sigma, lambda, and omega. As stated previously,
we are interested in generating B̂′s that are close to our sparse true B’s. Thus, in this
documentation, we will focus on the beta output. Refer to Chang et al. (2018) for information
about the other outputs.

We begin to extrapolate the beta output of the EMSHS function in hopes of concluding
interesting information among the human genes and the risk for primary breast cancer.

em_no_edge$beta

## [,1]

## [1,] 0.0000000

## [2,] 0.0000000

## [3,] 1.1460205

## [4,] 1.5952202

## [5,] 0.9244451

## [6,] 0.0000000

## [7,] 0.0000000
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## [8,] 0.0000000

## [9,] 0.0000000

## [10,] 0.0000000

## [11,] 0.4731300

## [12,] 0.0000000

## [13,] 0.0000000

## [14,] 0.0000000

## [15,] 0.0000000

## [16,] 0.0000000

## [17,] 0.0000000

## [18,] 0.0000000

## [19,] 0.0000000

## [20,] 0.0000000

## [21,] 0.0000000

## [22,] 0.0000000

## [23,] 0.0000000

## [24,] 0.0000000

## [25,] 0.0000000

## [26,] 0.0000000

## [27,] 0.0000000

## [28,] 0.0000000

## [29,] 0.0000000

## [30,] 0.0000000

## [31,] 0.0000000

## [32,] 0.0000000

## [33,] 0.0000000

## [34,] 0.8651741

## [35,] 0.0000000

## [36,] 0.0000000

## [37,] 0.0000000

## [38,] 0.0000000

## [39,] -0.4058939

## [40,] 0.0000000

## [41,] 0.0000000

## [42,] 0.0000000

## [43,] 0.0000000

## [44,] 0.0000000

## [45,] 0.0000000

## [46,] 0.0000000

## [47,] 0.0000000

## [48,] 0.0000000

## [49,] -0.6306526

## [50,] 0.0000000

Upon further scrutiny, we observe that there are some false negatives - gene 1, gene 2 - and
false positives - gene 11, gene 34, gene 39, gene 49 - in our B̂ matrix. That is, with no prior
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Figure 1: Unstructured graph information. This is a graphical visualization of unstruc-
tured nodes (i.e., p = 50 human genes) with no prior information of connections among the
genes.

graph information, the function is incorrectly indicating that particular genes - gene 1, gene
2 - are not influencing the risk for a certain primary breast cancer when, in fact, those genes
should have an influence. Also, the function is incorrectly indicating that particulars genes -
gene 11, gene 34, gene 39, gene 49 - are influencing the risk for primary breast cancer when,
in fact, those genes have have zero influence. For example, in our true beta matrix, genes 1
and 2 were assumed to have an influence (i.e., values were set to 1) on the risk for a certain
primary breast cancer (y). However, our estimated beta matrix shows that genes 1 and 2
do not have an influence, suggesting the presence of false negatives. Likewise, genes 10, 34,
and 38 were assumed to have no influence (i.e., values were set to 0) on the risk for a certain
primary breast cancer (y). However, our estimated beta matrix shows that genes 10, 34, and
38, do indeed, have an influence, suggesting the presence of false positives. To minimize this
paradox, we will incorporate graph information and highlight the robustness of the EMSHS
function.

2.2. EM Estimator: Presence of Graph Information

Until now, we have discussed the case where we were limited in our knowledge of any struc-
ture among the genes. Let’s now consider the case where we are aware of structural graph
information among the p = 50 human genes. We observe a structure as illustrated in Figure 2.
From this, we construct an E matrix of edges that represent the interactions among the genes.
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Now that we have constructed our E matrix, we can run our EMSHS function with our structural
information.

em_edge <- EMSHS(y,X,mus,nu,E,

a_sigma=1,b_sigma=1,a_omega=2,b_omega=1,

w=1,eps=1e-5)

We begin exploring the output given the structural information of the human genes. We see
that we have removed the false negatives and minimized the amount of false positives as a
result of our graph information, highlighting the robustness of variable selection invoked by
the EMSHS function.

em_edge$beta

## [,1]

## [1,] 0.7769684

## [2,] 1.0514431

## [3,] 0.5384613

## [4,] 0.5099838

## [5,] 0.7383805

## [6,] 0.0000000

## [7,] 0.0000000

## [8,] 0.0000000

## [9,] 0.0000000

## [10,] 0.4159533

## [11,] 0.0000000

## [12,] 0.0000000

## [13,] 0.0000000

## [14,] 0.0000000

## [15,] 0.0000000

## [16,] 0.0000000

## [17,] 0.0000000

## [18,] 0.0000000

## [19,] 0.0000000

## [20,] 0.0000000

## [21,] 0.0000000

## [22,] 0.0000000

## [23,] 0.0000000

## [24,] 0.0000000

## [25,] 0.0000000

## [26,] -0.2240287

## [27,] 0.0000000

## [28,] 0.0000000

## [29,] 0.0000000

## [30,] 0.0000000

## [31,] 0.0000000
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## [32,] 0.0000000

## [33,] 0.0000000

## [34,] 0.0000000

## [35,] 0.0000000

## [36,] 0.0000000

## [37,] 0.0000000

## [38,] 0.0000000

## [39,] 0.0000000

## [40,] 0.0000000

## [41,] 0.0000000

## [42,] 0.0000000

## [43,] 0.3092875

## [44,] 0.0000000

## [45,] 0.0000000

## [46,] 0.0000000

## [47,] 0.0000000

## [48,] 0.0000000

## [49,] 0.0000000

## [50,] 0.0000000

3. Conclusion

This vignette is designed to help the user of the EMSHS package more readily execute the
code to achieve good variable selection, prediction and computational scalability within high-
dimensional settings. For a more technical review of this scalable, adaptive Bayesian shrinkage
approach, refer to Chang et al. (2018).
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(a) Structural Layout. (b) Circular Layout

Figure 2: Structured graph information. This is a graphical visualization - represented in
a structural (a) and circular (b) layout - of nodes (i.e., significant genes) with prior information
of edges (i.e., significant connections). Here, we can leverage the association structure of the
genes and produce biologically meaningful outcomes, and lead to improvements in prediction
and variable selection.
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