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Tabulating	data	 is	both,	 trivial	and	complicated.	After	all	 it	 is	 just	about	counting	data.	But	
the	 underlying	 data	 structures	 in	 R	 are	 diverse	 and	 technically	 abstract,	 especially	 when	
there	are	more	than	two	dimensions	involved.	Thus	there	are	many	functions	to	handle	and	
process	 tables	 in	 the	 respective	 representation,	 which	 makes	 the	 situation	 somewhat	
confusing.	There	are	some	gaps	in	base	R	function	list	that	are	filled	by	DescTools.	
This	document	aims	to	briefly	summarise,	how	to	create,	manipulate	and	describe	count	data	
in	tables.	Some	examples	from	the	SAS‐documentation	FREQ	are	reproduced.		
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1 Starting Point 

The	analysis	of	categorical	data	usually	starts	with	tables.	In	R	we	have	a	comprehensive,	but	
not	complete,	toolset	to	work	with	tables	of	two	and	more	dimensions.	Thus	there’s	room	for	
extensions	with	functions	useful	in	the	analyst’s	daily	life.	DescTools	contains	quite	a	few	of	
such	functions,	which	are	described	in	this	document.	
	
The	first	question	is	how	categorical	data	is	technically	organised.	Normally	it	will	be	given	
in	one	of	the	following	three	data	structures.		
	
A)	Single	case	 B)	Frequency	 C)	Table	

The	raw	data	in	form	of	a	
data.frame	(or	a	matrix),	each	
row	contains	one	case,	here	
one	person:	

Unique	combinations	of	factors	
extended	with	their	counts,	
often	called	weights	(column	
“Freq”):	

A	multidimensional	table		
(or	an	array,	matrix):	
	

Untable(UCBAdmissions) 
 
        Admit Gender Dept 
1    Admitted   Male    A 
2    Admitted   Male    A 
3    Admitted   Male    A 
4    Admitted   Male    A 
5    Admitted   Male    A 
6    Admitted   Male    A 
7    Admitted   Male    A 
... 
 
511  Admitted   Male    A 
512  Admitted   Male    A 
513  Rejected   Male    A 
514  Rejected   Male    A 
 
... 

data.frame(UCBAdmissions) 
 
      Admit Gender Dept Freq 
1  Admitted   Male    A  512 
2  Rejected   Male    A  313 
3  Admitted Female    A   89 
4  Rejected Female    A   19 
5  Admitted   Male    B  353 
6  Rejected   Male    B  207 
7  Admitted Female    B   17 
8  Rejected Female    B    8 
9  Admitted   Male    C  120 
10 Rejected   Male    C  205 
11 Admitted Female    C  202 
12 Rejected Female    C  391 
12 Rejected Female    C  391 
 
... 

UCBAdmissions 
 
, , Dept = A 
 
          Gender 
Admit      Male Female 
  Admitted  512     89 
  Rejected  313     19 
 
, , Dept = B 
 
          Gender 
Admit      Male Female 
  Admitted  353     17 
  Rejected  207      8 
 
, , Dept = C 
... 

Either	 we	 have	 the	 raw	 data	 arranged	 case‐by‐case	 in	 a	 data.frame	 (case	 A).	 Then	 a	
contingency	table	can	be	built	by	tabulating	the	data.	There	are	several	commands	for	this	
described	in	chapter	“Tabulate”.		
Or	 the	 data	 are	 given	 as	 a	 combination	 of	 factor	 levels	 and	 one	 count	 variable	 (typically	
organized	as	a	data.frame	too)	(case	B).	The	first	line	in	this	representation	means,	that	we	
have	512	men	admitted	to	department	A	in	our	sample.	This	corresponds	to	the	cell	[1,	1,	1]	
in	the	representation	C).	In	representation	A	we	would	have	512	rows	with	the	exactly	same	
content,	namely	Admitted/Male/A.		
How	to	directly	create	such	a	structure	 is	described	 in	“Expanding”.	There	are	 functions	to	
convert	this	structure	to	a	table	or	to	recreate	the	raw	dataset.	This	is	detailed	in	the	chapter	
“Convert”.	
When	 the	data	 are	 given	directly	 as	 a	 table	 (case	C),	 there	 are	 again	 several	ways	how	 to	
enter	that	into	R.	This	is	the	content	of	the	first	chapter	“Create	tables”.		
How	 to	 process	 tables	 is	 described	 in	 the	 chapters	 “Reorganize”,	 “Aggregate”,	 “Append”,	
“Convert”.	
	
Usually	B)	will	be	the	most	economic	representation	of	frequency	data	whereas	the	case‐by‐
case	form	in	A)	is	the	least	(provided	the	data	set	is	purely	categorical).	The	built‐in	data	sets	
from	the	R	base	system	that	are	purely	categorical	usually	come	in	the	form	of	tables	(C).	
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2 Create Table 

2.1 Creating from the scratch 

There	 are	 several	 ways	 to	 enter	 contingency	 table	 data	 into	 R.	 Let’s	 illustrate	 here	 some	
approaches	with	a	table	concerning	party	affiliation	by	gender:	
	

Gender	 Party	

	 Democrat Independent Republican	

M	 762 327 468	
F	 484 239 477	

	
	
The	first	approach	uses	the	function	rbind	and	builds	a	matrix	row	by	row.	The	as.table()	
function	lets	R	know	that	the	matrix	represents	a	contingency	table	of	counts:	
	
tab <- as.table(rbind(c(762, 327, 468), c(484, 239, 477))) 
dimnames(tab) <- list(gender = c("M", "F"), 
                      party  = c("Democrat", "Independent", "Republican")) 
tab 
 
##      party 
## gender Democrat Independent Republican 
##     M      762         327        468 
##     F      484         239        477 
  

The	exactly	same	result	can	be	created	by	the	second	approach,	using	the	function	matrix.	
Note	that,	by	default,	matrix()	uses	the	elements	supplied	by	columns	in	the	result,	unless	
you	specify	byrow=TRUE.		
 
as.table(matrix(c(762, 327, 468, 484, 239, 477), nrow=2, byrow=TRUE, 
                dimnames=list(gender= c("M", "F"), 
                              party = c("Democrat", "Independent", "Republican")))) 
	
	
The	third	way	uses	TextToTable	to	convert	a	text	to	a	table.	Within	this	function	
read.table	is	used	to	enter	the	data	and	to	convert	the	data.frame	to	a	table.	header=TRUE 	
will	take	the	names	of	the	variables	from	its	first	line.		
	
The	column	names	and	row	names	will	automatically	be	chosen,	if	the	first	row	contains	one	
fewer	field	than	the	number	of	columns.	The	dimension	names	can	be	provided	with	the	
specific	argument: 	
 
txt <- " 
   Democrat, Independent, Republican 
M, 762, 327, 468 
F, 484, 239, 477" 
 
TextToTable(txt, sep=",", dimnames=c("gender", "party")) 

	

rbind
as.table 

TextToTable

matrix

Table	2.1				Tabulating	
Party	versus	Gender,	
Agresti	(2007)	p.	39	
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Higher	dimensional	 arrays	 can	be	defined	with	 the	 function	array	 by	using	 the	 argument	
dim:	
 
salary <- array( 
      c(38, 12, 102, 141, 12, 9, 136, 383), 
      dim=c(2, 2, 2), 
      dimnames=list(exposure = c("exposed", "not"),  
                    disease  = c("case", "control"), 
                    salary   = c("<1000", ">=1000")) 
                    ) 

	
	
Note	how	the	dimensions	are	organised:		
			The	first	dimension	corresponds	to	the	rows,		
			the	second	to	the	columns,	the	third	to	the	depth,	and	so	on.	
	

Figure	2.1				3‐dimensional	table	

	
	
Higher	dimensional	 tables	 condensed	 in	 flat	 tables	with	more	 than	one	 column,	 resp.	 row	
variable,	 can	 be	 created	 from	 the	 appropriate	 text	 chunk	 by	 means	 of	 the	 base	 function	
read.ftable.	(Beware	not	to	insert	spaces	at	the	beginning	of	the	lines.)	
 
txt <-  
"          Sex  Male                  Female                  
           Eye Brown Blue Hazel Green  Brown Blue Hazel Green 
Hair                                                     
Black        32   11    10     3     36    9     5     2 
Brown        53   50    25    15     66   34    29    14 
Red          10   10     7     7     16    7     7     7 
Blond         3   30     5     8      4   64     5     8 
" 
tab <- as.table(read.ftable(textConnection(txt))) 

	
	
	
	
2.2 Building categories from a numeric variable 

When	a	numeric	variable	has	to	be	cut	into	intervals	there’s	the	function	hist()	for	creating	
a	histogram.	The	DescTools	function	Freq()	is	designed	to	give	the	numeric	representation	
of	a	histogram.	It	displays	the	frequencies	and	the	percentages	of	a	binned	variable	with	the	
same	default	logic	as	hist().	The	single	and	cumulative	frequencies	values	are	reported.	
 
Freq(d.pizza$temperature) 
 
##      level freq  perc cumfreq cumperc 
## 1  [15,20]    3 0.003       3   0.003 
## 2  (20,25]   30 0.026      33   0.028 
## 3  (25,30]   58 0.050      91   0.078 
## 4  (30,35]   48 0.041     139   0.119 
## 5  (35,40]  100 0.085     239   0.204 
## 6  (40,45]  130 0.111     369   0.315 
## 7  (45,50]  219 0.187     588   0.503 
## 8  (50,55]  268 0.229     856   0.732 
## 9  (55,60]  241 0.206    1097   0.938 
## 10 (60,65]   73 0.062    1170   1.000 

	 	
hist(d.pizza$temperature) 

Figure	2.2			Histogram	of	a	numeric	variable.	

	
   

, , salary = >=1000 
 
         disease 
exposure  case control 
  exposed   12     136 
  not        9     383 

, , salary = <1000 
 
         disease 
exposure  case control 
  exposed   38     102 
  not       12     141 1

2	

3

dim

array

read.ftable

Freq

hist
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2.3 Expanding 

For	small	frequency	tables,	it	is	often	convenient	to	enter	them	in	frequency	form	using	
expand.grid()	for	the	factors	and	c()	to	list	the	counts	in	a	vector.		
 
tab <- data.frame(expand.grid( 
   Hair  = c("Black", "Brown", "Red", "Blond"), 
   Eye   = c("Brown", "Blue", "Hazel", "Green"), 
   Sex   = c("Male", "Female")), 
   count = c(32,53,10,3,11,50,10,30,10,25,7,5,3,15,7,8, 
             36,66,16,4,9,34,7,64,5,29,7,5,2,14,7,8) ) 
 

expand.grid	 will	 create	 all	 the	 interactions	 between	 the	 given	 factors.	 data.frame	 will	
bind	them	with	the	count	variable,	denominating	the	number	of	observations.	This	will	be	a	
type	 B	 representation	 of	 count	 data,	 which	 can	 be	 converted	with	 xtabs	 to	 a	 table.	 (See	
Chapter	“Convert”)	
	
	
2.4 SAS datalines 

Longstanding	 predominance	 of	 SAS	 entails,	 that	 small	 data	 tables	 in	 examples	 and	
documents	are	often	reported	in	the	SAS	datalines	format.	Creating	a	table	based	on	this	in	R	
is	not	 straight	 forward,	 as	 there	might	be	more	 than	one	 case	per	 row	 (as	 in	 the	 example	
below).	
The	 function	 ParseSASDatalines	 parses	 the	 syntax	 and	 creates	 a	 table	 named	 after	 the	
data	statement,	using	given	column	names	(specified	by	the	keyword	input).	
 
ParseSASDatalines(" 
  data SummerSchool; 
  input Gender $ Internship $ Enrollment $ Count @@; 
  datalines; 
  boys  yes yes 35  boys  yes no 29 
  boys   no yes 14  boys   no no 27 
  girls yes yes 32  girls yes no 10 
  girls  no yes 53  girls  no no 23 
;") 
 

The	 command	 above	 will	 directly	 (and	 silently)	 create	 a	 new	 data	 object	 named	
SummerSchool	in	the	GlobalEnvironment.	
	
	

3 Tabulate 

The	built‐in	data	set	HairEyeColor	has	the	class	table.	Let’s	turn	this	table	into	a	case‐by‐case	
data	frame	as	a	base	for	the	subsequent	analysis.	Untable	does	this	job.	
 
d.col <- Untable(HairEyeColor) 
head(d.col, 3) 
 
## Hair   Eye  Sex 
## 1 Black Brown Male 
## 2 Black Brown Male 
## 3 Black Brown Male 
 

From	here	we	can	start	tabulating	again.	The	simplest	case	is	to	tabulate	a	single	vector.	The	
function	table	yields	the	absolute	frequencies	and	prop.table	the	proportions:	
 
table(d.col$Hair) 
 
## Black Brown   Red Blond  
##   108   286    71  127 

 
prop.table(table(d.col$Hair)) 
 
##    Black     Brown       Red     Blond  
## 0.1824324 0.4831081 0.1199324 0.2145270 

 

expand.grid

ParseSAS‐
   Datalines 

Untable

table
prop.table 
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A	 combination	 of	 both	 extended	with	 the	 cumulative	 sums	 for	 both,	 absolute	 and	 relative	
frequencies,	can	be	produced	by	Freq	(here	ordered	by	decreasing	frequency):	
 
Freq(d.col$Hair, ord="desc") 
 
##   level freq  perc cumfreq cumperc 
## 1 Brown  286 0.483     286   0.483 
## 2 Blond  127 0.215     413   0.698 
## 3 Black  108 0.182     521   0.880 
## 4   Red   71 0.120     592   1.000 
 

By	means	of	the	table	function	we	can	produce multidimensional	contingency	tables	(aka.	
crosstabs)	as	well.	We	use	the	command	with	here,	so	we	can	avoid	having	to	qualify	every	
column	name	with	the	name	of	the	data.frame	(which	makes	the	code	more	readable).	
 
with(d.col, table(Hair, Eye)) 
 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    68   20    15     5 
##   Brown   119   84    54    29 
##   Red      26   17    14    14 
##   Blond     7   94    10    16 

	
The	first	entered	variable	will	be	the	row	variable,	the	second	one	the	column	variable.	
Missing	values	are	ignored	by	default.	In	order	to	include	NA	as	a	category	in	counts,	use	the	
option	useNA="always".	
A	 relative	 frequency	 table	 can	be	produced	using	 the	 function	prop.table,	which	 takes	 a	
table	object	as	argument:	
 
with(d.col, prop.table(table(Hair, Eye), margins=NULL)) 
 
##        Eye 
## Hair          Brown        Blue       Hazel       Green 
##   Black 0.114864865 0.033783784 0.025337838 0.008445946 
##   Brown 0.201013514 0.141891892 0.091216216 0.048986486 
##   Red   0.043918919 0.028716216 0.023648649 0.023648649 
##   Blond 0.011824324 0.158783784 0.016891892 0.027027027 
 

The	function	PercTable	combines	that	and	allows	adding	marginal	sums	in	one	step:		
 
PercTable(Hair ~ Eye, data=d.col, rfrq="111", margins=c(1,2)) 
 
##             Eye  Brown   Blue  Hazel  Green    Sum 
## Hair                                               
## Black freq          68     20     15      5    108 
##       perc        .115   .034   .025   .008   .182 
##       p.row       .630   .185   .139   .046      . 
##       p.col       .309   .093   .161   .078      . 
## Brown freq         119     84     54     29    286 
##       perc        .201   .142   .091   .049   .483 
##       p.row       .416   .294   .189   .101      . 
##       p.col       .541   .391   .581   .453      . 
## Red   freq          26     17     14     14     71 
##       perc        .044   .029   .024   .024   .120 
##       p.row       .366   .239   .197   .197      . 
##       p.col       .118   .079   .151   .219      . 
## Blond freq           7     94     10     16    127 
##       perc        .012   .159   .017   .027   .215 
##       p.row       .055   .740   .079   .126      . 
##       p.col       .032   .437   .108   .250      . 
## 
## Sum   freq         220    215     93     64    592 
##       perc        .372   .363   .157   .108  1.000 
##       p.row          .      .      .      .      . 
##       p.col          .      .      .      .      . 

	

Freq

PercTable
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There	are	more	options,	as	expected	values	or	standard	residuals,	which	can	optionally	be	
integrated.		
	
The	marginal	tables	can	be	produced	by	R	base	function	margin.table	or	by	the	somewhat	
extended	function	Margins	in	DescTools: 
 
Margins(tab, ord="desc") 
 
## $Hair 
##   level freq  perc cumfreq cumperc 
## 1 Brown  286 0.483     286   0.483 
## 2 Blond  127 0.215     413   0.698 
## 3 Black  108 0.182     521   0.880 
## 4   Red   71 0.120     592   1.000 

 

 
 
 
## $Eye 
##   level freq  perc cumfreq cumperc 
## 1 Brown  220 0.372     220   0.372 
## 2  Blue  215 0.363     435   0.735 
## 3 Hazel   93 0.157     528   0.892 

## 4 Green   64 0.108     592   1.000 

 

table	does	not	come	with	a	formula	interface,	but	the	xtabs	function	does.	This	allows	us	to	
create	multidimensional	crosstabulations	using	formula	style	input.	The	result	is	a	
contingency	table	in	array	format,	whose	dimensions	are	determined	by	the	terms	on	the	
right	side	of	the	formula.	
	
	

4 Reorganize 

Say	we	created	a	three	dimensional	table	with	Hair,	Eye	and	Sex	as	variables	and	typically	got	
a	3‐dim	array	as	result.	This	will	be	displayed	as:	
 
(tab <- with(d.col, table(Hair, Eye, Sex))) 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
 
	

 
 
##, , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8 
##

	
To	combine	this	multidimensional	structure	into	a	flat	table	while	preserving	all	the	details,	
there’s	 the	 function	ftable.	 The	variables	 to	be	placed	 in	 the	 rows	 can	be	defined	by	 the	
argument	row.vars,	which	can	be	a	vector	 (denoting	multiple	dimensions)	containing	 the	
dimension	numbers	or	the	names,	if	there	are	any	defined.		
So	to	put	Eye	(variable	2)	and	Sex	(variable	3)	in	the	rows	and	Hair	as	column	variable,	we	
can	use	both,	subscripts	or	dimension	names,	writing		
 
ftable(tab, row.vars = c(2, 3)) 
ftable(tab, row.vars = c("Eye", "Sex")) 
 
##              Hair Black Brown Red Blond 
## Eye   Sex                               
## Brown Male           32    53  10     3 
##       Female         36    66  16     4 
## Blue  Male           11    50  10    30 
##       Female          9    34   7    64 
## Hazel Male           10    25   7     5 
##       Female          5    29   7     5 
## Green Male            3    15   7     8 
##       Female          2    14   7     8 

Margins

ftable
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The	tab,	as	we	constructed	it,	has	the	Hair	as	rows	(1),	the	Eye	as	columns	(2),	and	the	Sex	as	
third	dimension	(3)	defined.	The	dimensions	and	dimension	names	follow	the	defined	order:	
 
dimnames(tab) 
 
## $Hair 
## [1] "Black" "Brown" "Red"   "Blond" 
## 
## $Eye 
## [1] "Brown" "Blue"  "Hazel" "Green" 
## 
## $Sex 
## [1] "Male"   "Female" 
 

If	we	have	to	change	the	order	of	 the	dimensions,	we	can	make	use	of	 the	base‐R	 function	
aperm.	Let’s	say	we	wanted	Eye	as	row	variable	and	Sex	a	column	variable	and	consequently	
Hair	 as	 3th	 variable,	 we	 can	 tell	aperm	 to	 set	 dimension	 2	 on	 the	 first	 position,	 3	 on	 the	
second	and	1	on	the	third	position.	So	we	get:	
 
aperm(tab, c(2,3,1)) 
 
##, , Hair = Black 
## 
##        Sex 
## Eye     Male Female 
##   Brown   32     36 
##   Blue    11      9 
##   Hazel   10      5 
##   Green    3      2 
## 

	

 
 
##, , Hair = Brown 
## 
##        Sex 
## Eye     Male Female 
##   Brown   53     66 
##   Blue    50     34 
## 

...	
	
The	following	would	by	the	way	not	work:	
 
tab["Eye", "Sex", "Hair"] 
Error in tab["Eye", "Sex", "Hair"] : subscript out of bounds 

	
	
To	 reorder	 the	 sequence	 of	 the	 levels	 (within	 a	 dimension)	 in	 our	 table,	 we	 could	 use	
reorder.factor.	Say	we	would	like	to	have	the	sequence	Blue,	Green,	Hazel,	Brown	for	the	
Eye	colour.	Of	course,	when	having	the	raw	data,	we	would	use		

factor(d.col$Eye, levels=c("Blue", "Green", "Hazel", "Brown")) 

and	any	 table	afterwards	would	 inherit	 this	 level	order.	But	how	can	we	change	this	 in	an	
already	created	 table?	The	answer	 is	obvious	 (but	may	yet	be	unexpected	 in	 this	context):	
Use	the	subscript!	This	works	with	the	level	names	as	well	as	with	the	index	positions.		
 
 
tab[ , c("Blue", "Green", "Hazel", "Brown"), ] 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Blue Green Hazel Brown 
##   Black   11     3    10    32 
##   Brown   50    15    25    53 
##   Red     10     7     7    10 
##   Blond   30     8     5     3 
## 
 

 
 
## , , Sex = Female 
## 
##        Eye 
## Hair    Blue Green Hazel Brown 
##   Black    9     2     5    36 
##   Brown   34    14    29    66 
##   Red      7     7     7    16 
##   Blond   64     8     5     4 

 
 

	

aperm
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For	 simply	 reversing	 the	 levels	 there’s	 the	 function	 Rev,	 which	 has	 a	 table	 interface	
implemented.	 The	 function	 accepts	 a	 margins	 argument,	 defining	 the	 dimensions	 whose	
levels	should	be	reversed.	Compare	the	reversed	levels	of	Hair	and	Sex:	
 
tab 
 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    32   11    10     3 
##   Brown    53   50    25    15 
##   Red      10   10     7     7 
##   Blond     3   30     5     8 
## 
## , , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Black    36    9     5     2 
##   Brown    66   34    29    14 
##   Red      16    7     7     7 
##   Blond     4   64     5     8 
 

Rev(tab, margin = c(1, 3)) 
 
## , , Sex = Female 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Blond     4   64     5     8 
##   Red      16    7     7     7 
##   Brown    66   34    29    14 
##   Black    36    9     5     2 
## 
## , , Sex = Male 
## 
##        Eye 
## Hair    Brown Blue Hazel Green 
##   Blond     3   30     5     8 
##   Red      10   10     7     7 
##   Brown    53   50    25    15 
##   Black    32   11    10     3 

Renaming	level	names	can	be	achieved	by	refining	the	dimension	names.	

dimnames(tab)$Sex <- c("men", "women") 

	
	

5 Aggregate 

Sometimes	we	might	want	to	aggregate	an	existing	table	along	one	or	several	dimensions..	
Say	we’d	like	to	get	rid	of	the	Hair	dimension,	but	retain	all	the	frequency	information	for	the	
other	 dimensions.	 For	 this	 we	 can	 use	 apply	 as	 we	 would	 in	 the	 case	 of	 a	 matrix.	 The	
function	 takes	as	well	vectors	 for	 the	margins.	The	order	of	 the	subscripts	specified	 in	 the	
apply	statement	determines	the	order	of	the	subscripts	in	the	result.	
So	if	we	sum	up	all	cases	along	the	1st	dimension	(Hair)	and	retain	the	other	two	(2,	3)	we	
would	get:	
 
apply(tab, c(2,3), sum) 
 
##        Sex 
## Eye     Male Female 
##   Brown   98    122 
##   Blue   101    114 
##   Hazel   47     46 
##   Green   33     31 
 

 
apply(tab, 1, sum) 
 
## Black Brown   Red Blond  
##   108   286    71   127 

This	works	with	the	dimension	names	too:	apply(tab, c("Eye", "Sex"))	will	deliver	the	
same	result.	
Single	margins	could	be	calculated	correspondingly,	as	demonstrated	above.	
	
If	tab	was	created	with	xtabs,	 it	can	be	aggregated	directly	by	using	the	formula	interface,	
which	typically	is	clearer	and	more	readable.		
 
xtab <- xtabs(~., d.col) 
xtabs(Freq ~ Eye + Sex, xtab) 
 
##       Sex 
## Eye     Male Female 
##   Brown   98    122 
##   Blue   101    114 
##   Hazel   47     46 
##   Green   33     31 

Rev

apply

xtabs
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If	we	want	to	combine	some	levels,	we	can	with	CollapseTable.	Say	we	want	to	fuse	brown	
and	hazel	eyes	to	a	new	category	Browny,	as	well	as	just	having	two	groups	of	Hair,	namely	
Dark	and	Fair:	
 
CollapseTable(tab, Eye=c("Browny","Blue","Browny","Green"),  
                   Hair=c("Dark","Dark","Fair","Fair")) 
 
## , , Sex = Male 
## 
##       Eye 
## Hair   Browny Blue Green 
##   Dark    120   61    18 
##   Fair     25   40    15 

	

 
 
##, , Sex = Female 
## 
##       Eye 
## Hair   Browny Blue Green 
##   Dark    136   43    16 

##   Fair     32   71    15 

	
	

6 Append 

Sometimes	 we	 need	 to	 paste	 tables	 together,	 for	 instance	 when	 two	 tables	 of	 the	 same	
dimension	should	be	put	together	to	a	3‐dimensional	array.	In	contrast	to	the	2‐dimensional	
case,	 where	 the	 functions	 rbind	 and	 cbind	 exist,	 base	 R	 does	 not	 contain	 a	 respective	
function	for	higher	dimensional	tables.	In	DescTools	there’s	the	function	Abind	included	for	
this	purpose	(indeed	borrowed	from	the	abind	package).	
	
a <- HairEyeColor[,,1]     # male table 
b <- HairEyeColor[,,2]     # female table 
 
Abind(Male=a, Female=b, along=3) 
 
## , , Male 
## 
##       Brown Blue Hazel Green 
## Black    32   11    10     3 
## Brown    53   50    25    15 
## Red      10   10     7     7 
## Blond     3   30     5     8 
## 

 
 
## , , Female 
## 
##       Brown Blue Hazel Green 
## Black    36    9     5     2 
## Brown    66   34    29    14 
## Red      16    7     7     7 
## Blond     4   64     5     8 

	
The	first	step	separates	the	table	 for	males	 from	the	females.	Abind	 reverses	this	step	and	
binds	the	two	tables	together	again.	This	can	happen	along	all	possible	dimensions.		
In	the	example	above	a	new	dimension	is	introduced	by	setting	along	=	3.			
Abind(a,b,along=2) would	 bind	 the	 tables	 by	 columns	 (as	 cbind	 does),	 whereas	
Abind(a,b,along=1) would	give	the	same	result	as	rbind(a,b).	
	
	
	

7 Convert 

Time	and	again	newbies	wonder	how	to	convert	tables	from	one	to	the	other	form.	Base	R	
comprises	most	of	the	required	functions,	but	not	quite	all.		
Let’s	say	we	have	the	three	forms	of	table	given	as:	

d.col <- Untable(HairEyeColor)  # case-by-case  A) 
d.weight <- as.data.frame(HairEyeColor) # frequency   B) 
tab <- HairEyeColor    # table   C) 

	
	

CollapseTable

Abind
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The	conversions	can	be	made	as	follows.	
	
A)	 B)	 1) as.data.frame(table(d.col))  

2) aggregate(rep(1, nrow(d.col)),  

             by=d.col, FUN=length) 

This	is	actually	A)	to	C)	to	B)!	
Solution	2)	will	yield	the	
nonzero	entries	only.	

A)	 B)	 Untable(d.weight) library(DescTools)	

A)		 	 C)	 table(d.col) 	

A)	 	 C)	 Untable(tab) 	

	 B)	 C)	 xtabs(Freq ~ ., d.weight) 	

	 B)	 C)	 as.data.frame(tab) If	tab	is	defined	as	matrix,	
as.data.frame	has	to	be	
specified	explicitly	as	
as.data.frame.table!	

	
	
The	conversion	of	an	xtabs	object	to	a	matrix	would	normally	not	be	carried	out	in	base	R.	
The	class	would	remain	(“xtabs”,	“table”)	after	calling	the	as.matrix	function.	All	attributes	
won’t	be	touched	as	well.	
	
str(as.matrix(htab)) 
##  xtabs [1:2, 1:7] 119 1070 16 60 12 14 7 4 3 0 ... 
##  - attr(*, "dimnames")=List of 2 
##   ..$ race : chr [1:2] "Black" "White" 
##   ..$ nvics: chr [1:7] "0" "1" "2" "3" ... 
##  - attr(*, "class")= chr [1:2] "xtabs" "table" 
##  - attr(*, "call")= language xtabs(formula = freq ~ race + nvics,  
          data = homicide) 
 

DescTools	will	add	an	xtabs	interface	for	as.matrix	such,	that	the	class	and	call	attributes	will	
be	adapted.	
 
library(DescTools) 
 
str(as.matrix(htab)) 
##  num [1:2, 1:7] 119 1070 16 60 12 14 7 4 3 0 ... 
##  - attr(*, "dimnames")=List of 2 
##   ..$ race : chr [1:2] "Black" "White" 
##   ..$ nvics: chr [1:7] "0" "1" "2" "3" ... 

	
	
	

8 Print and Format 

All	 table	 connected	 classes	 have	 their	 print	 methods	 which	 do	 not	 call	 for	 any	 further	
explanation.	There	are	several	approaches	out	there,	how	to	turn	tables	into	XML,	HTML	or	
LATEX.	DescTools	contains	 two	 functions	 for	sending	 tables	 to	MS‐Word.	WrdTable	would	
create	the	table	in	Word	and	transfer	the	cell	information	appropriately.	
	
Let’s	create	an	artificial	 table,	with	one	cell	being	0	and	one	being	NA.	Then	we	format	the	
counts	with	a	big.mark	and	set	0	digits.	The	zero	values	should	be	expressed	as	“‐“	and	the	
NAs	as	“missing”.	Finally	all	should	be	aligned	to	the	right.	
 
(tab <- as.table(matrix(c(2000, 0, 34, NA), nrow=2))) 
##      A    B 
## A 2000   34 
## B    0      
 
tab[] <- Format(tab, big.mark = "'", digits=0, zero.form="-", na.form="Missing") 

as.data.frame
 
aggregate 
 
Untable 
 
xtabs 

Format
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tab[] <- StrAlign(tab, "\\r")   # right alignement 
tab 
 
##         A       B 
## A   2'000      34 
## B       - Missing 
 

The	counts	and	percentages	in	PercTable	can	be	formatted	by	setting	the	options	fmt.abs	
and	 fmt.per.	 The	 percentages	 are	 formatted	 as	 .000	 and	 the	 counts	 with	 a	 space	 for	
big.mark.	
 
options(fmt.abs=structure(list(digits=1, big.mark=" "), class="fmt")) 
options(fmt.per=structure(list(digits=3, leading="drop"), class="fmt")) 
PercTable(tab) 
         
##               A       B 
##                         
## A freq  2 000.0    34.0 
##   perc     .720    .012 
##                         
## B freq      0.0   745.0 
##   perc     .000    .268 
 

Note	that	by	applying	formats	to	the	cells,	the	numeric	values	turn	to	strings	and	cannot	be	
subsequently	used	for	further	calculating.	
	
FixToTab	 is	 trying	 to	chop	 the	 fixed	 font	output	of	a	 table	given	as	 text	 to	a	 tab	delimited	
table.		
	
	

9 Export 

DescTools	contains	functions	for	exporting	tables	to	Word	or	Excel.	Exporting	to	Excel	would	
at	least	handle	“ftables”	adequately.		
 
tab <- ftable(HairEyeColor, col.vars = c("Sex", "Hair")) 
XLView(tab) 
 

 
	
Figure	9.1				Excel	sheet	containing	exported	table	from	R.	

	
The	Word‐Interface	is	already	somewhat	more	elaborated	(but	still	unsatisfactory):	
 
ToWrd (tab, wrd=GetNewWrd()) 

 

Sex  Male      Female  

        Hair 
Eye  

Black  Brown  Red  Blond Black Brown Red Blond 

Brown  32  53  10  3 36 66 16 4 
Blue  11  50  10  30 9 34 7 64 
Hazel  10  25  7  5 5 29 7 5 
Green  3  15  7  8 2 14 7 8 

XLView

WrdTab
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10 Plot 

The	usual	representation	of	a	table	 is	a	mosaicplot.	Such	a	plot	will	display	the	conditional	
frequencies	in	two	directions.	(Note	that	the	important	encoding	is	length.)		
	
tab <- as.table(apply(HairEyeColor, c(1,2), sum)) 
tab <- tab[,c("Brown","Hazel","Green","Blue")] 
cols <- SetAlpha(c("sienna4", "burlywood", "chartreuse3", "slategray1"), 0.6) 
 
PlotMosaic(tab, col=cols, main = "Hair ~ Eye") 
 

This	will	display	the	following	fact:	
 
 
 
 
PercTable(tab, freq=FALSE, rfrq="010") 
 
##       Eye 
##        Brown Hazel Green  Blue 
## Hair                           
## Black  63.0% 13.9%  4.6% 18.5% 
## Brown  41.6% 18.9% 10.1% 29.4% 
## Red    36.6% 19.7% 19.7% 23.9% 
## Blond   5.5%  7.9% 12.6% 74.0% 
 
prop.table(margin.table(tab, 1)) 
## Hair 
##  Black   Brown     Red   Blond  
## 0.1824  0.4831  0.1199  0.2145 

	

Figure	10.1				Mosaicplot	of		Hair	colour	~	Eye	colour.	

	
The	plot	makes	 the	story	quite	visible!	About	half	of	 the	sample	has	brown	hair,	 red	 is	 the	
less	frequent	hair	colour	observed	(~5‐10%).	Within	the	black	haired	people	more	than	50%	
have	brown	eyes.		Blond	people	tend	to	have	blue	eyes.	The	percentage	of	green	eyed	people	
is	biggest	within	red	haired	guys,	but	with	20%	not	as	pronounced	as	maybe	expected.	And	
so	on.	
The	mosaicplot	has	an	order.	At	first	the	hair	colour	is	split	and	afterwards,	within	the	single	
hair	 colour,	 the	 eye	 colour.	 This	 corresponds	 to	 a	 relationship	 Hair	 ~	 Eye.	 If	 the	 inverse	
relation	is	the	interesting	one,	the	table	can	simply	be	transposed.	This	side	of	the	coin	then	
looks	like	(the	colours	are	coding	the	dependent	variable,	here	“Hair”):	
 
cols <- SetAlpha(c("moccasin", "salmon1", "wheat3", "gray32"), 0.8) 
PlotMosaic(tab, col=cols, main = "Hair ~ Eye", horiz = FALSE) 
 

	
Figure	10.2				Mosaicplot	of		Eye	colour	~	Hair	colour.	
	

 
PercTable(tab, freq=FALSE, rfrq="001") 
 
##       Eye 
##        Brown Hazel Green  Blue 
## Hair                           
## Black  30.9% 16.1%  7.8%  9.3% 
## Brown  54.1% 58.1% 45.3% 39.1% 
## Red    11.8% 15.1% 21.9%  7.9% 
## Blond   3.2% 10.8% 25.0% 43.7% 
 
prop.table(margin.table(tab, 2)) 
## Eye 
##  Brown  Hazel  Green   Blue  
## 0.3716 0.1571 0.1081 0.3632 

PlotMosaic
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Another	 –	 rather	 new	 –	 idea	 is	 to	 describe	 proportions	 in	 circles.	 It	 emphasises	 the	
association	structure	of	the	data.	The	left	side	of	the	circle	represents	the	rows,	say	the	hair	
colour,	and	the	right	one	the	columns,	thus	the	eye	colour.	The	advantage	is	that	we	see	both	
marginal	densities	in	the	plot.	
	
	
	

	
	
Figure	10.3			Circular	plot	of	HairEyeColor.	
	

 
 
 
 
cols <- c("moccasin", "salmon1",  
          "wheat3", "gray32", 
          "slategray1", "chartreuse3", 
          "burlywood", "sienna4") 
 
PlotCirc(t(tab), acol=cols) 

Looking	 at	 the	blue	 eyes	 first	 of	 all	we	notice,	 that	 roughly	 a	 third	of	 the	 sample	has	blue	
eyes.	Within	 those,	 about	 40%	have	 blond	 hair,	 10%	 red	 hair,	 40%	brown	hair	 and	 again	
10%	black	hair.	When	we	follow	the	band	from	the	blue	eyed	to	the	blond	haired,	we	notice	
that	blue	eyed	people	form	~75%	of	the	blond	haired	group.	
Obviously	we	see	more	(conditional)	proportions	in	a	circular	plot	than	on	a	mosaic	plot.	A	
disadvantage	 is	 that	 angles	 are	 nowhere	 near	 as	 good	 to	 compare	 as	 the	 lengths	 in	 the	
mosaic.	
	
	

11 Save 

For	saving	the	table,	there’s	the	usual	R‐base	command:	
 
save(tab, file = "HairEyeColor.rda") 
 

 

12 Descriptions, Statistics and Tests 

Let’s	 create	 a	 2‐dimensional	 table	 and	 describe	 it	 with	 some	 bells	 and	 whistles.	 The	
argument	verbose = high	will	maximize	the	volume	of	output:	
	
# aggregate 3-d table to Eye and Hair colour only: 
tab <- as.table(apply(HairEyeColor, c(2,3), sum))	 
 
# order the levels along colours: 
tab <- tab[c("Brown","Hazel","Green","Blue"),] 
 
   

PlotCirc

Eye Hair 

save
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# describe the table 
Desc(tab, verbose="high") 
 
## Summary:  
## n: 592, rows: 4, columns: 2 
##  
## Pearson's Chi-squared test: 
##   X-squared = 1.5298, df = 3, p-value = 0.6754 
## Pearson's Chi-squared test (cont. adj): 
##   X-squared = 1.5298, df = 3, p-value = 0.6754 
## Likelihood Ratio: 
##   X-squared = 1.5294, df = 3, p-value = 0.6755 
## Mantel-Haenszel Chi-squared: 
##   X-squared = 0.2438, df = 1, p-value = 0.6214 
                                  

 

 

 

   

The	first	line	reports	the	total	n	in	the	table	and	the	dimension,	so	we	have	592	Persons	in	a	
table	with	4	rows	and	 two	columns.	Then	several	Chi‐Square‐tests	are	calculated.	The	null	
hypothesis	 is	 that	 the	 eye	 colour	 is	 not	 associated	 with	 the	 sex.	 The	 small	 value	 of	 the	
2‐statistic,	 1.5298,	 and	 the	 p‐value	 of	 0.6754	 indicate	 that	 the	 null	 hypothesis	 can’t	 be	
rejected	at	the	0.05	level	of	significance.	Thus	we	would	conclude	that	the	observation	does	
not	indicate	an	association	between	eye	colour	and	sex	of	the	person.	
The	Pearson	2‐statistic	involves	the	differences	between	the	observed	cell	frequencies	and	
the	 expected	 deviation‐frequencies.	 Following	 a	 rule	 of	 thumb	 the	 expected	 frequency	 in	
every	cell	of	 the	 table	should	not	be	 less	 than	5.	R	will	print	a	message,	 if	 this	condition	 is	
violated.		
The	 continuity‐adjusted	 2‐test	 statistic	 consists	 of	 the	 Pearson	 2	 modified	 with	 an	
adjustment	 for	 continuity.	 As	 the	 sample	 size	 increases,	 the	 difference	 between	 the	
continuity‐adjusted	and	Pearson	2	decreases.	Thus	in	very	large	samples	(as	we	have	here)	
the	two	statistics	are	almost	the	same.	This	test	statistic	is	also	an	alternative	to	Pearson’s	2	
if	any	of	the	expected	values	in	a	2x2	table	are	less	than	5.	Some	prefer	to	use	the	continuity‐
adjusted	2‐statistic	when	the	sample	size	is	small	regardless	of	the	expected	values.		
	
 
##              Sex 
##                Male Female    Sum 
## Eye                               
## Brown freq       98    122    220 
##       perc    16.6%  20.6%  37.2% 
##       p.row   44.5%  55.5%      . 
##       p.col   35.1%  39.0%      . 
##                                   
## Hazel freq       47     46     93 
##       perc     7.9%   7.8%  15.7% 
##       p.row   50.5%  49.5%      . 
##       p.col   16.8%  14.7%      . 
##                                   
## Green freq       33     31     64 
##       perc     5.6%   5.2%  10.8% 
##       p.row   51.6%  48.4%      . 
##       p.col   11.8%   9.9%      . 
##                                   
## Blue  freq      101    114    215 
##       perc    17.1%  19.3%  36.3% 
##       p.row   47.0%  53.0%      . 
##       p.col   36.2%  36.4%      . 
##                                   
## Sum   freq      279    313    592 
##       perc    47.1%  52.9% 100.0% 
##       p.row       .      .      . 
##       p.col       .      .      . 
 

 
	

Desc
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The	 expected	 frequencies	 can	 be	 obtained	 by	 using	 the	 expected	 option	 on	 the	 Desc	
command	 (Desc(tab, verbose="high", expected=TRUE)).	 Additionally,	 the	 difference	
between	the	observed	cell	count	and	the	expected	cell	count	will	be	reported	when	using	the	
residuals=TRUE	and	stdres=TRUE	option	for	the	standardized	residuals	(amount	that	each	
cell	contributes	to	the	value	of	the	test	statistic).		
 
options(fmt.num=structure(list(digits=3), class="fmt")) 
PercTable(tab, freq=TRUE, rfrq="000",  
          expected=TRUE, residuals=TRUE) 
 
##              Sex 
##                  Male  Female 
## Eye                           
## Brown freq         98     122 
##       exp     103.682 116.318 
##       res      -0.558   0.527 
##                               
## Blue  freq        101     114 
##       exp     101.326 113.674 
##       res      -0.032   0.031 

	

 
 
 
 
## Hazel freq         47      46 
##       exp      43.829  49.171 
##       res       0.479  -0.452 
##                               
## Green freq         33      31 
##       exp      30.162  33.838 

##       res       0.517  -0.488 

	
This	 output	 shows	 the	 observed	 frequencies	 (freq),	 the	 expected	 values	 (exp)	 and	 the	
Pearson	residuals	(res),	whose	squared	values	are	each	cell’s	contribution	to	the	2	statistic.	
None	of	the	expected	values	are	less	than	5,	so	we	feel	comfortable	with	the	result	of	the	Chi‐
Square	test	above.		
	
The	Likelihood	Ratio	2	is	asymptotically	equivalent	to	the	Pearson	2	(and	Mantel‐Haenszel	
2)	 but	 not	 usually	 used	 when	 analyzing	 2x2	 tables.	 It	 is	 used	 in	 logistic	 regression	 and	
loglinear	modeling	which	involves	contingency	tables.	
	
The	Mantel‐Haenszel	2	is	related	to	the	Pearson	2	and,	in	the	2x2	case,	as	the	sample	size	
gets	large	these	statistics	converge.	In	the	case	of	2xC	or	Rx2	tables,	if	the	variable	with	more	
than	2	categories	is	ordinal,	the	Mantel‐Haenszel	2	 is	a	test	for	trend	while	the	Pearson	2	
remains	a	general	test	for	association.		
	
When	 the	verbose	 argument	 of	 the	 function	Desc	 is	 set	 to	 "high",	 several	 statistics	 that	
describe	the	nominal	and	ordinal	association	between	the	two	variables	of	the	contingency	
table	will	be	computed.		
	
##                        estimate  lwr.ci  upr.ci 
## Phi Coeff.               0.0508       -       - 
## Contingency Coeff.       0.0508       -       - 
## Cramer V                 0.0508  0.0000  0.1076 
 

 

The	 phi	 coefficient	 is	 a	 measure	 of	 the	 degree	 of	 association	 between	 two	 categorical	
variables	and	is	 interpretable	as	a	correlation	coefficient.	 It	 is	derived	from	the	2‐statistic,	
but	is	free	of	the	influence	of	the	total	sample	size	(Fleiss,	1981).	Being	independent	of	the	
sample	size	is	a	desirable	quality	because	the	2‐statistic	itself	is	sensitive	to	sample	size.	As	
the	 sample	 size	 increases,	 the	 2	 value	 will	 increase	 even	 if	 the	 cell	 proportions	 remain	
unchanged.		
Pearson’s	contingency	coefficient	and	Cramer’s	V	are	also	derived	from	the	chi‐square	and	in	
the	2x2	 table	 they	 are	 identical	 to	 the	Phi	 coefficient	 (and	 similar	 to	 the	Phi	 coefficient	 in	
interpretation).	These	 three	measures	of	degree	of	association	are	well	 suited	 for	nominal	
variables	in	which	the	order	of	the	levels	is	meaningless.		
	
	 	

PercTable,
ExpFreq 
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Cramer’s	 V	 is	 useful	 for	 comparing	 multiple	 2	 test	 statistics	 and	 is	 generalizable	 across	
contingency	 tables	 of	 varying	 sizes.	 It	 is	 not	 affected	by	 sample	 size	 and	 therefore	 is	 very	
useful	in	situations,	where	a	statistically	significant	test	result	is	suspected	to	be	the	result	of	
a	 large	 sample	 size	 instead	 of	 any	 substantive	 relationship	 between	 the	 variables.	 It	 is	
interpreted	as	a	measure	of	the	relative	strength	of	an	association	between	two	variables.	It	
goes	from	0	to	1,	where	1	indicates	strong	association.	In	2x2‐tables	the	range	is	‐1	to	1.	The	
value	of	0.0508	shows	a	very	small,	resp.	no	association	between	sex	and	hair	colour	at	all.	
	
The	following	are	measures	of	ordinal	association	that	consider	whether	the	variable	Y	tends	
to	 increase	 as	 X	 increases:	 Gamma,	 Kendall’s	 tau‐b,	 Stuart’s	 tau‐c,	 and	 Somers’	 D.	 These	
measures	 are	 appropriate	 for	 ordinal	 variables,	 and	 they	 classify	 pairs	 of	 observations	 as	
concordant	or	discordant.	A	pair	is	concordant	if	the	observation	with	the	larger	value	of	X	
also	has	the	larger	value	of	Y.	A	pair	is	discordant	if	the	observation	with	the	larger	value	of	X	
has	 the	 smaller	 value	 of	 Y.	 Refer	 to	 Agresti	 (1996)	 and	 the	 other	 references	 cited	 in	 the	
discussion	of	each	measure	of	association.	
(We	switch	the	example	here,	because	our	HairEyeColour	variables	aren’t	ordinal.)	
	
(job <- matrix(c(16,19,9,8,17,11,14,60,56), nrow=3, 
              dimnames=list("satisfaction"=c("high","medium","low"), 
                            "security"=c("high","medium","low")))) 
##             security 
## satisfaction high medium low 
##       high     16      8  14 
##       medium   19     17  60 
##       low       9     11  56 
 
Desc(job, verbose="high") 
## 
##                        estimate  lwr.ci  upr.ci 
... (output skipped)  
## Goodman Kruskal Gamma    0.3960  0.2103  0.5817 
## Kendall Tau-b            0.2405  0.1206  0.3603 
## Stuart Tau-c             0.2106  0.1038  0.3174 
## Somers D C|R             0.2238  0.1123  0.3354 
## Somers D R|C             0.2583  0.1242  0.3924 
## Pearson Correlation      0.2742  0.1442  0.3950 
## Spearman Correlation     0.2633  0.1327  0.3850 
... (output skipped) 

	
Gamma	is	recommended	when	there	are	 lots	of	ties	 in	the	data.	Tau‐b	is	recommended	for	
square	tables.		
	
The	Pearson	correlation	 coefficient	 and	 the	 Spearman	 rank	 correlation	 coefficient	 are	also	
appropriate	 for	 ordinal	 variables.	 The	 Pearson	 correlation	 describes	 the	 strength	 of	 the	
linear	association	between	the	row	and	column	variables,	and	it	is	computed	using	the	row	
and	column	scores	specified.	The	Spearman	correlation	is	computed	with	rank	scores.		
The	 polychoric	 correlation	 is	 not	 reported,	 but	 can	 be	 calculated	 with	 the	 function	
CorPolychor.	 It	 also	 requires	 ordinal	 variables	 and	 assumes	 that	 the	 variables	 have	 an	
underlying	bivariate	normal	distribution.		
	
The	 measures	 of	 association	 lambda	 and	 uncertainty	 coefficient	 do	 not	 require	 ordinal	
variables,	but	they	are	appropriate	for	nominal	variables.	
Lambda	has	another	concept	 than	chi‐squares.	With	Lambda	the	proportional	reduction	 in	
error	will	be	calculated.	Lambda	allows	deciding,	if	the	prediction	of	a	class	can	be	improved	
by	using	the	other	variable.		
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Desc(apply(Titanic, c(2,4), sum), verbose="high", rfrq="000") 
## ------------------------------------------------------------------------------  
... (output skipped) 
 
##                        estimate  lwr.ci  upr.ci 
... (output skipped) 
## Lambda C|R               0.3066  0.2568  0.3564 
## Lambda R|C               0.0000  0.0000  0.0000 
## Lambda sym               0.1846  0.1546  0.2146 
## Uncertainty Coeff. C|R   0.1569  0.1283  0.1854 
## Uncertainty Coeff. R|C   0.1903  0.1570  0.2237 
## Uncertainty Coeff. sym   0.1720  0.1414  0.2026 
## Mutual Information       0.1424       -       - 
## 
##        Survived 
##            No   Yes   Sum 
## Sex                       
## Male    1'364   367 1'731 
## Female    126   344   470 
## Sum     1'490   711 2'201 

	
Without	 information	 about	 the	 sex,	 the	 best	 prediction	 for	 surviving	 would	 be	 “No”.	 We	
would	guess	2201‐1490=711	FALSE	(Error	E1=711)	and	1490	correct.	Using	the	variable	sex	
we	would	 guess	 survived	 “Yes”	 for	women	 and	 “No”	 for	men.	 So	we	would	 guess	 correct	
344	women	 and	 1364	men	 and	 126	women	 and	 367	men	 not	 correct	 (leading	 to	 an	 error	
E2=126+367=493).	Lambda	is	then	calculated	as		

3066.0
711

493711
1E
2E1E

)R|C( 







		The	 (C|R)	 notation	 indicates	 that	 the	 column	 variable	 is	 to	 be	 predicted	 by	 using	 the	 row	
variable.	 Thus,	 using	 the	 variable	 Sex	 (row‐variable	 R)	 we	 make	 30%	 less	 errors	 in	
predicting	Survival	of	Titanic	disaster	(column	variable	C).	
Note	that	we	would	not	profit	by	the	variable	survived	to	predict	the	sex	of	a	person,	as	the	
according	lambda	value	R|C	is	0.	
	
Asymptotic	 confidence	 limits	 for	 all	 statistics	 are	 computed.	 The	 confidence	 coefficient	 is	
determined	according	to	the	value	of	the	conf.level	option,	which	by	default	equals	0.95	
and	produces	95%	confidence	limits.	
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13 Cases 

The	following	cases	are	taken	more	or	less	verbatim	from	the	SAS‐Freq	documentation[4]	and	
recalculated	with	base	R	and	specific	DescTools	 functions.	The	comments	and	descriptions	
have	partly	been	adopted.	
	
	
13.1 Eye colour ‐ Binomial Proportions for One‐Way Frequency Tables 

The	binomial	proportions	are	computed	as	the	proportion	of	observations	for	all	the	levels	of	
the	variable.	The	following	statements	compute	the	proportion	of	children	with	brown	eyes	
(from	the	data	set	in	Example	28.1	on	page	1335)	and	test	this	value	against	the	hypothesis	
that	 the	proportion	 is	50%.	Also,	 these	statements	 test	whether	 the	proportion	of	children	
with	fair	hair	is	28%.	
 
tab <- as.table(apply(HairEyeColor, 2, sum)[c("Brown","Hazel","Green","Blue")])  
Desc(tab) 
 
## ------------------------------------------------------------------------------  
## tab (table) 
##  
## Summary:  
## n: 592, rows: 4 
##  
## Pearson's Chi-squared test (1-dim uniform): 
##   X-squared = 133.47, df = 3, p-value < 2.2e-16 
##  
##    level  freq   perc  cumfreq  cumperc 
## 1  Brown   220  37.2%      220    37.2% 
## 2  Hazel    93  15.7%      313    52.9% 
## 3  Green    64  10.8%      377    63.7% 
## 4   Blue   215  36.3%      592   100.0% 
   
xci <- BinomCI(tab, sum(tab)) 
rownames(xci) <- rownames(tab) 
print(xci, digits=3) 
 
##        est lwr.ci upr.ci 
## Brown 0.372 0.3336  0.411 
## Hazel 0.157 0.1300  0.189 
## Green 0.108 0.0856  0.136 
## Blue  0.363 0.3254  0.403 
 
 

Let’s	produce	a	plot	of	that:	
 

 
 
 
PlotDot(xci[,1], main="Eye colour", pch=NA,  
        args.errbars = list( 
          from=xci[,2], to=xci[,3],  
          mid=xci[,1], pch=21, cex=1.4),  
        xlim=c(0,1)) 
 
abline(v=seq(0,1,0.1), col="grey", lty="dotted") 

Figure	13.1				Dotplot	of	marginal	proportions	for	eye	colour.	
	
	
The	 estimation	 of	 simultaneously	 calculated	 confidence	 intervals	 for	 multinomial	
proportions	according	to	the	method	of	Sison	and	Glaz	leads	to	slightly	broader	confidence	
intervals	especially	for	the	smaller	groups	(Hazel,	Green).	

PlotDot
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print(MultinomCI(tab), digits=3) 
 
##         est lwr.ci upr.ci 
## Brown 0.372 0.3294  0.415 
## Hazel 0.157 0.1149  0.201 
## Green 0.108 0.0659  0.152 
## Blue  0.363 0.3209  0.407 
 
 

	
13.2 Cochran‐Armitage Trend Test 

In	 clinical	 trials,	 a	 dose	 response	 study	 is	 often	 conducted	 to	 investigate	 the	 relationship	
between	 increasing	dosage	 and	 the	 effect	 of	 the	drug	under	 study.	Usually	 the	dose	 levels	
tested	 are	ordinal,	 and	 the	 effect	 of	 the	drug	 is	measured	 in	binary.	 In	 this	 case,	 Cochran‐
Armitage	trend	test	is	frequently	used	to	test	for	trend	among	binomial	proportions.	
	
d.lungtumor <- data.frame(dose  = rep(c(0, 1, 2), c(40, 50, 48)), 
                          tumor = c(rep(c(0, 1), c(38, 2)), 
                                  rep(c(0, 1), c(43, 7)), 
                                  rep(c(0, 1), c(33, 15)))) 
lung <- table(d.lungtumor$dose, d.lungtumor$tumor) 
Desc(lung, rfrq="010") 
 
... (output skipped)  
##             tumor 
##                 0     1   Sum 
## dose                          
## 
## 0    freq      38     2    40 
##      p.row  95.0%  5.0%     . 
## 
## 1    freq      43     7    50 
##      p.row  86.0% 14.0%     . 
## 
## 2    freq      33    15    48 
##      p.row  68.8% 31.2%     . 
## 
## Sum  freq     114    24   138 
##      p.row      .     .     . 

Figure	13.2				Lung	cancer	proportions.	
 
 
CochranArmitageTest(lung, alternative = "increasing") 
 
##    Cochran-Armitage test for trend 
## 
## data:  lung 
## Z = -3.2735, dim = 3, p-value = 0.0005311 
## alternative hypothesis: increasing 
 

The	 Cochran‐Armitage	 test	 supports	 the	 trend	 hypothesis.	 The	 small	 right‐sided	 p‐value	
(alternative	 =	 “increasing”)	 indicate	 that	 the	 probability	 of	 the	 column	 1	 level	
(lungtumor	=	1)	increase	as	dose	increases.		
	
	
	
13.3 Heart – 2x2‐Table 

This	example	computes	chi‐square	tests	and	Fisher’s	exact	test	to	compare	the	probability	of	
coronary	heart	disease	for	two	types	of	diet.	It	also	estimates	the	relative	risks	and	computes	
exact	confidence	limits	for	the	odds	ratio.		
The	data	set	contains	hypothetical	data	for	a	case‐control	study	of	high	fat	diet	and	the	risk	of	
coronary	heart	disease.	The	data	can	be	entered	as:	

Cochran
ArmitageTest 
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heart <- as.table(matrix(c(11, 2, 4, 6), nrow=2, 
                         dimnames = list(Exposure = c("High", "Low"),  
                                         Response = c("Yes", "No")))) 
Label(heart) <- "Table of Response by Exposure" 
 

The	data	is	sorted	in	descending	order	by	both	variables,	Exposure	and	Response,	so	that	the	
first	cell	of	the	2x2‐table	contains	the	frequency	of	positive	exposure	and	positive	response.		
 
Desc(heart, main="Case-Control Study of High Fat/Cholesterol Diet") 
 

will	produce	the	following	result:	
	
## Case-Control Study of High Fat/Cholesterol Diet 
##   Table of Response by Exposure 
##  
##  
## Summary:  
## n: 23, rows: 2, columns: 2 
##  
## Pearson's Chi-squared test (cont. adj): 
##   X-squared = 3.1879, df = 1, p-value = 0.07418 
## Fisher's exact test p-value = 0.03931 
## McNemar's chi-squared = 0.16667, df = 1,  
##   p-value = 0.6831 
##  
## Warning message: 
##   Exp. counts < 5: Chi-squared approx. may  
##   be incorrect!! 
##  
##                     estimate lwr.ci upr.ci 
##                                            
## odds ratio             8.250  1.154 59.003 
## rel. risk (col1)       2.933  0.850 10.120 
## rel. risk (col2)       0.356  0.140  0.901 
##  
## Phi-Coefficient        0.464 
## Contingency Coeff.     0.421 
## Cramer's V             0.464 
##  
##                 Response 
##                    Yes     No    Sum 
## Exposure                             
## High     freq       11      4     15 
##          perc    47.8%  17.4%  65.2% 
##          p.row   73.3%  26.7%      . 
##          p.col   84.6%  40.0%      . 
##                                      
## Low      freq        2      6      8 
##          perc     8.7%  26.1%  34.8% 
##          p.row   25.0%  75.0%      . 
##          p.col   15.4%  60.0%      . 
##                                      
## Sum      freq       13     10     23 
##          perc    56.5%  43.5% 100.0% 
##          p.row       .      .      . 
##          p.col       .      .      . 
##                                      
 
 

   
 
 
 

We	learn	that	we	have	a	total	of	23	persons	in	our	dataset	and	that	the	table	has	two	rows	
and	2	columns.	The	association	between	the	response	and	exposure	appears	not	be	existent,	
as	the	chi‐square	test	is	not	significant	(p	=	0.0741).		
However,	if	the	expected	value	of	one	or	more	cells	is	less	than	5,	the	chi‐square	test	may	not	
be	 valid.	 A	 specific	 warning	 indicates,	 that	 this	 is	 here	 the	 case.	 Fisher’s	 exact	 test	 is	 an	
alternative	test	which	does	not	depend	on	the	expected	values	and	is	the	appropriate	test	in	
this	 situation.	 It	 analyses	 whether	 the	 probability	 of	 heart	 disease	 in	 the	 high	 fat	 group	
differs	from	the	one	in	the	low	fat	group;	since	this	p‐value	is	small	(p	<	0.05),	the	alternative	
hypothesis	is	supported.	Note	that	only	the	one‐sided	test	will	be	reported.	
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The	function	expects	the	table	to	have	the	risk	factor	in	rows	and	the	response	or	outcome	in	
the	 columns.	 The	 positive	 risk	 factor	 is	 preferred	 to	 be	 in	 the	 first	 row	 and	 the	 positive	
response	in	the	first	column:	

	
	
Risk	factor	

Response	
Yes	 No	

Yes		 A	 B	
No	 C	 D	

	
The	odds	ratio	is	then	defined	as		

25.8
24
611
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 	

Recall	that	the	odds	of	an	event	occurring	is	the	ratio	of	p/q	where	p	is	the	probability	of	the	
event	occurring	and	q	is	the	probability	of	the	event	not	occurring.	The	odds	ratio	provides	in	
fact	an	estimate	of	the	relative	risk	when	an	event	is	rare	(which	here	is	not	the	case!).		
The	estimate	indicates	that	the	odds	of	heart	disease	are	8.25	times	higher	in	the	high	fat	diet	
group;	however,	 the	wide	 confidence	 limits	 (1.154,	 59.003)	 indicate	 that	 this	 estimate	has	
low	precision.		
	
The	relative	risk	is	the	ratio	of	the	probability	of	the	heart	disease	occurring	in	the	risk	group	
(high	 fat	 diet)	 to	 the	 probability	 of	 the	 heart	 disease	 occurring	 in	 the	 comparison,	 non‐
exposed	group	(low	fat	diet).	This	is	reported	as	rel.	risk	(col1)	in	the	output	above.		
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A	 relative	 risk	 greater	 than	1	 indicates	 that	 the	probability	of	positive	 response	 is	 greater	
(here:	heart	disease)	 in	 row	1	 (here:	high	 fat	diet	group)	 than	 in	row	2	 (here:	 low	 fat	diet	
group).	 Similarly,	 a	 relative	 risk	 less	 than	1	would	 indicate	 that	 the	probability	of	positive	
response	 is	 less	 in	 row	 1	 than	 in	 row	 2.	 The	 strength	 of	 association	 increases	 with	 the	
deviation	from	1.	
	
The	relative	risk	column	2	uses	the	observations	in	this	column	to	calculate	the	ratio.	

356.0
)411(6
)62(4

)BA(D
)DC(B

DC
D
BA

B

RR2 













	
Recall	an	incidence	rate	is	the	proportion	of	new	cases	(outcomes)	occurring	over	a	period	of	
any	one	 time.	Therefore	 the	 risk	of	an	outcome	makes	 sense	 in	 the	 context	of	prospective	
cohort	studies	where	the	outcome	has	not	occurred	in	any	case	at	the	start	of	the	study.		
While	the	relative	risk	RR	is	a	measure	which	is	appropriate	for	prospective	cohort	studies,	
the	odds	ratio	OR	can	be	used	for	crosssectional	case‐control	studies	as	well	as	prospective	
studies.	In	both	cases,	a	value	of	1	indicates	no	difference	between	groups.		
	
Interchanging	 the	 row	 and	 column	 variables	 or	 modifying	 the	 table	 order	 will	 result	 in	
different	 values	 of	 odds	 ratio	 and	 relative	 risks.	 Reversing	 the	 columns	 for	 instance	 will	
result	in	the	reciprocal	OR:	
 
OddsRatio(heart) 
## [1] 8.25 
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1 / OddsRatio(Rev(heart, 1)) 
## [1] 8.25 
 

The	interpretations	should	however	remain	consistent.		
	
	
	
13.4 Ophtalmological Test – Confusion Matrix 

A	2x2	 table	 is	often	used	 in	epidemiology	when	 it	 comes	 to	compare	new	diagnostic	 tests.	
Usually	new	tests	need	to	be	compared	against	a	′gold′	standard.	The	gold	standard	stands	
for	the	best	single	 test	(or	a	combination	of	 tests)	that	 is	considered	the	current	preferred	
method	of	diagnosing	a	particular	disease.		
	
Let’s	take	an	example	from	(Rajul,	2008).	One	hundred	persons	with	primary	angle	closure	
glaucoma	are	examined	by	a	new	test.	Seventy‐five	of	them	had	the	disease.	

	
	
Test	

Disease	
Yes	 No	

Yes		 A	(TP)	 B	(FP)	
No	 C	(FN)	 D	(TN)	

TP:	True	positive,	FP:	False	positive,	FN:	False	negative,	TN:	True	negative	
	
	
The	two	columns	indicate	the	actual	condition	of	the	subjects,	diseased	or	non‐diseased.	The	
rows	 indicate	 the	 results	 of	 the	 test,	 positive	 or	 negative.  Cell	 A	 contains	 true	 positives,	
subjects	with	the	disease	and	positive	test	results.	Cell	D	subjects	do	not	have	the	disease	and	
the	test	agrees.	
A	good	test	will	have	minimal	numbers	in	cells	B	and	C.		Cell	B	identifies	individuals	without	
disease	but	for	whom	the	test	indicates	'disease'.	These	are	false	positives.	Cell	C	has	the	false	
negatives.	
 

Sensitivity	is	the	probability	that	a	test	will	indicate	'disease'	among	those	with	the	disease.	
Specificity	 is	 the	 fraction	 of	 those	 without	 disease	 who	 will	 have	 a	 negative	 test	 result.	
Positive	 and	negative	 predictive	 values	 are	 influenced	 by	 the	 prevalence	 of	 disease	 in	 the	
population	that	 is	being	tested.	If	we	test	 in	a	high	prevalence	setting,	 it	 is	more	likely	that	
persons	who	 test	 positive	 truly	 have	 disease	 than	 if	 the	 test	 is	 performed	 in	 a	 population	
with	low	prevalence.	
(Find	the	other	statistics	explained	in	the	help	file	of	the	function	Conf.)	
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opht <- as.table(matrix(c(75, 25, 15, 85), nrow=2, 
                         dimnames = list(Test = c("Pos", "Neg"),  
                                         Disease = c("Pos", "Neg")))) 
Conf(opht) 
 
## Confusion Matrix and Statistics 
## 
##            Reference 
## Prediction Pos Neg 
##        Pos  75  15 
##        Neg  25  85 
## 
##                Accuracy : 0.8000 
##                  95% CI : (0.7391, 0.8495) 
##     No Information Rate : 0.5000 
##     P-Value [Acc > NIR] : < 2.2e-16 
## 
##                   Kappa : 0.6000 
##  Mcnemar's Test P-Value : 0.1547 
## 
##             Sensitivity : 0.7500 
##             Specificity : 0.8500 
##          Pos Pred Value : 0.8333 
##          Neg Pred Value : 0.7727 
##              Prevalence : 0.5000 
##          Detection Rate : 0.3750 
##    Detection Prevalence : 0.5000 
##       Balanced Accuracy : 0.8000 
##          F-val Accuracy : 0.7895 
## 
##        'Positive' Class : Pos 

	
	
	
	
13.5 Skin ‐ Agreement Study 

Medical	 researchers	are	 interested	 in	evaluating	 the	efficacy	of	a	new	 treatment	 for	a	 skin	
condition.	Dermatologists	from	participating	clinics	were	trained	to	conduct	the	study	and	to	
evaluate	 the	 condition.	 After	 the	 training,	 two	 dermatologists	 examined	 patients	with	 the	
skin	condition	from	a	pilot	study	and	rated	the	same	patients.	The	possible	evaluations	are	
terrible,	poor,	marginal,	and	clear.		
In	order	to	evaluate	the	agreement	of	the	diagnoses	(a	possible	contribution	to	measurement	
error	in	the	study),	the	kappa	coefficient	is	computed.		
 
ParseSASDatalines(" 
  data d.SkinCondition; 
  input Derm1 $ Derm2 $ Count; 
  datalines; 
  terrible terrible 10  terrible poor 4   terrible marginal 1   terrible clear 0 
  poor terrible 5       poor poor 10      poor marginal 12      poor clear 2 
  marginal terrible 2   marginal poor 4   marginal marginal 12  marginal clear 5 
  clear terrible 0      clear poor 2      clear marginal 6      clear clear 13 
;") 
skin <- xtabs(Count ~ ., d.SkinCondition) 
 

The	function	Agree	computes	raw	simple	percentage	agreement	among	raters.		
 
Agree(Untable(skin)) 
 
## [1] 0.5113636 
## attr(,"subjects") 
## [1] 88 
## attr(,"raters") 
## [1] 2 
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We	learn	that	51.1%	of	the	ratings	were	the	same	between	the	two	researchers.	A	less	coarse	
approach	to	measure	agreement	is	Cohen’s	kappa.	
 
CohenKappa(skin, conf.level=0.95) 
 
##     kappa    lwr.ci    upr.ci  
## 0.3448753 0.2048513 0.4848994  

	
CohenKappa(skin, conf.level=0.95, weights="Fleiss-Cohen") 
##     kappa    lwr.ci    upr.ci  
## 0.6607229 0.4207465 0.9006993 
 

The	kappa	 coefficient	has	 the	 value	0.3449,	which	 indicates	 slight	 agreement	 between	 the	
dermatologists.	The	conclusion	to	reject	the	null	hypothesis	of	no	agreement	is	supported	by	
the	 confidence	 interval	 of	 (0.2030,	 0.4868),	which	 suggests	 that	 the	 true	 kappa	 is	 greater	
than	 zero.	 The	 weighted	 kappa	 coefficient	 can	 be	 calculated	 by	 defining	 the	 weights	
argument.	Its	value	is	even	larger	(0.6607)	than	the	unweighted	kappa.	
The	Bowker’s	test	for	symmetry	(reported	by	mcnemar.test)	is	not	defined	here	(because	
of	the	zeros	in	the	table).	
	
	
	
	
13.6 Migraine ‐ Statistics for a Stratified 2x2‐Table 

The	data	 set	Migraine	 contains	hypothetical	 data	 for	 a	 clinical	 trial	 of	migraine	 treatment.	
Subjects	of	both	genders	receive	either	a	new	drug	therapy	or	a	placebo.	Their	response	to	
treatment	is	coded	as	’Better’	or	’Same’.	The	data	are	recorded	as	cell	counts,	and	the	number	
of	subjects	for	each	treatment	and	response	combination	is	recorded	in	the	variable	Count.	
The	 following	 statements	 create	 a	 three‐way	 table	 stratified	 by	 Gender,	where	 Treatment	
forms	the	rows	and	Response	forms	the	columns.		
 
 
ParseSASDatalines(" 
  data d.Migraine; 
  input Gender $ Treatment $ Response $ Count @@; 
  datalines; 
  female Active Better 16 female Active Same 11 
  female Placebo Better 5 female Placebo Same 20 
  male Active Better 12 male Active Same 16 
  male Placebo Better 7 male Placebo Same 19 
; 
") 
migraine <- xtabs(Count ~ Treatment + Response + Gender, d.Migraine) 
 

How	does	this	look	like?	
 
ftable(migraine, col.vars = c(1,3)) 
 
##          Treatment Active      Placebo      
##          Gender    female male  female male 
## Response                                    
##   Better               16   12       5    7 
##   Same                 11   16      20   19 
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It’s	always	a	good	idea	to	have	a	plot	of	the	situation:	
 
d.frm <- as.data.frame(prop.table(migraine, c(2,3))) 
d.frm$Treatment <- reorder.factor(d.frm$Treatment, new.order = 
c("Placebo","Active")) 
d.frm$Response <- reorder.factor(d.frm$Response, new.order = c("Same","Better")) 
 
library(lattice) 
barchart(Freq ~ Response | Treatment + Gender, data=d.frm,  
         col="steelblue", 
         panel = function(x, ...) { 
           panel.grid(h=-1, v=0) 
           panel.barchart(x, ...) 
         }, 
         par.settings = list(strip.background=list(col="lightgrey"),  
                             layout.heights=list(strip=1.45)), 
         par.strip.text = list(col="black"), 
         layout=c(2,2), cex.axis=2, ylim=c(0,1), xlab="Response", ylab="Percent", 
         scales=list(tck=c(0.8,0.8), col="black", x=list(cex=1), y=list(cex=1)), 
         main="Migraine") 
 

This	code	yields:	

	
Figure	13.3				Trellis	barplot	of	migraine	patients.	
	
	
The	percentages	are	calculated	so,	that	every	panel	has	a	total	of	100%:	
 
ptab <- prop.table(migraine, c(2,3)) 
ptab[] <- Format(ptab, digits=1, fmt="%") 
ptab 
 
## , , Treatment = Active 
 
##         Gender 
## Response female male  
##   Better 59.3%  42.9% 
##   Same   40.7%  57.1% 
 

 
 
##, , Treatment = Placebo 
## 
##         Gender 
## Response female male  
##   Better 20.0%  26.9% 
##   Same   80.0%  73.1% 

 

Apparently	 the	 treatment	 seems	 to	 have	 an	 obvious	 effect.	 But	 the	 plot	 seems	 as	 well	 to	
indicate	a	gender	effect,	as	the	treatment	is	more	pronounced	for	women	than	for	men.	
	
The	 function	mantelhaen.test	 produces	 the	 Cochran‐Mantel‐Haenszel	 statistics.	 For	 this	
stratified	2x2	table,	an	estimate	of	the	common	odds	ratio	including	its	confidence	interval	is	
also	 displayed.	 (Note	 that	 the	 function	 expects	 the	 third	 dimension	 to	 be	 the	 strata,	 here	
gender.)	
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mantelhaen.test(migraine,  alternative = "two.sided", correct = FALSE) 
 
##  Mantel-Haenszel chi-squared test without continuity correction 
## 
## data:  migraine 
## Mantel-Haenszel X-squared = 8.3052, df = 1, p-value = 0.003953 
## alternative hypothesis: true common odds ratio is not equal to 1 
## 95 percent confidence interval: 
##  1.445613 7.593375 
## sample estimates: 
## common odds ratio  
##          3.313168 
 

The	 significant	 p‐value	 (0.004)	 indicates	 that	 the	 association	 between	 treatment	 and	
response	remains	strong	after	adjusting	for	gender.			
	
A	table	of	relative	risks	can	be	produced	with	
 
apply(migraine, 3, function(x) list(rbind( 
     "Case-control (odds ratio)" = OddsRatio(x, conf.level = 0.95),  
     "Cohort (col1 risk)"        = RelRisk(x, conf.level = 0.95),  
     "Cohort (col2 risk)"        = RelRisk(Rev(x, 1), conf.level = 0.95)))) 
 
## $female 
## $female[[1]] 
##                           odds ratio    lwr.ci     upr.ci 
## Case-control (odds ratio)   5.818182 1.6755251 20.2033617 
## Cohort (col1 risk)          2.962963 1.3713759  7.0036872 
## Cohort (col2 risk)          0.337500 0.1427819  0.7291947 
## 
## $male 
## $male[[1]] 
##                           odds ratio    lwr.ci   upr.ci 
## Case-control (odds ratio)  2.0357143 0.6477707 6.397531 
## Cohort (col1 risk)         1.5918367 0.7662184 3.454346 
## Cohort (col2 risk)         0.6282051 0.2894904 1.305111 
 

Because	this	is	a	prospective	study,	the	relative	risk	estimate	assesses	the	effectiveness	of	the	
new	drug;	the	“Cohort	(col1	risk)”	values	are	the	appropriate	estimates	for	the	first	column,	
or	the	risk	of	improvement.	The	probability	of	migraine	improvement	with	the	new	drug	is	
just	over	two	times	the	probability	of	improvement	with	the	placebo.	
	
The	 function	mantelhaen.test	 displays	 also	 an	 estimate	 of	 the	 common	odds	 ratio.	 This	
figure	is	calculated	as	[Agresti,	p.	234]:		
 
sum(apply(migraine, 3, function(x) prod(diag(x))/sum(x))) /  
    sum(apply(migraine, 3, function(x) prod(diag(Rev(x, 1)))/sum(x))) 
 
## 3.313168 
 

The	 Breslow‐Day	 test	 for	 homogeneity	 of	 the	 odds	 ratios	 can	 be	 calculated	 with	 the	
eponymous	function. It	tests	the	null	hypothesis	that	the	odds	ratios	for	the	q	strata	are	all	
equal.			
 
BreslowDayTest(migraine) 
 
## Breslow-Day Test on Homogeneity of the Odds Ratios 
##  
## data:  migraine 
## X-squared = 1.4965, df = 1, p-value = 0.2212 
 

The	large	p‐value	(0.2212)	indicates	no	significant	gender	difference	in	the	odds	ratios.		
Had	 the	 test	 for	 homogeneity	 of	 the	 odds	 ratios	 been	 statistically	 significant,	 a	 closer	
examination	of	each	2x2	table	at	each	strata	of	the	stratification	variable	would	be	required	
before	making	any	further	interpretations	or	conclusions.	
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Caution:	Unlike	the	Cochran‐Mantel‐Haenszel	statistics,	the	Breslow‐Day	test	requires	a	large	
sample	size	within	each	stratum,	and	this	limits	its	usefulness.	In	addition,	the	validity	of	the	
Cochran‐Mantel‐Haenszel	 tests	does	not	depend	on	any	assumption	of	homogeneity	of	 the	
odds	 ratios;	 therefore,	 the	 Breslow‐Day	 test	 should	 never	 be	 used	 as	 such	 an	 indicator	 of	
validity.		
	
Homogeneity	could	also	be	assessed	using	Woolf's	test.	
 
WoolfTest(migraine) 
 
## Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.) 
## 
## data:  migraine 
## X-squared = 1.4808, df = 1, p-value = 0.2236 
 

Here	the	Woolf	gives	almost	equivalent	results	to	the	BreslowDay	test	for	consistency	for	the	
odds	ratio.	
	
The	odds	ratio	for	the	treatment	is	
 
tab <- t(apply(migraine, c(1,2), sum)) 
OddsRatio(tab, conf.level = 0.95) 
 
## odds ratio     lwr.ci     upr.ci  
##   3.370370   1.461559   7.772108 
 

Now,	 let's	 create	 logistic	 regression	 models	 on	 the	 raw	 data,	 first	 using	 just	 the	 two	
covariates	Treatment	and	Gender:	
 
r.glm <- glm(Response ~ Treatment + Gender, data=d.mig, family="binomial") 
summary(r.glm) 
 
## Call: 
## glm(formula = Response ~ Treatment + Gender, family = "binomial",  
##     data = d.mig) 
## 
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -1.2455  -1.0502  -0.6943   1.1108   1.7556   
## 
## Coefficients: 
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      -1.0602     0.3864  -2.744  0.00607 ** 
## TreatmentActive   1.2188     0.4271   2.853  0.00433 ** 
## Gendermale       -0.2398     0.4186  -0.573  0.56674    
## --- 
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
## 
## (Dispersion parameter for binomial family taken to be 1) 
## 
##     Null deviance: 140.50  on 105  degrees of freedom 
## Residual deviance: 131.55  on 103  degrees of freedom 
## AIC: 137.55 
## 
## Number of Fisher Scoring iterations: 4 
 

The	estimates	of	the	odds	ratio	are:	
 
exp(coef(r.glm)) 
 
##     (Intercept) TreatmentActive      Gendermale  
##       0.3463854       3.3830977       0.7867777  
 

We	learn	that	the	treatment	is	significantly	effective.	Persons	with	treatment	are	3.3	times	as	
likely	 to	 report	 a	 positive	 response.	 The	 gender	 is	 not	 significant.	 By	 the	 way,	 also	 an	
interaction	term	would	not	become	significant	(not	shown	here).	
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