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R sometimes makes ordinary tasks difficult. Virtually every data analysis project starts with
describing data. The first thing to do will often be calculating summary statistics for all variables
while listing the occurrence of nonresponse and missing data and producing some kind of
graphics. This is a three-click process in SPSS, but regardless of the normality of this task, base R
does not contain higher level functions for quickly describing huge datasets (meant regarding
the number of variables, not records) adequately in a more or less automated way. There are
facilities like summary, describe (Hmisc), stat.desc (library pastecs), but all of them are lacking
some functionality or flexibility we would have expected.

Another point is, that there are quite a few commonly used functions, which curiously are not
present in the stats package, think e.g. of skewness, kurtosis but also the Gini-coefficent, Cohen’s
Kappa or Somers’ delta. This led to a rank growth of libraries implementing just one specific
missing thing. There are plenty of “misc”-libraries out there, containing such functions and tests.
We would normally end up using a dozen libraries, each time using just one single function out
of it and suffering huge variety concerning NA-handling, recycling rules and so on.

R has been developed in a university environment. This will be clear at the latest then when you
find yourself working in an office of an insurance and you realize that only MS-Office (and no
LATEX) is installed on your system (and the IT guys won’t give you admin rights). We were
forced in this situation to write code for doing our reporting in MS-Word. (This works quite well
for Windows, but not for Mac unfortunately.)

The first version of “DescTools” arose after completion of a project, where we had to describe a
dataset under deadline pressure, and we started to gather our newly created functions and put
them together.

This collection has meanwhile grown to a considerably versatile toolset for descriptive
statistics, providing rich univariate and bivariate descriptions of data without expecting the user
to say much.

There are numerous basic statistic functions and tests, possibly flexible and enriched with
different approaches (if existing). Confidence intervals are extensively provided.

Recognizing that most problems can be satisfactorily visualized with bar-, scatter- and dotplots,
still some more specific plot types are used in special cases and thus included in the library.
Some of them are rather new, and some of them are based on types found scattered in the
myriads of R packages found out there (partly rewritten to meet the design goals of the
package).

This document describes quickly the essentials of the package DescTools.
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Users, even expert statisticians, do not always screen the data.
B. D. Ripley, Robust statistics (2004)

1 Introduction

The analyst’s sacred duty before beginning any sort of statistical analysis is to take a preliminary
look at the data with three main goals in mind: first, to check for errors and anomalies; second,
to understand the distribution of each of the variables on its own; and third, to begin to
understand the nature and strength of relationships among variables.

Errors should, of course, be corrected, since even a small percentage of erroneous data values
can drastically influence the results and might completely invalidate the analysis. Understanding
the distribution of the variables, especially the outcomes, is crucial to choosing the appropriate
multipredictor regression method. Finally, understanding the nature and strength of
relationships is the first step in building a more formal statistical model from which to draw
conclusions.

To prevent the analyst to bypass this steps the describing process must be quick and simple. The
package DescTools has been created with the aim to make data descriptions less costly and time
consuming. One outstanding feature of the package is the combination of numerical results and
graphical representation which can mostly be automated and reported to the console, but as
well quite easily be exported to a Word Document.

The proper description of data depends on the nature of the measurement. The key distinction
for statistical analysis is between numerical and categorical variables. The temperature of the
pizza is a numerical variable, while the driver delivering it is categorical. The delivery time is
numerical, whereas the area of the customer is categorical. A secondary but sometimes
important distinction within numerical variables is whether the variable can take on a whole
continuum or just a discrete set of values. So the temperature would be continuous, while
number of pizzas ordered (count) would be discrete.

A numerical variable taking on a continuum of values is called continuous and one that only
takes on a discrete set of values is called discrete. A secondary distinction sometimes made with
regard to categorical variables is whether the categories are ordered or unordered. So, for
example, categories of quality (low, medium, high) would be ordered, while the operator would
be unordered.

A categorical variable is ordinal if the categories can be logically ordered from smallest to
largest in a sense meaningful for the question at hand (we need to rule out silly orders like
alphabetical); otherwise it is unordered or nominal. Some overlap between types is possible. For
example, we may break a numerical variable (such as exact total amount) into ranges or
categories. Conversely, we may treat a categorical variable as a numerical score, for example, by
assigning values one to three to the ordinal responses Low, Medium, High. Most of the basic
analysis methods for numerical scores (e.g, linear regression or t-tests) have interpretations
based on average scores. So assigning scores to a categorical variable is effective if average
scores are readily interpretable. [3]

The function Desc is designed to describe variables depending on their type with some
reasonable statistic measures and an adequate graphic representation. It includes code for
describing logical variables, factors (ordered and unordered), integer variables (typically
counts), numeric variables, dates and tables and matrices.

Data frames will be split into their variables and the single variable will be described. A formula
interface is implemented to easily describe variables in dependence of others.

The output can either be sent to the R-console or as well directly redirected to a MS-Word
document.
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The latter works only in Windows with MS-Office installed, but Mac users can leave the wrd
argument away and add a plotit = TRUE argument to have the full results in the console.

Note: For all the examples in this document, library(DescTools) must be declared.

2 Categorical Variables

The first variable is an unordered factor. Factors are typically best described by a frequency
table of their levels. The default order of the output table is following a pareto rule, the most
frequent levels first.

Ordered factors would be sorted after their natural order by default. The default order can be
changed by setting the ord argument to either "desc", "asc", "name" or "level".

The frequency table is by default truncated in the case that there are more than a dozen values
(this can be avoided by setting the argument maxrows=NA, see: ?Desc.factor for more details).

Desc(d.pizza$driver, plotit=TRUE)

length n NAs levels unique dupes
1'209 1'204 5 7 7 y
Carpenter
Carter
level freq perc cumfreq cumperc Taylor
1 Carpenter 272 .226 272 .226 Hunter
2 Carter 234 .194 506 .420 Miller
3 Taylor 204 .169 710 .590
4 Hunter 156 .130 866 .719 Farmer
5 Miller 125 .104 991 .823 Butcher
6 Farmer 117 .097 1108 .920 f LI IR R L T ! = )
7 Butcher 96 .80 1204 1.000 50 100 200 300 00 02 04 06 08 1.0

frequency percent

Figure 10.2 Frequency plot of a categorical variable

The graphical representation consists of two horizontal barplots. The left one is displaying the
absolute frequencies with truncated x-axis. The left plot will always display the percentages
with fixed x-axis limits set to 0 and 1. The cumulative frequencies can be displayed or be left
away.

Synopsis

length total number of elements in the vector, NAs are included here

n number of valid cases, NAs, NaNs, Inf etc. are not counted here

NAs number of missing values

levels number of levels

unique number of unique values.
Note: This is not necessarily the same value as levels, as there might be
empty levels. Thus the number of levels might be higher than the
number of unique values (but not the other way round).

dupes y(es) or n(o0), reporting if there are any duplicate values in the vector. If
“n” (for no) then there are only unique values in the variable.

freq the count (absolute frequency) of the specific level. The order of a
factors frequency table is by default chosen as “absolute frequency-
decreasing”.

perc the relative frequency of the specific level

cumfreq the cumulative frequencies of the levels

cumperc the same for the percentage values

Desc



3 Numerical Variables

3.1 Numeric

The next variable, the temperature of the delivered pizza, is numeric. Numeric variables are
described by the most usual statistical measures for location, variation and shape.

Several features of the output are worth consideration. The largest and smallest values should
be scanned for outlying or incorrect values, and the mean (or median) and standard deviation
(or interquartile range IQR, resp. the median absolute deviation mad) should be assessed as
general measures of the location and spread of the data.

The quantiles deliver a good overall impression of the distribution. We note that 90% of the data
lie between 26 and 60 degrees and the inner 50% between 42 and 55.

The skewness and kurtosis are usually more easily assessed by the graphical means, though
their numerical values are included in the output. A large difference between the mean and
median is another cue for the skewness. In right-skewed data, the mean is larger than the
median, while in left-skewed data, the mean is smaller than the median.

Desc(d.pizza$temperature, main=""", plotit=TRUE)

length n NAs unique @s  mean meanSE 0.05 -
1'209 1'170 39 375 0 47.937 0.291 7
0.04
.05 .10 .25 median .75 .90 .95 0.03 1
26.700 33.290 42.225 50 55.300 58.800 60.500 565 4
range sd vcoef mad IQR skew kurt 0.01 4
45.500 9.938 0.207 9.192 13.075 -0.842 0.051 0.00 2
lowest : 19.3, 19.4, 20, 20.2 (2), 20.35 - L M LT F _

highest: 63.8, 64.1, 64.6, 64.7, 64.8 261

50 4
254 e
00 - T T T T

10 20 30 40 50
Figure 3.1 Distribution of a numeric variable.

The plot 3.1 as produced by the function PlotFdist combines a histogram with a density plot, a
boxplot and the plot of the empirical distribution function ECDF. The scale for the x-axis is
synchronized over all plots. The median can thus be found on the boxplot as also in the ecdf-
plot. The maximum and the minimum value are tagged with a tiny vertical dash upon the ecdf-
line.

Let’s enumerate the features in detail. The first measures length, n, NAs, unique have again the
same meaning as above. NAs are silently removed from all subsequently calculations.

0s total number of zero values.
mean the arithmetic mean of the vector.
meanSE standard error of the mean, sd(x) / sqrt(n).

This can be used to construct the confidence intervals for the mean,
defined as qt(p = 0.025, df = n-1) * sd(x) / sqrt(n).
(See also: function MeanCI(...))

.05, .., .95 quantiles of x, starting with 5%, 10%, 1. quartile, median etc.

rng range of x, max(x) - min(x)

sd standard deviation

vcoef variation coefficient, defined as sd(x) / mean(x)

mad median absolute deviation

IQR inter quartiles range

skew skewness of x

kurt kurtosis of x

lowest the smallest 5 values. If there are bindings, the frequency of each
value will be reported in brackets.

highest same as lowest, but on the other end

-5-
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Transformations can be entered in place.

Desc(1/d.pizza$temperature, digits=3, main=""")
title(expression(frac(l1,x)))

140 -
length n NAs unique @s  mean meanSE 120 4
1'209 1'170 39 375 0 0.022 0.000 100 -
80
.05 .10 .25 median .75 .90 .95 60
0.017 ©0.017 0.018 ©0.020 0.024 0.030 0.037 40 1
20
range sd vcoef mad IQR skew kurt 0
0.036 0.006 ©0.289 ©0.004 0.006 2.027 4.244 e | Themees {mmmoomen cosaier -
1.00 .
lowest : 0.015, 0.015, 0.015, 0.016, 0.016 :;g:
highest: 0.049, 0.050 (2), 0.050, 0.852, 0.052 25 4
Sy 0.02 0.03 0.04 0.05 0.01

Figure 3.2 Distribution of a numeric variable.

There are several approaches commonly used for graphical comparing the variable’s
distribution to a reference distribution. The two most seen are firstly superposing the reference
density curve over the variable’s histogram and second using a Q-Q-plot. A QQ plot is used to
compare the shapes of distributions, providing a graphical view of how properties such as
location, scale, and skewness are similar or different in the two distributions

z <- LinScale(z, newlow=0, newhigh = 32)[,1]
PlotFdist(z, args.curve = list(expr="dchisq(x, df=5)", col="darkgreen'), LinScale
args.boxplot=NA, args.ecdf=NA)
legend(x=""topright", legend=c("'kernel density", expression(chi["df=5"]"2-distribution)),
Ffill=c(getOption(*coll™, hred), '"darkgreen'), text.width = 5)

We get
0.20 —
m kernel density
B 72 - distribution
0.15 —
0.10
0.05
0.00 —~—
f T T T T T : |
0 5 10 15 20 25 30 35

Figure 3.3 Overlay of fitted y2-function.

This makes it clear, that this is not the best way to decide, whether the red curve follows our
hypothesized distribution or not. Where does random start?

The better approach is to use a QQ-plot, which by the way solves the x-axis scaling problem we
had in the overlay solution. The function PlotQQ is a wrapper for plotting QQ-plots with other
than normal distributions. A qqline is inserted on which the points are likely to lie
(approximately) if the two distributions being compared are similar.

# get some data
set.seed(81)
z <- rchisq(100, df=5)

for(i in 1:20){
zz <- rchisq(100, df=5) PlotQQ



PlotQQ(zz, function(p) qchisq(p, df=5), add=(i!'=1), args.qgline = NA,
col="grey", type="I1", Ity="dotted", main=NA)

}

PlotQQ(z, function(p) qchisq(p, df=5), add=TRUE, args.qqline=list(col=2, probs=c(0.1,

0.6)))

title(main=expression(*'Q-Q plot for" ~~ {chi”2}[nu

Q-Q plot for 7%,.5
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Figure 3.4 QQ plot for a y2-distributed variable.

== 3D)

It might sometimes be hard to judge, if the points are too far from the qqline or not.
An idea to check the general variability is to add 20 sets, simulated with the desired distribution.
If our points are an extreme path, something is likely to be wrong. In our example above all is ok,

of course, as we sampled from the tested distribution.

3.2 Numeric data with few unique values

If there’s a numeric variable with only one or two handfuls of unique values then a description
by means of a histogram and a density curve is not really adequate. The density curve will start
oscillating and the bins in the histograms would lose their continuous nature.

Therefore we change the graphic representation from a histogram to a histogram like h-type

plot without density curve.

In the numerical results the extreme values will be replaced by a frequency representation with

absolute values and percentages.

Desc(d.pizza$weekday, plotit=TRUE)

length n NAs unique @s mean meanSE
1'209 1'177 32 7 0 4.44 0.06
.05 .10 .25 median .75 .90 .95

1.006 1.00 3.00 5.0 6.00 7.00 7.00

range sd vcoef mad IQR  skew kurt
6.00 2.02 0.45 2.97 3.0 -0.34 -1.17

level freq perc cumfreq cumperc

1 1 144 12.2% 144 12.2%
2 2 117  9.9% 261 22.2%
3 3 134 11.4% 395 33.6%
4 4 147 12.5% 542 46.0%
5 5 171 14.5% 713 60.6%
6 6 244  20.7% 957 81.3%
7 7 220 18.7% 1'177 100.0%

0.20 ~

0.15

0.10

o
=]
\

Figure 3.5 Distribution of a numeric variable.



3.3 Count data (discrete)

The next variable is a count variable, whose nature is somewhat between numeric and factors as
far as descriptive measures are concerned. In fact, if there are only just a few unique values, then
the factor representation (frequencies) might be more appropriate than the numeric description
(with densities etc.). We draw the line between factor and numeric representation at a dozen of
unique values in x. Beyond that number, the numeric description will be reported and for fewer
values the factor representation will be used.

Desc(d.pizza$count, plotit=TRUE)

length n NAs unique @s  mean meanSE
1'209 1'197 12 8 0 3.444 0.045 ) o
.05 .10 .25 median .75 .90 .95 2 ° °
1 2 2 3 4 6 6 3 . .
4 e ]
rng sd vcoef mad IQR skew kurt
7 1.556 ©.452 1.483 2 0.454 -0.363 5 ° °
6 e
level freq perc cumfreq cumperc T = B
1 1 108 .090 108 .090 8 °
2 2 259 .216 367 .307 T T T T T T
3 3 300 .251 667 .557 50 150 250 00 02 04 06 08 10
4 4 240 .201 907 .758 frequency percent
5 5 152 .127 1059 .885
6 6 97 .81 1156 .966 . o )
7 7 34 .0928 1190 994 Figure 3.6 Distribution of a count variable.
8 8 7 .006 1197 1.000

The plot is produced as a (horizontal) dotchart. More than 12 unique values are truncated (a
warning is placed in the plot area). The maxrows argument can be used to override this default
(NA for all).

Two dotcharts are created, the left one shows the absolute frequencies, the right one the
percentages. On the left plot the x-axis might be adapted to the data (as R does by default). The
percentages will always be displayed on a 0:1-range.

The plot width is adapted to the length of the labels. If the labels get too long, they will be
truncated and displayed with ellipsis (...).

4 Logical values

Dichotomous variables do not have real dense (univariate) information. The variable
wine_ordered for example contains only two values, 0 and 1. Still it is usually interesting to
know, how many NAs there are, besides the frequencies of course. The individual frequencies
are reported together with a confidence interval, calculated by BinomCI using the option
"Wilson™.

Desc(d.pizza$wine_ordered, plotit=TRUE)



length n NAs unique 0 1
1'209 1'197 12 2

0 1010 .844 .822 .863
1 187 .156 .137 .178

0¢i99 B ¢i.95 8¢i90
1 95%-CI Wilson

0.0 0.2 04 0.6 0.8 1.0

Figure 4.1 Distribution of a numeric variable.

This is basically a univariate horizontal stacked barplot, with confidence intervals on the
confidence levels of 0.90, 0.95 and 0.99. The vertical line denominates the point estimator.

5 Time variables

5.1 Dates

A date variable is harder to describe as single variable. What characteristics would one want to know from
a date? We would normally choose a description similar to numeric values, supplemented by an analysis
of the weekday and month for grasping anomalies concerning extreme, invalid or missing values.

Desc(d.pizza$date, plotit=TRUE)

length n NAs unique
1'209 1'177 32 31

lowest : 2014-03-01 (42), 2014-03-02 (46), 2014-03-03 (26), 2014-03-04 (19)
highest: 2014-03-28 (46), 2014-03-29 (53), 2014-03-30 (43), 2014-03-31 (34)

Weekdays:
level freq perc cumfreq cumperc exp res
1 Montag 144 .122 144 .122 168.1 -1.9
2 Dienstag 117 .899 261 .222 168.1 -3.9 Yok v
3 Mittwoch 134 .114 395  .336 168.1 -2.6 Dienese ; ¢
4 Donnerstag 147 .125 542 .460 168.1 -1.6 Wi Wrm=m®
5 Freitag 171 .145 713 .606 168.1 .2 Donnerstag ¢
6  Samstag 244 .207 957  .813 168.1 5.9 Foaiag *
7  Sonntag 220 .187 1177 1.000 168.1 4.0 Samelag ° .
Sonntag o .
Chi-squared test for given probabilities 00 5o on o2
data: table(xd)
X-squared = 78.8785, df = 6, p-value = 6.09e-15
Months
level freq perc cumfreq cumperc exp prs.res
1 Januar 0 0 0 0 99.7 -10.0
2 Febr‘Har‘ (7] 2] (2] 0 93.3 -9.7 JafilER |
3 Marz 1177 1 1177 1 99.7 107.9 Februar | e o
4 Apr‘li!. 0 ] 1177 1 96.5 -9.8 Mérz & .
5 Mai 0 0 1177 1 99.7 -10.0 Apiil |e o
6 Juni 0 0 1177 1 96.5 -9.8 Ml |ame
7 uli e e 1177 199.7 -10.0 el B
8 August 0 0 1177 1 99.7 -10.0 Jul i
9 September (7] 2] 1177 196.5 -9.8 At [wie
10 Oktober 0 0 1177 1 99.7 -10.0
11 November © © 1177 196.5 -9.8 Deplemaer [0
12 Dezember © © 1177 199.7 -10.0 Oktober | ¢ ©
Movember |e ©
Chi-squared test for given probabilities Dezember | & ©

0 200 400 €00 800 1000 1200
data: tab
X-squared = 12719.19, df = 11, p-value < 2.2e-16
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5.2 Timeseries PlotACF

This produces a combined plot of a time series and its autocorrelation and partial
autocorrelation, which is used in every introductory course for time-series.

PlotACF (AirPassengers)

4(IJO

AirPassengers

390

ACF
02 06
I —
H—
5
|

6 data.frames

After that, every single variable will be described according to the type of its class.

Let's start with a quick description of some variables out of the integrated data. frame
d.pizza.

library(DescTools)

# the results (and the plots) will either be displayed in the console

Desc(d.pizza[,c("driver", "temperature","count",
plotit=TRUE)

weekday", "wine_ordered","date")],

# ... or we can start a new word instance and send the results directly to a word document
wrd <- GetNewWrd()
Desc(d.pizza[,c("driver", "temperature","count","

weekday", "wine_ordered","date")], wrd=wrd)

'data.frame’: 1209 obs. of 4 variables:

1 $ driver : Factor w/ 7 levels "Butcher","Carpenter",..: 7117377773 ...
2 $ temperature : num 53 56.4 36.5 NA 50 27 33.9 54.8 48 54.4 ...

3 $ count :int 523 2514NA3G6 ...

4 $ weekday :num 6666666666 ...

5 $ wine_ordered: int 900000 1NAO 1 ...

6 $ date : Date, format: "2014-03-01" "2014-03-01" "2014-03-01" "2014-03-01"

First a simple Str() of the data.frame is performed. The result is no more than that of a str()
command, extended with an enumeration of the variables.

-10 -
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7 Pairwise Numeric ~ Categorical

7.1 Boxplot and Designplot
Desc implements a formula interface allowing to define bivariate descriptions straight forward.

A numeric variable vs. a categorical is best described by group wise measures. Here the valid
pairs are reported first. Missing values in the single groups are documented in the results table
and missing values on the grouping factor are mentioned with a warning at the end of the table,
if existing at all.

Desc(temperature ~ driver, d.pizza, digits=1, plotit=TRUE)

Summary:
n pairs: 1'209, valid: 1'166 (96%), missings: 43 (4%), groups: 7

Butcher Carpenter Carter Farmer Hunter Miller Taylor
mean 49.6 43.52 50.4 50.9 52.12 47.5 45.1
median 51.4 44.8* 51.8 54.1 55.12 49.6 48.5
sd 8.8 9.4 8.5 9.0 8.9 8.9 11.4
IQR 12.0 12.5 11.3 11.2 11.6 8.8 18.4
n 96 253 226 117 156 121 197
np 0.082 0.217 0.194 0.100 0.134 0.104 0.169
NAs (<] 19 8 0 0 4 7
0s 0 (2] 0 (2] (2] 0 (2]

1 min, 2 max

Kruskal-Wallis rank sum test:

Kruskal-Wallis chi-squared = 141.9349, df = 6, p-value < 2.2e-16
Warning:

Grouping variable contains 5 NAs (0.414%).

n=06 n=253 n=226 n=117 n=156 n=121 n=197 means
—— —— : o4 Hunter +
(=1 P P :
® : ! : Farmer
: i : g Carter 4
o4 : Butcher -+
o I—
J i
«©
. ' i ' - _
g ; : : ; : Miller -+
2 : : — ] ! N
: —a— ;
! : Taylor -+
° § ] B8 8 i
] o 3
H o -
& - — i N Carpenter —
T T T T T T driver
Butcher  Carpenter Carter Farmer Hunter Miller Taylor

a boxplot combined with a means-plot as used in anova

7.2 Comparing distributions

How should we compare distributions graphically, moving beyond a simple boxplot? PlotViolin
serves the same utility as a side-by-side boxplot, but provides more detail about the single
distribution. We started with John Verzani’s Violinplot and rewrote it so that it takes exactly the
same parameters as the boxplot-function.

Another idea is to plot several densities within the same plot. PlotMultiDens does this while
setting the xlim- and ylim-values to an appropriate value, ensuring all density lines are fully

-11 -



visible. For a smaller number of variables, say up to two handfuls, this will be the most direct
way to compare their distributions. (Note: For violins this limit lies much higher as they do not

overlap and so mutually hide.)

PlotViolin(temperature ~ driver, data=d.pizza, col = SetAlpha(hblue,0.5),
main="Temperature ~ Driver")

PlotMultiDens(temperature ~ driver, data=d.pizza, xlab="temperature",

main="Temperature ~ Driver", panel.first=grid(),
col=PalHelsana(), Iwd=2 )
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For small datasets a stripchart might be the best way to plot the data.
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The conditional density-plot at the right allows to grasp the proportions within the total density.

stripchart(temperature ~ driver, d.pizza, vertical=TRUE,
method=""jitter", pch=16, col=SetAlpha(hred,0.4))

d.frm <- na.omit(d.pizza[,c(temperature™, driver')])

par(las=2, mar=c(4.1,10.1,5.1, 5.1))

cdplot(x=d.frm$temperature, y=d.frm$driver, ylab="", xlab="temperature",
col=SetAlpha(PalHelsana(), 0.6))

7.3 Trellis

The classic way is to spend a full plot for every single variable. There’s an interesting link,
demonstrating this technique: http://www.statmethods.net/advgraphs/trellis.html

library(lattice)
trellis._par.set(strip.background = list(col = gray(0.5)), add.text = list(col =
"white"))

myStripStyle <- function(which.panel, factor.levels, ...) {
panel .rect(0, -0.5, 1, 1,
col = "grey",
border = 1)
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panel _text(x = 0.5, y = 0.25,
font=2,
lab = factor.levels[which.panel],
col "black'™)

}

histogram( ~ temperature | driver, data=d.pizza, col="steelblue", strip=myStripStyle)

Butcher Carpenter Carter Farmer

Fercent of Total

20

10

T T T
20 20 40

a -
@ J

temperature

Again here a scatterplot is highly informative.

xyplot(temperature ~ delivery_min | area, d.pizza,
main="temperature ~ delivery_min | area®, col=hred, strip=myStripStyle)

temperature ~ delivery_min | area

temperature

delivery_min
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8 Pairwise Categorical ~ Numeric

No, it’s not the same as numeric ~ categorical. The design is such, that the response variable is
categorical and the predictor numeric. With a model one would set up a multinomial regression
(or logistic in the case of 2 categories).

Desc(area ~ temperature, data=d.pizza, digits=1, wrd=wrd)

Summary:

n pairs: 1'209, valid: 1'161 (96%), missings: 48 (4%), groups: 3

Brent
mean 51.12
median 53.42
sd 8.7
IQR 10.5
n 467
np 0.402
NAs 7
s 0

1 min, 2 max

47 .4
50.3
10.1
12.2
335
0.289
9

(<]

Kruskal-Wallis rank sum test:
Kruskal-Wallis chi-squared = 115.83, df = 2, p-value < 2.2e-16

Warning:

Camden Westminster

44 .31
45,91
9.8
13.2
359
0.309
22
(]

Grouping variable contains 10 NAs (0.827%).

Proportions of area in the quantiles of temperature:

Q@ Q2 Q@ o4
Brent 0.244 ©.345 0.4085 0.618
Camden 0.289 0.266 0.363 0.236

Westminster 0.467 0.389 0.232 0.146

=467 n=338 n=359

40
L

Brent

Camden

‘Westminster

(o] Qz Q3 04

9 Pairwise Categorical ~ Categorical

Two categorical variables are described by a contingency table, as shown in the vignette Tables.
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10 Pairwise Numeric ~ Numeric

10.1 Boxplot and Designplot
Two numerical variables have no obvious standard description as their relationship can have

many forms. We report therefore only the simple correlation coefficients (Pearson, Spearman
and Kendall).

The variables are plotted as xy-scatterplots with interchanging mutual dependency,
supplemented with a LOESS smoother.

Desc(temperature ~ delivery_min, d.pizza, plotit=TRUE)

Summary:
n pairs: 1'209, valid: 1'170 (97%), missings: 39 (3%)

Pearson corr. : -0.575
Spearman corr.: -0.573
Kendall corr. : -0.422

Scatterplots for two numeric variables:

8- 8
=1
2 - 7
5 é| 2
] =0
= g
g s 8
(=
') =0
o~
o o |
] 2
10 20 30 40 50 60 20 30 40 50 60
delivery_min temperature
Figure 10.2 Mosaicplot of Eye colour ~ Hair colour.
10.2 Boxplot on 2 dimensions: PlotBag

This function transposes the boxplot idea in the 2-dimensional space. The points are outliers,
the lightblue area is the area within the fences in a normal boxplot and the darkblue area is the
inner quartile range.

The median is plotted as orange point in the middle.

This code is taken verbatim from Peter Wolf's aplpack package.

d.frm <- d.pizza[complete.cases(d.pizza[,c("temperature”,"delivery_min")]),]

PlotBag(x=d.frm$delivery_min, y=d.frm$temperature, xlab="delivery_min",
ylab=""temperature’, main="Two-dimensional Boxplot')
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Two-dimensional Boxplot
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11 Multiple pairwises

Desc(temperature ~ ., data=d.pizza[,c("'temperature","driver","operator","area")],
digits=1)

12 Plot missing data

An interesting idea for creating a visual representation of missing data was brought to my
attention by Henk Harmsen. The following plot symbolize each missing value with a vertical line.

The x-axis represents the index of the record. On the right side are the numbers of missings

noted.
Missing pizza data
index 0
dae | | - I — I
week | | N I—— | | 32
weekday | | 1] |l I -
wea | | | | 10
count | | ‘ | | 12
rabate | | \ | | 12
price | | | | | 12
operator | | 8
driver | | | 5
delivery_min 0
temperature | I O L R (-
wine_ordered | | \ | | 12
wine_delivered | | ‘ | | 12
wrongpizza | | \ | 4
quatty | [T FICROED 1 T I 0 PP IO IEPEE P (T E 201
T T T T T T 1
0 200 400 600 800 1000 1200
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13 Concentration

Lorenz-curves can be found in other libraries. This implementation starts with that from the
library ineq, adding some value by calculating confidence intervals for the Gini coefficient.

X <- c(10, 10, 20, 20, 500, 560)

Ic <- Lc(X)

plot(lc)

points(lc$p, IcHL, cex=1.5, pch=21, bg="white", col="black"™, xpd=TRUE)

Gini(x)
Gini(x, unbiased = FALSE)

Gini(x, conf.level = 0.95)

Lorenz curve

02 4

0.0 <7 T T T T

> Gini(x)
[1] ©.7535714

> Gini(x, unbiased = FALSE)
[1] ©.6279762

> Gini(x, conf.level=0.95)

gini Iwr.ci upr.ci
0.7535714 0.2000000 0.8967742

14 Multivariate graphical description

14.1 Correlation plot

These functions produce a graphical display of a correlation matrix. In the classic matrix
representation the cells of the matrix can be shaded or coloured to show the correlation value.
In the right circular representation the correlations are coded in the line width of the connecting
lines. Red means a negative correlation, blue a positive one.

par(mfrow=c(1,2))
m <- cor(d.pizza[,which(sapply(d.pizza, is.numeric))], use="pairwise.complete.obs")

PlotCorr(m, col=PalDescTools(''RedWhiteBluel™, 100), border="grey",
args.colorlegend=list(labels=Format(seq(1,-1,-.25), 2), frame="grey'))

PlotWeb(m, col=c(hred, hblue))
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14.2 PlotPolar (Radarplot)

This function produces a polar plot but can also be used to draw radarplots or spiderplots.

A)
d.car <- scale(mtcars[1:6,1:7], center=FALSE)

# let's have a palette with thransparent colors
cols <- SetAlpha(colorRampPalette(c("red","yellow","blue"), space = "rgb")(6), 0.25)

PlotPolar(d.car, type="1", fill=cols, main="Cars in radar")
PolarGrid(nr=NA, ntheta=ncol(d.car), alabels=colnames(d.car), lty="solid", col="black")
legend(x=2, y=2, legend=rownames(d.car), fill=SetAlpha(cols, NA))

Spring
Cars in radar
= 1960
disp B Mazda RX4 B 1970
E Mazda RX4 Wag 0O 1980
O Datsun710
O Homnet 4 Drive
E Hornet Sportabout
B Valiant
Summer é&moo Winter
R///
4
Autumn
A) B)
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B)

m <- matrix(UKgas, ncol=4, byrow=TRUE)

cols <- c(SetAlpha(rep("green", 10), seq(9,1,0.1)),
SetAlpha(rep("blue", 10), seq(0,1,0.1)),

SetAlpha(rep(“"orange", 10), seq(0,1,0.1)))

PlotPolar(r=m, type="1", col=cols, lwd=2 )
PolarGrid(ntheta=4, alabels=c("Winter","Spring","Summer","Autumn"), lty="solid")

legend(x="topright", legend=c(1960,1970,1980), fill=c("green","blue","orange"))

14.3 PlotFaces

A nice idea for the concrete representation of your customer’s profile is to produce a Chernoff
faces plot. The rows of a data matrix represent cases and the columns the variables.

m <- data.frame( lapply(

d.pizza[,c("temperature","price"”,"delivery_min","wine_ordered", "weekday")]
, tapply, d.pizza$driver, mean, na.rm=TRUE))

PlotFaces(m, ncol=7, nrow=1, main="Driver's characteristics")

Driver's characteristics

Butcher Carpenter Carter Farmer Hunter Miller Taylor

= = W /A
\!/ ©é©

14.4 PlotTreemap
This function produces a treemap.

# get some data

data(GNI2010, package="treemap")

gn <- GNI2010[,c("iso3","population","continent","GNI")]
gn <- gn[gn$GNI!=0, ]

# define a color
gn$coll <- SetAlpha("steelblue"”, LinScale(gn$GNI, newlow=0.1, newhigh=0.6))

b <- PlotTreemap(x=gn$population, grp=gn$continent, col=gn$coll, labels=gn$iso3,
main="Gross national income (per capita) in $ per country in 2010",
labels.grp=NA, cex=0.7)

# get the midpoints
mid <- do.call(rbind, lapply(lapply(b, "[", 1), data.frame))

# and write the continents’ text
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DrawBoxedText(x=mid$grp.x, y=mid$grp.y, labels=rownames(mid), cex=1.5, bold=TRUE,
border=NA, col=SetAlpha("white",0.7) )

Gross national income (per capita) in § per country in 2010
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15 Supplements to base R plots
15.1 Lineplots

There are many flavours of line plots. Most (all?) of them can be handled by the function
matplot.

We generally desist from defining own functions, that only set suitable arguments for another
already existing function, as we fear we would run into a forest of new functions, loosing
overview.

Yet the parametrization of matplot can be a haunting experience and so we integrate some
common examples here in the sense of a “How-To” tutorial.

Let’s for example have a horizontal profile of the driver’s characteristics.

m <-
data.frame(lapply(d.pizza[,c("temperature","price","delivery min","wine_ordered", "weekday")],
tapply, d.pizza$driver, mean, na.rm=TRUE))

(ms <- data.frame(lapply(m, scale))) # lets scale that
temperature price delivery min wine_ordered weekday
Butcher 0.3605689 -0.69917381 -0.98046684 -1.0738446 1.9826284
Carpenter -1.5481318 1.74805901 1.54851320 1.5445402 0.1389367
Carter 0.6105633 -0.82596309 0.02841316 -1.0840337 -0.8062020
Farmer 0.7718643 0.36562860 -0.74842415 0.6105001 -0.7800183
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Hunter 1.1473246 -1.16829499 -1.04738479 -0.7792855 -0.7038441
Miller -0.2918676 0.52072004 0.23662429 0.3794541 0.4596817
Taylor -1.0503216 0.05902424  0.96272512 0.4026695 -0.2911825

X <- 1l:ncol(ms)
y <- t(ms)

windows(8.8,5)
par(mar=c(5,4,4,10)+.1)
matplot(x, y, type="1", col=rainbow(nrow(ms)), xaxt="n", las=1, lwd=2, frame.plot=FALSE,
ylim=c(-2,2),
xlab="", main="Horizontal profile")
abline(h=0, v=1:5, lty="dotted", col="grey")
par(xpd=TRUE)
legend(x=5.5, y=2, legend=rownames(ms), fill=rainbow(nrow(ms)))
axis(side=1, at=1:5, labels=colnames(ms), las=1, col="white")

Horizontal profile

2 -
B Butcher
O Carpenter
i O Carter
1 O Farmer
B Hunter
B Miller
> 04 B Taylor
1
2 -
temperature price delivery_min wine_ordered weekday

And the same, but on the vertical axis. (A)

par(mar=c(8,8,5,2))
matplot(x=y, y=x, type="1", pch=1:5, frame.plot=FALSE, axes=FALSE, xlab="", ylab="",
lty="solid",
col=rainbow(nrow(ms)), xlim=c(-3,3), ylim=c(0.5,ncol(ms)), main="Driver's profile",
lwd=2)
matpoints(x=y, y=x, col=rainbow(nrow(ms)), pch=16)
grid(ny=NA)
axis(side=1, las=1)
mtext(colnames(ms), side=2, at=1:ncol(ms), las=2)
par (xpd=TRUE)
legend(x=0, y=-1, legend=rownames(ms), fill=rainbow(nrow(ms)), xjust=0.5, ncol=4, cex=0.8)
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Anchorage AK Anch AK
Driver's profile ¢ nenorage

1660 2000
weekday /-
wine_ordered
Boston MA
delivery_min Washington DC
Boston MA Louisville KY
New Orleans LA
price \ :
Washington DC New York NY
Chicago IL
Houston TX Philadelphia PA
temperature New York NY Houston TX
Los Angeles CA
New Orleans LA Los Angeles CA
‘ ‘ ! ‘ ‘ ‘ ‘ Louisville KY
3 2 - 0 1 2 3 Chicago IL

Philadelphia PA

B Butcher O Cater M Hunter B Taylor
O Carpenter © Farmer M Miller

A) B)
15.2 “Bumpchart”

Plot B is sometimes called bumpchart (Jim Lemon).

# example from plotrix (bumpchart)
edu <- matrix(c(90.4,90.3,75.7,78.9,66,71.8,70.5,70.4,68.4,67.9,
67.2,76.1,68.1,74.7,68.5,72.4,64.3,71.2,73.1,77.8), ncol=2, byrow=TRUE)
rownames (edu) <- c("Anchorage AK","Boston MA","Chicago IL",
"Houston TX","Los Angeles CA","Louisville KY","New Orleans LA",
"New York NY","Philadelphia PA","Washington DC")
colnames(edu) <- c¢(1990,2000)

par(mar=c(5,10,5,10))
matplot(x=1:2, y=t(edu), type="1", frame.plot=FALSE, axes=FALSE, xlab="",
ylab="", lty="solid", col=rainbow(10))
matpoints(x=1:2, y=t(edu), pch=16, frame.plot=FALSE, axes=FALSE, xlab="",
ylab="", 1lty="solid", col=rainbow(10))

sapply( 1:2, function(i) mtext(rownames(edu), side=2%*i,

at=SpreadOut(edu[,i], mindist=1.1), line=1, las=1 ))
mtext(colnames(edu), side=3, at=1:2, line=-3.5, las=1 )
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15.3 Barplot horizontal

A simple barplot, once with absolute values, once with percentages.

windows(height=3, width=11); par(mfrow=c(1,3))

col <- SetAlpha(PalHelsana(), ©.6)

tab <- matrix(c(401,216,221,254,259,169), nrow=2, byrow=TRUE,
dimnames=1ist(wool=c("A","B"), tension=c("L","M","H")))

ptab <- prop.table(tab, 2)

# A)
barplot(tab, beside = TRUE, horiz=TRUE, main="A)",
col = col[1:2], las = 1, legend = rownames(tab))
# B)
barplot(tab, beside = FALSE, horiz=TRUE, main="B)",
col = col[1:2], las = 1, legend = rownames(tab))
# C)
b <- barplot(ptab, beside = FALSE, horiz=TRUE, main="C)",
col = col[1:2], las = 1, legend.text = rownames(tab),
args.legend = list(x=1, y=4.4, bg="white", ncol=2))

x <- t(apply(ptab, 2, Midx, incl.zero=TRUE, cumulate=TRUE))
text(paste(round(t(ptab),3) * 100, "%",sep=""), x=x, y=b, col="white")

0 100 200 300 400 o 100 200 300 400 S00 800

15.4 Barplot vertical

This same as above but with vertical bars.

# A)
barplot(tab, beside = TRUE, main="A)",
col = col[1:2], legend = rownames(tab))
# B)
barplot(tab, beside = FALSE, main="B)",
col = col, legend = rownames(tab))
# C)
barplot(ptab, beside = FALSE, main="C)",
col = col, legend.text = rownames(tab),
args.legend = list(x=3.6, y=1.2, bg="white", ncol=2))

A) B)
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15.5 Barplot (specials)

Some specials like overlapping bars, connecting lines or error bars in combination with a
barplot.

A) B)

C)
o I

@ - N\ LY = —

A ,/ Ay
© - » Y B

. 1
- ~ - \‘{fj o o
o -
o - o o

1 t2 13 t1 t2 t3

10
|

-1

4

2

windows(height=3,11)
par(mfrow=c(1,3))

# A) Overlapping bars ------------cocmmmmmmeean
blue <- rbind(c(5, 3, 4, 3),
c(3, 2, 5, 1))
dimnames(blue) <- list(c("A","B"),c("t1","t2","t3","t4"))
red <- rbind(c(1.7,3.5,1.6,1.1),
c(2.1,1.0,1.7,0.5))
dimnames(red) <- list(c("A","B"),c("t1","t2","t3","t4"))

# Set parameters
osp <- 0.5 # overlapping part in %
sp <- 1 # spacing between the bars

nbars <- dim(blue)[2] # how many bars do we have?

# Create first barplot
b <- barplot( blue, col=SetAlpha(hblue, c(©0.5,1)), main="A)"
, beside=FALSE, ylim=c(0,10), axisnames=FALSE
, xlim=c(@, nbars*2-osp ) # enlarge x-Axis
, space=c(9@, rep(sp, nbars-1) ) # set spacing=1, starting with o
)
# Draw the red series
barplot( red, col=c(PalHelsana()[5], hred), beside=FALSE
, space=c(l-osp, rep(1l, nbars-1)) # shift to right by 1-osp
, axisnames=FALSE, add=TRUE)

# Create axis separately, such that labels can be shifted to the left
axis(1, labels=colnames(red), at=b+(1-osp)/2, tick=FALSE, las=1)

# B) Connecting lines -----------------—-----o----
barplot(blue, col=SetAlpha(hblue, c(0.5,1)), space=1.2, main="B)" )
ConnLines(blue, lwd=2, lty="dashed", space=1.2)

# C) Add error bars --------------ciccoocieeeao

cred <- apply(red, 2, sum)

b <- barplot(cred, col=horange, space=1.2, ylim=c(0,5), main="C)" )
ErrBars(from=cred * .90, to=cred * 1.1, pos=b)
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15.6 PlotCandlestick

This plot is used primarily to describe price movements of a security, derivative or currency
over time. Candlestick charts are a visual aid for decision making in stock, foreign exchange,
commodity, and option trading.

example(PlotCandlestick)
PlotCandlestick(x=as.Date(rownames(nov)), y=nov, border=NA, las=1, ylab="")

iy * Ju
TN e }

68

T T 1 T T T T 1 T T T 1
2013-05-28 2013-06-03 2013-06-07 2013-06-11 2013-06-17 2013-06-21

15.7 PlotHorizBar

This is a simple function for plotting flowing horizontal or vertical bars.

PlotHorizBar(from=c(1,2,3), to=c(2,5,4), grp=c(1,2,3), col=PalHelsana()[1:3])

]

Inefex
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15.8 PlotPyramid

A special kind of horizontal barplot is a “pyramid plot”, where the bars are plotted back to back.
This is sometimes needed, when your boss has specific and strict ideas how his presentation
should look like.

d.sda <- data.frame(
Kt_x c("NW","TG","UR","AI","OW", "GR","BE", "SH", "AG", "BS", "FR"),
apon=c( 8 11, 9, 7, 9, 24, 19, 19, 20, 43, 27 ),
sda_n = c(127, 125, 121, 121, 118, 48, 34, 33, @, O, ©0))

PlotPyramid(1x=d.sda[,c("apo_n","sda_n")], ylab=d.sdag$kt_x,
col=c("lightslategray", "orange2"), border = NA, ylab.x=0, xlim=c(-110,250),
gapwidth = NULL, cex.lab = 0.8, cex.axis=0.8, xaxt = TRUE,
1xlab="Drugstores", rxlab="General practitioners"”,
main="Density of general practitioners and drugstores”,
space=0.5, args.grid=list(lty=1))

Density of general practitioners and drugstores
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15.9 PlotDot

The base function dotchart has been improved but still has some potential for extensions.
Especially an add argument is sometimes useful and returning the y-coordinates for the points
would allow to add elements.

PlotDot implements these extensions and allows adding error bars. This is interesting, as the
calculation of the x-limits should be done with respect to the bars and not only to the points.

# add some error bars

PlotDot (VADeaths, main="Death Rates in Virginia - 1940", col="red", pch=NA,
args.errbars = list(from=VADeaths-2, to=VADeaths+2, mid=VADeaths,
pch=21, cex=1.4))

# add some other values
PlotDot (VADeaths+3, pch=15, col="blue", add=TRUE, labels=NA)
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15.10 PlotBubble

Bubbles can actually easily be produced with the standard plot function. This function here
helps you defining appropriate axis limits.

PlotBubble(d.world$x, d.world$y, area=d.world$pop/90, col=SetAlpha(“"deeppinks",0.4),

border="darkblue",

xlab="", ylab="", panel.first=grid(), main="World population")
text(d.world$x, d.world$y, labels=d.world$country, cex=0.7, adj=0.5)
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15.11 Venn plots

In rare cases one might want to plot a Venn diagram. This function does this for up to 5 datasets
using the simple proposed geometric representations.

(For more than 5 datasets the Venn representation loses its simplicity and other plot types
become more adequate.)

example(PlotVenn)

PlotVenn(x=x[1:3], col=SetAlpha(c(PalHelsana()[c(1,3,6)]), ©0.4))
PlotVenn(x=x[1:4], col=SetAlpha(c(PalHelsana()[c(1,3,6,4)]), ©.4))
PlotVenn(x=x[1:5], col=SetAlpha(c(PalHelsana()[c(1,3,6,4,7)]), 0.4))

15.12 Areaplot

Areaplots have a high “ink factor”!, say they use much ink to display the information and are
therefore rarely the best way of representing data. But again, when your boss wants it this way,
here’s a function to produce it easily.

t.o0il <- t(matrix(c(13.3,11.4, 9.7,10.6,12.7,11.0,10.6,13.5,
5.3, 3.6, 5.8, 8.4, 9.1,14.8,10.6, 9.6,
4.9, 3.1, 3.0, 6.0,12.2, 7.1, 7.3,10.0,
2.1, 2.6, 2.7, 3.5, 4.7, 5.0, 4.4, 4.3), nrow=4, byrow=TRUE,
dimnames = list(c("ExxonMobil","BP","Shell","Eni"),

c("1998","1999","2000","2001","2002","2003", "2004","2005"))))
t(t.oil)

par(mfrow=c(1,2), mar=c(5,4,5,5))
col <- SetAlpha(PalHelsana(), 90.7)
PlotArea(t.oil, col = col, las = 1, frame.plot=FALSE)
mtext(side=4, text=colnames(t.oil), las=1,
at=Midx(tail(t.oil, 1)[,], incl.zero=TRUE, cumulate=TRUE))

PlotArea(prop.table(t.oil, 1), col = col, las = 1, frame.plot=FALSE)

tab (absolute values)
> t(t.oil)

1998 1999 2000 2001 2002 2003 2004 2005
ExxonMobil 13.3 11.4 9.7 10.6 12.7 11.0 10.6 13.5

BP 5.3 3.6 5.8 8.4 9.1 14.8 10.6 9.6
Shell 4.9 3.1 3.0 6.012.2 7.1 7.3 10.0
Eni 2.1 2.6 2.7 3.5 4.7 5.0 4.4 4.3

! Tufte, Edward R (2001) [1983], The Visual Display of Quantitative Information (2nd ed.), Cheshire, CT: Graphics Press,
ISBN 0-9613921-4-2.
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ptab (relative values)
1998 1999 2000 2001 2002 2003 2004 2005
ExxonMobil ©.520 0.551 0.458 ©.372 0.328 0.290 0.322 0.361

BP 0.207 0.174 0.274 0.295 0.235 0.391 0.322 0.257
Shell 0.191 0.150 0.142 0.211 0.315 0.187 0.222 0.267
Eni 0.082 0.126 0.127 0.123 0.121 0.132 0.134 0.115
40 T 10 o
Eni
o 08
30 Shell
06
207 BP
04 —
10
ExxonMobil 0.2 7
0 - 00 —
| | | | | | | | | | | | | | |
1998 2000 2002 2004 1998 2000 2002 2004
15.13 PlotTernary
This produces a ternary or triangular plot.
data(Skye, package="MASS")
PlotTernary(Skye[c(1,3,2)], pch=15, col=hred, main="Skye",
lbl=c("A Sodium", "F Iron", "M Magnesium"))
Skye
A Sodium
|
|
i
[ |
n
"
M Magnesium FIron
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15.14 PlotMarDens

This plot shows a scatterplot of two numerical variables temperature and delivery_time, by area.
On the margins the density curves of the specific variable are plotted, also stratified by area.

PlotMarDens(y=d.pizza$temperature, x=d.pizza$delivery min, grp=d.pizza$area,
xlab="delivery_min", ylab="temperature",
col=c("brown","orange","lightsteelblue"), panel.first=grid(),
main="temperature ~ delivery min | area" )

temperature ~ delivery_min | area

o Brent
Camden
Westminster

temperature

10 20 30 40 50 60

delivery_min

15.15 Polar plots

testlen <- c(sin(seq(@, 1.98*pi, length=100)) + 2 + rnorm(100)/10)
testpos <- seq(@, 1.98*pi, length=100)
# start at 12 o'clock and plot clockwise
PlotPolar(testlen, -(testpos - pi/2), type="p", main="Test Polygon", col="green", pch=16)
PolarGrid(ntheta = rev(seq(@, 2*pi, by=2*pi/9) + pi/2),
alabels=Format(seq(@, 2*pi, by=2*pi/9),2)[-10], col="grey",
lty="solid", lblradians=TRUE)

# just because of its beauty
t <- seq(0,2*pi,0.01)

PlotPolar(r=sin(2*t)*cos(2*t), theta=t, type="1", lty="dashed", col="red")
PolarGrid()
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15.16 Plot Functions

Functions can be plotted a bit more comfortable by means of the function PlotFct. The idea is to
be able to use the formula interface, for example x*2 ~ x, and let the function choose
appropriate defaults for the rest. (This would be the best case scenario...;-).

There can as well be further parameters defined for plotting more than one function at once.

# get some data
par(mfrow=c(2,2))
PlotFun(sin(2*t) ~ sin(t), from=0, to=2*pi, by=0.01, col="blue", lwd=2)

PlotFun(1+ 1/10 * sin(1@*x) ~ x, polar=TRUE, from=0, to=2*pi, by=0.001, col=hred)
PlotFun(sin(x) ~ cos(x), polar=FALSE, from=0, to=2*pi, by=0.01, add=TRUE, col="blue")

# lemniscate of Bernoulli
PlotFun((2*a”2*cos(2*t))"2 ~ t, args=list(a=1), polar=TRUE, from=0, to=2*pi+0.1, by=0.01,
col="darkblue")

# evolving circle
PlotFun(a*(sin(t) - t*cos(t)) ~ a*(cos(t) + t*sin(t)), args=1list(a=0.2), from=0, to=50,
by=0.01,

col="brown")
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16 Import — Export

16.1 Import data via Excel

The function XLGetRange allows a quick import
specify a number of cell-references (including a
which are to be imported.

of data from an Excel-Sheet. The user can either
path- and filename) or just select the regions

The following command will return a list with the contents of the selected cell ranges.

:m Stai| Einf| Seit| Fon | Dat | Ube | Ans | Ao | & 0 (=
| & A = %, A
Einfdgen o Schriftart Ausrichtung, Zahl  Formatvorlagen Zellen
| g e 20 e
Zwischena...
B12 - ii| 147.8 v
A | 8 | ¢ D Bk
1 |year weight [
=l 2013 166.6 E|
3 2013 176
a| 2013 170.9
5 2013 165.3
6 2013 177.5
7 2013 159.7
5| 2013 165.9
9 2013 163.7
10 2013 162.4
11| 2013 168.1
12| 2013 169.7
13 2013 147.8
| 14 | 2013 168.7
150 2013 164.7
16 | 2013 164.6
17 2013 150.2
1a | 12 158 6 e
M <+ ¥ Tabellel ~Tabelle2 ~TabellJ4[ | ][]
Mittelwert: 1190088889 Anzahl: 11 Summe: 107103 ||EH|O [ .

£ Rsmdin_‘*

"’_" &2 - =3 @ =) |3 Project: (Mane] =

Console - —
>
>
>
>
>
> x <-XLGetRange()
B
$Al:B1°
x1 X2

year weight

TAB:A10T
X1
2013
2013
2013
2013
2013

[E I T N I T

"B13:B16°
x1
147.8
168.7
164.7
164.86

oL b Ll

]

XLView(d.frm) can be used to view a data.frame d.frm in Excel.

16.2 Import SAS datalines

The function ParseSASDatalines can be used to import the SAS data like the following:

sas <-
data FatComp;
input Exposure Response Count;
label Response='Heart Disease’;
datalines;
00 6

[ )
R ® R
R AN

Rl
El

(FatComp <- ParseSASDatalines(sas))

Exposure Response Count

1 0 0 6
2 0 1 2
3 1 0 4
4 1 1 11
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