Documentation

Contents
Installation e 1
USAZE . . o v o e 1
Installation

Before anything, make sure the DependencyReviewer package is installed.

remotes

The latest version is usually available on GitHub, and is installable with the remotes package.

If you do nmot have remotes installed:
install.packages("remotes")

Install DependencyReviewer with remotes:

remotes: :install_github("darwin-eu/DependencyReviewer")

install.packages

DependencyReviewer 1.0.0 is also available on CRAN, and can be installed using install.packages as well.

install.packages("DependencyReviewer")

Usage

library(DependencyReviewer)

Other packages that are used in the examples
library(DT)

library(ggplot2)

library(dplyr)

library(igraph)

library(GGally)

getDefaultPermittedPackages

What does it do? The getDefaultPermittedPackages function retrieves a list of packages from several
on,- and offline data sources. These data sources include:

1. Base packages with a high priority installed.packages(lib.loc = .Library, priority =
"high")

Tidyverse packages

OHDSI/HADES packages

Packages hosted on the DependencyReviewer Whitelists repository

Finally the function will also retrieve the defined packages’ dependencies recursively, and add them to
the list.

Cuk

These packages are deemed OK to use. This list will, and should change overtime as packages become
outdated, get replaced, or added to the list.

What does it need? getDefaultPermittedPackages does not require any arguments.

What does it return? getDefaultPermittedPackages returns a class of data.frame with columns: pack-
age and wersion

datatable(getDefaultPermittedPackages())

#> Updated metadata database: 4.91 MB in 12 files. Updated metadata database: 4.91 MB in 12 files.

#>

#> Updating metadata database Updating metadata database Updating metadata database ... done Updatin
#>

#> Writing temp file

#> PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, pleas

https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/blob/main/TidyverseDependencies.csv
https://github.com/OHDSI/Hades/blob/main/extras/packages.csv
https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/blob/main/dependencies.csv

Show| 10 v |entries Search:

package version
1 KernSmooth 422
2 MASS 4.2.2
3 base 422
4 boot 422
5 class 422
6 cluster 422
7 compiler 422
8 datasets 422
9 foreign 422
10 grDevices 422

Showing 1 to 10 of 242 entries
Previous 1 2 3 4 5 e 25 Next

checkDependencies

What does it do? Now that we have defined our ‘whitelisted” packages, checkDependencies allows us to
check our currently used dependencies against it. checkDependencies will run getDefaultPermittedPackages
internally so there is no need to run the two separately to check your dependencies against the white list.

What does it need? checkDependencies has two optional arguments:

1. packageName default (NULL): Expects a character string of a package name. Example: “ggplot2”.

2. dependencyType default (c("Imports", "Depends")): Expects a character vector of at least length
1 of dependency types. The supported types are: “Imports”, “Depends”, and “Suggests”.

Because both arguments are optional it can also be run without specifying anything. The function will then
assume that it is run inside a package-project environment. This is specifically useful when working on, or
reviewing a package.

What does it return? checkDependencies prints out a message in the console that informs the user if
all their used package dependencies are whitelisted or not. If not it instructs the user where to go to request
the packages to be whitelisted.

Assumes the current environment is a package-project
Defaults are: packageName = NULL, packageTypes = c("Imports", "Depends")
checkDependencies ()

Check dependencies for installed package "dplyr"
checkDependencies(

packageName = "dplyr"
)

1. If packages are not approved yet:

Check Imports and Suggests
checkDependencies(

packageName = "dplyr",

dependencyType = c("Imports", "Suggests")

)

#> Get from temp file

#>

#> —-- Checking if packages in Imports and Suggests have been approved --—
#>

#> ! Found 9 packages in Imports and Suggests that are not
#> approved

#> > 1) Lahman

#> > 2) RMySQL

#> > 3) RPostgreSQL

#> > 4) bench

#> > 5) cour

#> > 6) lobstr

#> > 77) microbenchmark
#> > 8) nycflightsi3
#> > 9) testthat

#> | Please create a new issue at https://qithub.com/mvankessel-EMC/DependencyRevieweriWhitelists/ to re
#> > |package [version [date | downloads_last_month/license [url |/

#> [:mmmmmmm [:=mmmm- [1mmmm [mmmmm e ff rmmmmmmm ===

As you can see, it returns a list of all the packages that are not white listed. Below the list it will display
some information in a markdown table format. This will come in handy later on. The table has six columns:
1) package, 2) version, 3) date, 4) downloads_last_month, 5) license, and 6) url.

Note that only packages available on CRAN are reported in the table. Non-CRAN packages will still show
up in the list.

2. If all packages are approved:

Only check directly imported dependencies of installed package "dplyr"
checkDependencies(

packageName = "dplyr",

dependencyType = c("Imports")

)

#> Get from temp file

#>

#> -- Checking if package in Imports have been approved --
#>

#> v All package in Imports are already approved

Notice how “Imports” and “Depends” packages of dplyr are whitelisted, but “Suggests” packages are not.

Requesting packages to be whitelisted

If you find that some packages are not yet whitelisted, you can request them to be. The DependencyRe-
viewer Whitelists repository on GitHub houses the white list for DependencyReviewer.

To request new packages a new issue can be created on this repository.

Assuming we have the following output from checkDependencies:

Get from temp file
Checking if packages in Imports and Suggests have been approved

! Found 3 packages in Imports and Suggests that are not
approved

-+ 1) GGally

+ 2) lintr

+ 3) pak

| Please create a new issue at https://github.com/mvankessel-EMC/DependencyReviewerWhitelists/ to reque
|package |version |date | downloads_last_month|license [url

| === | :——————- | == |- i | i—————————
[GGally [2.1.2]2021-06-21 03:40:10 | 86657 |GPL (>= 2.0) |https://ggobi.github.
[lintr [3.0.2]2022-10-19 08:52:37 | 61729 |MIT + file LICENSE |https://github.com/r-
| pak 10.3.1 12022-09-08 20:30:02 | 39420|GPL-3 |https://pak.r-1ib.org

When creating a new issue, a request template is available.

Figure 1: Request template button
This template asks for some basic information about the requested packages, and a reason as to why the
requested packages should be whitelisted.
Initially it displays some dummy information as to what a request might look like.

Firstly it asks us is to supply a table in markdown format with some basic information about the packages.
We can copy this from the output message from the checkDependencies function.

Then it asks us to give a description as to why we would like these packages to be whitelisted.
Finally, we can add some additional information if required.
We can then preview our request issue:

If everything looks good, we can submit the issue.
summariseFunctionUse
What does it do? summariseFunctionUse goes through all specified R-files and attempts to list all the

functions used in those files. It will also report in what file the function was found, at what line number the
function call was found, and from which package the function comes from.

https://github.com/mvankessel-EMC/DependencyReviewerWhitelists
https://github.com/mvankessel-EMC/DependencyReviewerWhitelists

Issue: Request

Suggest packages for the whitelist. If this doesn't look right, choose a different type

. My Request

Write HB I i= <&

Table of packages to request in markdown format (package, version, date, downloads_last_month, license, url).
|package |version |date | downloads_last_month|license Jur

|checkmate [2.1.0 |2022-04-21 06:30:05 | 277387|BSD_3_clause + file LICENSE |https://milg.github.io/checkmate/
https://github.com/mllg/checkmate |

|desc |1.4.2 |2022-09-08 09:52:55 | 581711|MIT + file LICENSE |https://github.com/r-lib/desc#readme hittps://r-
lib.github.io/desc/ |

|OT |0.26 [2022-10-18 23:17:54 | 249779|GPL-3 | file LICENSE |https://github.com/rstudio/DT

|

A short description as to why you would like these packages to be whitelisted.
A clear and concise description.

**Additional information™
Add any other information you deem usefull.

pasting them.

Figure 2: Request template

Issue: Request

Suggest packages for the whitelist. If this doesn't lock right, choose a diffe

. My Request

Write H B I i= & &

Table of packages to request in markdown format (package, version, date, downloads_last_month, license, url).
|package |version |date | downloads_last_menth|license |url |
[z====--]: | | :J: |-
|GGally [2.1.2]2021-06-21 03:40:10 | 86657|GPL (>= 2.0) |https://ggobi.github.io/ggally/,
https://github.com/ggobi/ggally |

[lintr |3.0.2 |2022-10-19 08:52:37 | 61729|MIT + file LICENSE |https://github.com/r-lib/lintr, https://lintr.r-lib.org

lpak 031 [2022-09-08 20:30:02 | 39420|GPL-3 |https://pak.r-lib.org/ [

A short description as to why you would like these packages to be whitelisted.
I'm the dev, | can do whatever | want.

**Additional information™*
Maybe | should just add DependencyReviewer to the whitelist @

sting them.

Figure 3: Request filled out

Issue: Request

Suggest packages for the whitelist. If this doesn't look right, «

. My Request

Preview

Table of packages to request in markdown format (package, version, date, downloads_last_month, license, url).

package version downloads_last month license

GPL (:
2.0)

GGally

MIT + file

A short description as to why you would like these packages to be whitelisted.
I'm the dev, | can do whatever | want.

Additional information

Maybe | should just add DependencyReviewer to the whitelis

Submit new

Figure 4: Request preview

What does it need? summariseFunctionUse has several optional arguments:

1. r_ files default (list.files(here::here(“R”))): If in_package = TRUE expects a character vector of at
least length 1 of file names in the /R/ folder. If in_package == FALSE expects full paths to the
R-files.

2. verbose default (FALSE): If verbose = TRUE will print messages in the console on which file the
function is currently working. Useful when reviewing large R-files. If verbose = FALSE will not print
said messages.

3. in__package default (TRUE): If in_package = TRUE will expect that the function is run inside a
package-project. If in_package = FALSE will expect that the function is run outside a package-project
and will expect full file paths to the files reviewed.

By default summariseFunctionUse will expect that it is ran inside a package-project and will look at the
/R/ folder inside the project.

What does it return? summariseFunctionUse returns a class of data.frame with the following columns:
r_file, line, pkg, fun.

Assumes the function is run inside a package-project.

datatable(
. summariseFunctionUse(list.files(here: :here("R"), TRUE)
Show | 10 v |entries Search:
r_file line pkg fun
1 checkDependencies.R 27 Dbase function
2 checkDependencies.R 29 dplyr filter
3 checkDependencies.R 29 base is.na
4 checkDependencies.R 30 dplyr rename
5 checkDependencies.R 31 dplyr left join
6 checkDependencies.R 33 base c
7 checkDependencies.R 35 dplyr filter
8 checkDependencies.R 48 base function
9 checkDependencies.R 51 dplyr filter
10 checkDependencies.R 52 dplyr anti_join

Showing 1 to 10 of 243 entries
Previous 1 2 3 4 5 . 25 Next

if (interactive()) {
Any other R-file, with verbose messages
foundFuns <- summariseFunctionUse(
"../inst/testScript.R",
TRUE

datatable (foundFuns)
T

The found functions can then be plotted out for each package. For the sake of this demonstration, only a
few packages will be plotted.

if (interactive()) {
funCounts <- foundFuns %>’
group_by (fun, pkg, "n") h>%
tally () %>%
dplyr::filter(pkg %in% c('checkmate", "DBI", "dplyr"))

ggplot(
funCounts,

aes(fun, n, pkg)
)+
geom_col() +
facet_wrap(
vars (pkg) ,

"free_x",
1

) +

theme_bw() +

theme (

"none",
(element_text(45, 1, 1))

)
}
getGraphData

What does it do? getGraphData creates an igraph graph object of all the dependencies that the root
package depends on. This includes direct and transitive dependencies.

What does it need? getGraphData has three optional parameters:

1. path default (here::here()): Path to the package to get the graph data of. By default assumes that
the function is ran inside a package-project.

2. excluded__packages default (c(““)): A character vector of packages to be excluded. By default is
empty.

3. package__types default (c(“imports”, “depends”)): Package dependency types to be included. By de-
fault imports and depends are included. Available types are: 1) “imports”, 2) “depends”, 3) “suggests”,
4) “enhances”, 5) “linkingto”

Without any of these specified, the getGraphData function assumes that it is ran inside an package-project.

What does it return? getGraphData returns a class of igraph.

graphData <- getGraphData()

Because the amount of dependencies in the graph quickly get out of hand, it is suggested that you would
either filter the igraph object after the fact, or only look at one kind of package type. In the following
example we’ll look at “Imports” only to keeps things simple.

It could then be plotted like so:

Get graphData with only imports
graphData <- DependencyReviewer: :getGraphData()

Calculate colour of nodes based on distances from root package
cols <- factor(as.character(apply(

X = distances(graphData, V(graphData)[1]),

MARGIN = 2,

FUN = max
)

Plot graph
ggnet2(
net = graphData,
arrow.size = 1,
arrow.gap = 0.025,

label = TRUE,

palette = "Set2",
color.legend = "distance",
color = cols,
legend.position = "bottom",

edge.alpha = 0.25,
node.size = 2.5,
label.size = 1,
legend.size = 2

10

flelock

rdppdis rfoidor
rex
balliplrs @ préessx
pkoflepends
digest cydioggmp callr
18580 jsonlite
ol
pgbui o
desc
pak
cofltbis
bit
rdffiotes
fools L R6
xmiprsedata
fayon
withr
R \ 4 uils |
xun .
DependdficyReviewer o bite4
Stingi latice
gue
4 feads aif gidevices)
fight ialon p: 4
xmi2 2
Viom
dplyr
tifselect @ o
L 4 i igraph
singe tidyr
[l
edfilte 4 bble
[
pkgeonti
i il tzdo
® niagrit vetrs @
gdnefics dipgs ™ @@

runShiny

What does it do? runShiny runs a local shiny app that houses all the before mentioned functionality in
one environment. runSHiny assumes that it is being ran inside a package-project.

What does it need? runShiny Takes no arguments

What does it return? runShiny returns a class of shiny.appobj.

runShiny ()

The shiny application has three main tabs: 1) Package review, 2) Dependency Graph, and 3) Path to
dependency.

Package review

On the package review tab there are three main panels.
1. Settings: The settings have two parts on this panel: A file picker, and tick boxes to packages.
Currently all the files are in the summariseFunctionUse table.

2. summariseFunctionUse table and plot: The summariseFunctionUse table for the specified files,
or all files if ALL is picked in the file picker in the settings.

3. Script preview: A preview of the contents of the selected file. If ALL is chosen, a dummy script will
appear, or the last viewed contents will stay.

11

Parkage vy Dependency Gy Pt 1 dependency

File

(K ==
rhe e okg]
1 checkDependencies R @ bese
2 chacknEpandz 5 epiyr
3 rheckDiepends 79 bass
4 checkDmpends 0
= chiecklepemienaes i W do
] checkDependendies R 32 bage
T Soaplyr
] checkRependancies i 47 bass
& chechLipenienss A 0 o
W CcheckUependenags o1 oo anb
[Sheratg 1o 40 of 240 =ntnes. Fraviaus 1 2 3 4 5 24 hext
Figure 5: Function review
Packapereves | Depanency Grapn Pain i segendency
ris Exclude Packiges
L . tase L) b here
of | [unkoown. () cpnyr
Pt
Show 10 v Enwes Baastn] :
1
e kg fen b
H
1 1 bam ninztion T
3
H 12 e e u
3 13 e Inl_package 2
u
4 o R e 2
it
s 15 e Iniers_wth_detadis 1
.
. u v socksgt. The oec
" % i abEc]_name_inte) 2t pei bl iy R
u
¥ 17T baswe function ay
*
& 16 oi_sen_ganpes u
£l
s 19 bass s L;
10 21 unkndum gaminLiniFie
Snowang T 10 10 of 29 enines Previous 1 2 2 4 o Next

Figure 6: Package review

12

Notice how the Settings, summariseFunctionUse table and plot, and Script preview dynamically
change when the darwinLint.R file is selected.

When swapping from the Function review to the Plot tab a bar graph is shown for each package used in
the file. The bars represent the amount of function calls in that file per package.

Fila Excluds Packages
| aase | e (5 e
L Fll L wrknnen L eptyr

PR PN S R R S A I . s 5 e £ el F

T P F 7
E A 4

Figure 7: Function review plot
Lets say base functions are not interesting for your use case, you can then tick the base tick box in the
Exclude Packages in the settings.
base packages are now excluded from both the summariseFunctionUse table and plot.
Dependency Graph

The Dependency Graph tab displays a graph, like plotted earlier, using the graphData function. On the
right-hand-side different kinds of dependencies are able to be chosen to be included in the graph.

Path to dependency
The path to dependency tab displays how the root package depends on any recursive dependency.

On the right-hand-side a dependency found somewhere included in the root package can be chosen. A cutoff
can be defined to limit the distance from the root package to the chosen dependency.

darwinLintFile

What does it do? darwinLintFile is an extension of the default Lintr object, but instead of snake case,
it uses camelCase. As the name suggest it will run the lintr on a specified file.

What does it need? darwinLintFile takes one parameter: 1. fileName: Path to an R-file.

What does it return? It returns a class of lints.

However the output of a lintr function can be cast to a data.frame.

13

Fackagesewew Depencency Grmph Falh lo deperdency

Fhe Exchude Fackages
GarwinLint R - | W bEse: O Wr El-hare
) O knewn L ophy

Eunctionfeiew | Fla

’ I |
s Il
i
: | I
¢ 7 ¢ ; ?

: 2 2 K 7 e 7 s

Figure 8: Package review

Fackagerewew Depeecency Grapn Fath i dependency
File Exclude Fackages

3 - | ®bEe O v ners
o nknown L oot

Fonctios review Pl

Show| 70 *laniites | T dralelsirasiare
34 Darmis Gire et aving deteds dne s
e phy fun o
H
1 13 o Wil_package 3
1
2 14 here here 12
1% i
3 15 o Witers_wiln_detadts 5
1),
1 15 e otyect name_iniet n Lirrare_civ_sefwiltal
it e sedect_ruem_Lintariskylen - “cemctanh |
5)
3 ok ii_ghen_ganger b |
ey
" E) Surdng the lirtlag of yiur peciege. The pectage
B 21 wincemn SailintF i 2] mignt be to large to 1int all topether. Use: decwinlintPiledrdletess)™}
i
7 £ ety m n |
=
n
2 e Ent=rs_with_detadis 2 el intrize
5
- 3 e iisn e gl HI
9 & obgect_name_inler -
1o FI unknowm EntFunchon
‘Shawing 110 10 of 73 entnes. Preranss | 1 2 3 el

Figure 9: Package review

14

Package review Dependency Graph

Kinds of dependencies

I# imports (| depends [suggesis
] enhances [linkingto

Path to dependency

pre‘wits
vmene re‘xe . 5”5
B e
P g.e . ' 7 co e
R i
sl " g e B ®
0 Wﬁ*é ‘Jj i ‘ “ O

05 oghieta
sl i 8
P K Highr
xmlp.dala

i) ‘aot

Jau@iyio
mmr.mark

& " @i

re@ch e .
Zyeyal

a 5@55

sy8

asmnce
1 3 5

0:09:9-
®:e

Figure 10: Package review

15

Package review

Dependency Graph Path to dependency
Package to find paths to
fansi v
Cutoff
Bl B 10

b s o e R RRRRRR R)
1 2 3 4. 8 8 7 g8 8 10 :

e
5

© reniatenz

."
M

A / \
/ goo. rive——geog '93154. _:."_

@@ 00

Figure 11: Package review

16

if (interactive()) {
lintOut <- data.frame(
darwinLintFile(
"../inst/testScript.R"

Which can then be manipulated to get a summary of lint messages.

if (interactive()) {
lintOut %>%
group_by(type, message) %>%

tally(TRUE) %>%
datatable()

}

darwinLintPackage

What does it do? darwinLintPackage is an extension of the default Lintr object, but instead of
snake__case, it uses camelCase. But unlike darwinLintFile, will run the lintr on the entire package. There-
fore it will assume that the function is ran inside a package-project.

What does it need? darwinLintPackage Does not take any arguments.
What does it return? It returns a class of lints.

darwinLintScore

What does it do? darwinLintScore calculates a percentage per type of lint-message from the lintr.

The percentage is calculated as:

n
. . messages
darwinLintScore,,,, = CERAICE % 100

Nines

What does it need? darwinLintScore takes one predefined argument: 1. lintFunction: A lint function
extended from lintr::lint_package or lintr::lint 2. ... Any other arguments that the lint function
might need

What does it return? Returns a class of data.frame with two columns: 1) type, and 2) pct.

It will also print out colour coded messages with the percentages per message type.

if (interactive()) {
darwinLintScore(darwinLintPackage)

}

i style: 5.9% of lines of code have linting messages
i warning: 0.95% of lines of code have linting messages

17

type pct

style 5.9
warning 0.95

18

