Get started

Start by loading all usual libraries.

library(ClinReport)
library(officer)
library(flextable)
library(dplyr)
library(reshape2)
library(nlme)
library(emmeans)
library(car)

Load your data.

# We will use fake data
data(datafake)
print(head(data))
#>                                                                             
#> 1 function (..., list = character(), package = NULL, lib.loc = NULL,        
#> 2     verbose = getOption("verbose"), envir = .GlobalEnv, overwrite = TRUE) 
#> 3 {                                                                         
#> 4     fileExt <- function(x) {                                              
#> 5         db <- grepl("\\\\.[^.]+\\\\.(gz|bz2|xz)$", x)                     
#> 6         ans <- sub(".*\\\\.", "", x)

Create a statistical output for a quantitative response and two explicative variables. For example a treatment group and a time variable corresponding to the visits of a clinical trial.

For that we use the report.quanti() function:

tab1=report.quanti(data=datafake,y="y_numeric",
        x1="GROUP",x2="TIMEPOINT",at.row="TIMEPOINT",
        subjid="SUBJID")

tab1
#> 
#> ############################################
#> Quantitative descriptive statistics of: y_numeric
#> ############################################
#> 
#>    TIMEPOINT Statistics      A (N=30)      B (N=21)      C (N=17)
#> 1         D0          N            30            20            16
#> 2         D0  Mean (SD)   -0.93(0.86)   -0.67(1.09)   -1.19(0.92)
#> 3         D0     Median         -0.82         -0.69         -1.26
#> 4         D0    [Q1;Q3] [-1.59;-0.16] [-1.39;-0.06] [-1.62;-0.83]
#> 5         D0  [Min;Max]  [-2.34;0.36]  [-2.44;2.10]  [-2.99;0.66]
#> 6         D0    Missing             1             1             0
#> 7                                                                
#> 8         D1          N            30            20            16
#> 9         D1  Mean (SD)    1.83(1.04)    4.17(1.28)    4.98(0.69)
#> 10        D1     Median          1.78          4.19          5.08
#> 11        D1    [Q1;Q3] [ 0.94; 2.54] [ 3.23; 4.92] [ 4.58; 5.46]
#> 12        D1  [Min;Max]  [ 0.11;3.88]  [ 1.48;6.19]  [ 3.80;6.23]
#> 13        D1    Missing             1             0             0
#> 14                                                               
#> 15        D2          N            30            20            16
#> 16        D2  Mean (SD)    1.97(1.17)    4.04(0.89)    4.90(1.36)
#> 17        D2     Median          1.66          4.19          5.06
#> 18        D2    [Q1;Q3] [ 1.23; 2.86] [ 3.62; 4.36] [ 4.34; 5.20]
#> 19        D2  [Min;Max]  [-0.18;4.36]  [ 2.03;5.63]  [ 2.39;7.96]
#> 20        D2    Missing             1             1             0
#> 21                                                               
#> 22        D3          N            30            20            16
#> 23        D3  Mean (SD)    1.78(1.17)    3.81(0.94)    5.07(1.12)
#> 24        D3     Median          1.78          3.63          5.22
#> 25        D3    [Q1;Q3] [ 0.93; 2.42] [ 3.13; 4.44] [ 4.11; 5.66]
#> 26        D3  [Min;Max]  [-0.16;3.90]  [ 2.46;6.01]  [ 3.16;7.37]
#> 27        D3    Missing             0             1             1
#> 28                                                               
#> 29        D4          N            30            20            16
#> 30        D4  Mean (SD)    1.83(0.85)    3.80(0.95)    5.17(1.03)
#> 31        D4     Median          1.67          3.83          4.88
#> 32        D4    [Q1;Q3] [ 1.26; 2.32] [ 3.12; 4.42] [ 4.69; 5.50]
#> 33        D4  [Min;Max]  [ 0.38;3.97]  [ 2.31;5.41]  [ 3.24;6.96]
#> 34        D4    Missing             1             1             1
#> 35                                                               
#> 36        D5          N            30            20            16
#> 37        D5  Mean (SD)    2.27(1.20)    3.64(1.19)    4.43(0.98)
#> 38        D5     Median          2.50          3.86          4.57
#> 39        D5    [Q1;Q3] [ 1.77; 3.21] [ 2.59; 4.60] [ 3.44; 4.97]
#> 40        D5  [Min;Max]  [-1.19;4.31]  [ 0.91;5.12]  [ 2.95;6.54]
#> 41        D5    Missing             0             0             0
#> 
#> ############################################

The at.row argument is used to space the results between each visit and the subjid argument is used to add in the columns header the total number of subjects randomized by treatment group.

Generally we want also the corresponding graphics. So you can use the specific plot function to print the corresponding graphic of your table:

g1=plot(tab1,title="The title that you want to display")
print(g1)

plot of chunk unnamed-chunk-4

You can modify the plot by using the following arguments of the plot.desc() function:

args(ClinReport:::plot.desc)
#> function (x, ..., title = "", ylim = NULL, xlim = NULL, xlab = "", 
#>     ylab = "", legend.label = "Group", add.sd = F, add.ci = F, 
#>     size.title = 10, add.line = T) 
#> NULL

Then we can use the report.doc() function which use the flextable package to format the output into a flextable object, ready to export to Microsoft Word with the officer package.

The table will look like this (we can have a preview in HTML, just to check):

report.doc(tab1,title="Quantitative statistics (2 explicative variables)",
        colspan.value="Treatment group", init.numbering =T )            

Table 1: Quantitative statistics (2 explicative variables)

Treatment group

TIMEPOINT

Statistics

A (N=30)

B (N=21)

C (N=17)

D0

N

30

20

16

Mean (SD)

-0.93(0.86)

-0.67(1.09)

-1.19(0.92)

Median

-0.82

-0.69

-1.26

[Q1;Q3]

[-1.59;-0.16]

[-1.39;-0.06]

[-1.62;-0.83]

[Min;Max]

[-2.34;0.36]

[-2.44;2.10]

[-2.99;0.66]

Missing

1

1

0

D1

N

30

20

16

Mean (SD)

1.83(1.04)

4.17(1.28)

4.98(0.69)

Median

1.78

4.19

5.08

[Q1;Q3]

[ 0.94; 2.54]

[ 3.23; 4.92]

[ 4.58; 5.46]

[Min;Max]

[ 0.11;3.88]

[ 1.48;6.19]

[ 3.80;6.23]

Missing

1

0

0

D2

N

30

20

16

Mean (SD)

1.97(1.17)

4.04(0.89)

4.90(1.36)

Median

1.66

4.19

5.06

[Q1;Q3]

[ 1.23; 2.86]

[ 3.62; 4.36]

[ 4.34; 5.20]

[Min;Max]

[-0.18;4.36]

[ 2.03;5.63]

[ 2.39;7.96]

Missing

1

1

0

D3

N

30

20

16

Mean (SD)

1.78(1.17)

3.81(0.94)

5.07(1.12)

Median

1.78

3.63

5.22

[Q1;Q3]

[ 0.93; 2.42]

[ 3.13; 4.44]

[ 4.11; 5.66]

[Min;Max]

[-0.16;3.90]

[ 2.46;6.01]

[ 3.16;7.37]

Missing

0

1

1

D4

N

30

20

16

Mean (SD)

1.83(0.85)

3.80(0.95)

5.17(1.03)

Median

1.67

3.83

4.88

[Q1;Q3]

[ 1.26; 2.32]

[ 3.12; 4.42]

[ 4.69; 5.50]

[Min;Max]

[ 0.38;3.97]

[ 2.31;5.41]

[ 3.24;6.96]

Missing

1

1

1

D5

N

30

20

16

Mean (SD)

2.27(1.20)

3.64(1.19)

4.43(0.98)

Median

2.50

3.86

4.57

[Q1;Q3]

[ 1.77; 3.21]

[ 2.59; 4.60]

[ 3.44; 4.97]

[Min;Max]

[-1.19;4.31]

[ 0.91;5.12]

[ 2.95;6.54]

Missing

0

0

0

All output numbers will be increased automatically after each call of the function report.doc().

You can restart the numbering of the outputs by using init.numbering=T argument in report.doc() function.

Finally, we add those results to a rdocx object:

doc=read_docx()
doc=report.doc(tab1,title="Quantitative statistics (2 explicative variables)",
        colspan.value="Treatment group",doc=doc,init.numbering=T)
doc=body_add_gg(doc, value = g1, style = "centered" )

Write the doc to a docx file:

file=paste(tempfile(),".docx",sep="")
print(doc, target =file)

#Open it
#shell.exec(file)

The descriptive statistics

Qualitative descriptive tables

An example of qualitative statistics with one explicative variable

tab=report.quali(data=datafake,y="y_logistic",
        x1="VAR",total=T,subjid="SUBJID")

report.doc(tab,title="Qualitative table with two variables",
colspan.value="A variable") 

Table 2: Qualitative table with two variables

A variable

Levels

Statistics

Cat 1 (N=65)

Cat 2 (N=63)

Total (N=128)

0

n (column %)

100(48.08%)

86(45.74%)

186(46.97%)

1

n (column %)

103(49.52%)

97(51.60%)

200(50.51%)

Missing n(%)

5(2.40%)

5(2.66%)

10(2.53%)

An example of qualitative statistics with two explicative variables

tab=report.quali(data=datafake,y="y_logistic",
        x1="GROUP",x2="TIMEPOINT",at.row="TIMEPOINT",
        total=T,subjid="SUBJID")

report.doc(tab,title="Qualitative table with two variables",
colspan.value="Treatment group")    

Table 3: Qualitative table with two variables

Treatment group

TIMEPOINT

Levels

Statistics

A (N=30)

B (N=21)

C (N=17)

Total (N=68)

D0

0

n (column %)

11(36.67%)

11(55.00%)

7(43.75%)

29(43.94%)

1

n (column %)

18(60.00%)

8(40.00%)

7(43.75%)

33(50.00%)

Missing n(%)

1(3.33%)

1(5.00%)

2(12.50%)

4(6.06%)

D1

0

n (column %)

7(23.33%)

13(65.00%)

8(50.00%)

28(42.42%)

1

n (column %)

21(70.00%)

7(35.00%)

7(43.75%)

35(53.03%)

Missing n(%)

2(6.67%)

0(0%)

1(6.25%)

3(4.55%)

D2

0

n (column %)

18(60.00%)

7(35.00%)

11(68.75%)

36(54.55%)

1

n (column %)

12(40.00%)

13(65.00%)

5(31.25%)

30(45.45%)

Missing n(%)

0(0%)

0(0%)

0(0%)

0(0%)

D3

0

n (column %)

11(36.67%)

10(50.00%)

7(43.75%)

28(42.42%)

1

n (column %)

19(63.33%)

10(50.00%)

9(56.25%)

38(57.58%)

Missing n(%)

0(0%)

0(0%)

0(0%)

0(0%)

D4

0

n (column %)

18(60.00%)

12(60.00%)

6(37.50%)

36(54.55%)

1

n (column %)

12(40.00%)

8(40.00%)

8(50.00%)

28(42.42%)

Missing n(%)

0(0%)

0(0%)

2(12.50%)

2(3.03%)

D5

0

n (column %)

14(46.67%)

7(35.00%)

8(50.00%)

29(43.94%)

1

n (column %)

15(50.00%)

13(65.00%)

8(50.00%)

36(54.55%)

Missing n(%)

1(3.33%)

0(0%)

0(0%)

1(1.52%)

Quantitative descriptive tables

An example of quantitative statistics with one explicative variable

tab=report.quanti(data=datafake,y="y_numeric",
        x1="VAR",total=T,subjid="SUBJID")

report.doc(tab,title="Quantitative table with one explicative variable",
colspan.value="A variable") 

Table 4: Quantitative table with one explicative variable

A variable

Statistics

Cat 1 (N=65)

Cat 2 (N=63)

Total (N=128)

N

208

188

396

Mean (SD)

2.55(2.18)

2.56(2.23)

2.56(2.20)

Median

2.64

2.79

2.71

[Q1;Q3]

[0.94;4.36]

[1.07;4.19]

[1.04;4.33]

[Min;Max]

[-2.39;6.43]

[-2.99;7.96]

[-2.99;7.96]

Missing

4

6

10

An example of quantitative statistics with two explicative variables

tab=report.quanti(data=datafake,y="y_numeric",
        x1="GROUP",x2="TIMEPOINT",at.row="TIMEPOINT",
        total=T,subjid="SUBJID")

report.doc(tab,title="Quantitative table with two explicative variables",
colspan.value="Treatment group")    

Table 5: Quantitative table with two explicative variables

Treatment group

TIMEPOINT

Statistics

A (N=30)

B (N=21)

C (N=17)

Total (N=68)

D0

N

30

20

16

66

Mean (SD)

-0.93(0.86)

-0.67(1.09)

-1.19(0.92)

-0.92(0.95)

Median

-0.82

-0.69

-1.26

-0.86

[Q1;Q3]

[-1.59;-0.16]

[-1.39;-0.06]

[-1.62;-0.83]

[-1.55;-0.16]

[Min;Max]

[-2.34;0.36]

[-2.44;2.10]

[-2.99;0.66]

[-2.99;2.10]

Missing

1

1

0

2

D1

N

30

20

16

66

Mean (SD)

1.83(1.04)

4.17(1.28)

4.98(0.69)

3.33(1.73)

Median

1.78

4.19

5.08

3.57

[Q1;Q3]

[ 0.94; 2.54]

[ 3.23; 4.92]

[ 4.58; 5.46]

[ 1.78; 4.91]

[Min;Max]

[ 0.11;3.88]

[ 1.48;6.19]

[ 3.80;6.23]

[ 0.11;6.23]

Missing

1

0

0

1

D2

N

30

20

16

66

Mean (SD)

1.97(1.17)

4.04(0.89)

4.90(1.36)

3.32(1.70)

Median

1.66

4.19

5.06

3.57

[Q1;Q3]

[ 1.23; 2.86]

[ 3.62; 4.36]

[ 4.34; 5.20]

[ 1.89; 4.44]

[Min;Max]

[-0.18;4.36]

[ 2.03;5.63]

[ 2.39;7.96]

[-0.18;7.96]

Missing

1

1

0

2

D3

N

30

20

16

66

Mean (SD)

1.78(1.17)

3.81(0.94)

5.07(1.12)

3.15(1.75)

Median

1.78

3.63

5.22

3.15

[Q1;Q3]

[ 0.93; 2.42]

[ 3.13; 4.44]

[ 4.11; 5.66]

[ 1.80; 4.39]

[Min;Max]

[-0.16;3.90]

[ 2.46;6.01]

[ 3.16;7.37]

[-0.16;7.37]

Missing

0

1

1

2

D4

N

30

20

16

66

Mean (SD)

1.83(0.85)

3.80(0.95)

5.17(1.03)

3.22(1.66)

Median

1.67

3.83

4.88

3.16

[Q1;Q3]

[ 1.26; 2.32]

[ 3.12; 4.42]

[ 4.69; 5.50]

[ 1.69; 4.48]

[Min;Max]

[ 0.38;3.97]

[ 2.31;5.41]

[ 3.24;6.96]

[ 0.38;6.96]

Missing

1

1

1

3

D5

N

30

20

16

66

Mean (SD)

2.27(1.20)

3.64(1.19)

4.43(0.98)

3.21(1.45)

Median

2.50

3.86

4.57

3.28

[Q1;Q3]

[ 1.77; 3.21]

[ 2.59; 4.60]

[ 3.44; 4.97]

[ 2.42; 4.44]

[Min;Max]

[-1.19;4.31]

[ 0.91;5.12]

[ 2.95;6.54]

[-1.19;6.54]

Missing

0

0

0

0

Mix descriptive statistics of quantitative and qualitative nature

You can mix qualitative and quantitative outputs.

But it's only possible for 1 explicative variable, and it should be the same variable for both response:

tab1=report.quanti(data=datafake,y="y_numeric",
        x1="GROUP",subjid="SUBJID",y.label="Y numeric")

tab2=report.quali(data=datafake,y="y_logistic",
        x1="GROUP",subjid="SUBJID",y.label="Y logistic")

tab3=regroup(tab1,tab2,rbind.label="The label of your choice")


report.doc(tab3,title="Mixed Qualitative and Quantitative outputs",
colspan.value="Treatment group")

Table 6: Mixed Qualitative and Quantitative outputs

Treatment group

The label of your choice

Levels

Statistics

A (N=30)

B (N=21)

C (N=17)

Y numeric

N

180

120

96

Mean (SD)

1.46(1.50)

3.15(2.00)

3.87(2.52)

Median

1.59

3.75

4.73

[Q1;Q3]

[0.45;2.50]

[2.46;4.44]

[3.44;5.30]

[Min;Max]

[-2.34;4.36]

[-2.44;6.19]

[-2.99;7.96]

Missing

4

4

2

Y logistic

0

n (column %)

79(43.89%)

60(50.00%)

47(48.96%)

1

n (column %)

97(53.89%)

59(49.17%)

44(45.83%)

Missing n(%)

4(2.22%)

1(0.83%)

5(5.21%)

The inferential statistics

Anova table reporting

For the anova table reporting, it's basically a call to the function xtable_to_flextable(). The function report.doc() just handle the numbering of the output and the header with the title.

# Removing baseline data for the model
data.mod=droplevels(datafake[datafake$TIMEPOINT!="D0",])

mod=lme(y_numeric~baseline+GROUP+TIMEPOINT+GROUP*TIMEPOINT,
random=~1|SUBJID,data=data.mod,na.action=na.omit)

anov3=Anova(mod,3)

report.doc(anov3,title="Mixed Qualitative and Quantitative output")

Table 7: Mixed Qualitative and Quantitative output

Chisq

Df

Pr(>Chisq)

(Intercept)

84.699

1.000

0.000

baseline

1.695

1.000

0.193

GROUP

107.561

2.000

0.000

TIMEPOINT

4.426

4.000

0.351

GROUP:TIMEPOINT

11.671

8.000

0.166

LS-Means model reporting

LS-means reporting are based on the package emmeans. The function report.lsmeans() enables to format the output:

lsm=emmeans(mod,~GROUP|TIMEPOINT)

tab=report.lsmeans(lsm,at.row="TIMEPOINT")

report.doc(tab,title="LS-Means example",
colspan.value="Treatment Group")

Table 8: LS-Means example

Treatment Group

TIMEPOINT

Statistics

A

B

C

D1

Estimate (SE)

1.81(0.20)

4.17(0.24)

5.00(0.27)

95% CI

[1.41;2.22]

[3.69;4.65]

[4.46;5.54]

P-value

<0.001

<0.001

<0.001

D2

Estimate (SE)

1.96(0.20)

4.05(0.25)

4.90(0.27)

95% CI

[1.56;2.36]

[3.56;4.55]

[4.36;5.44]

P-value

<0.001

<0.001

<0.001

D3

Estimate (SE)

1.79(0.20)

3.79(0.25)

5.08(0.28)

95% CI

[1.39;2.18]

[3.29;4.28]

[4.52;5.63]

P-value

<0.001

<0.001

<0.001

D4

Estimate (SE)

1.83(0.20)

3.80(0.25)

5.17(0.28)

95% CI

[1.43;2.23]

[3.31;4.30]

[4.62;5.73]

P-value

<0.001

<0.001

<0.001

D5

Estimate (SE)

2.28(0.20)

3.64(0.24)

4.42(0.27)

95% CI

[1.89;2.68]

[3.15;4.12]

[3.88;4.96]

P-value

<0.001

<0.001

<0.001

Pairs and Contrasts of LS-Means

It's the same usage

contr=contrast(lsm, "trt.vs.ctrl", ref = "A")

# There is just only one explicative variable

tab.contr=report.lsmeans(lsm=contr,at="TIMEPOINT")


report.doc(tab.contr,title="LS-Means contrast example",
colspan.value="Contrasts")      

Table 9: LS-Means contrast example

Contrasts

TIMEPOINT

Statistics

B - A

C - A

D1

Estimate (SE)

2.36(0.31)

3.19(0.34)

95% CI

[1.66;3.06]

[2.44;3.94]

P-value

<0.001

<0.001

D2

Estimate (SE)

2.10(0.32)

2.94(0.34)

95% CI

[1.38;2.81]

[2.19;3.69]

P-value

<0.001

<0.001

D3

Estimate (SE)

2.00(0.32)

3.29(0.34)

95% CI

[1.29;2.71]

[2.53;4.05]

P-value

<0.001

<0.001

D4

Estimate (SE)

1.97(0.32)

3.34(0.34)

95% CI

[1.26;2.68]

[2.58;4.11]

P-value

<0.001

<0.001

D5

Estimate (SE)

1.35(0.31)

2.14(0.33)

95% CI

[0.66;2.05]

[1.39;2.88]

P-value

<0.001

<0.001

Hazard ratios of a Cox model

library(survival)

data(time_to_cure)

fit <- coxph(Surv(time, status) ~ Group, data = time_to_cure) 
em=emmeans(fit,~Group,type="response")
pairs=pairs(em,adjust="none",exclude="Untreated")
tab.pairs=report.lsmeans(pairs)

tab.pairs
#> 
#> ############################################
#> LS-Means comparisons of: time
#> ############################################
#> 
#>      Statistics Group A / Group B Group A / Group C Group B / Group C
#> 1 Estimate (SE)        0.66(0.25)        0.49(0.19)        0.74(0.27)
#> 2        95% CI       [0.31;1.39]       [0.23;1.04]       [0.36;1.51]
#> 3       P-value             0.270             0.060             0.410
#> 
#> ############################################

report.doc(tab.pairs,title="Hazard ratios of a Cox model")

Table 10: Hazard ratios of a Cox model

Statistics

Group A / Group B

Group A / Group C

Group B / Group C

Estimate (SE)

0.66(0.25)

0.49(0.19)

0.74(0.27)

95% CI

[0.31;1.39]

[0.23;1.04]

[0.36;1.51]

P-value

0.270

0.060

0.410