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Abstract: In intertemporal and risky choice decisions, parametric utility models are widely used 

for predicting choice and measuring individuals’ impulsivity and risk aversion. However, 

parametric utility models cannot describe data deviating from their assumed functional form. We 

propose a novel method using Cubic Bezier Splines (CBS) to flexibly model smooth and 

monotonic utility functions that can be fit to any dataset. CBS shows higher descriptive and 

predictive accuracy over extant parametric models and can identify common yet novel patterns 

of behavior previously unaccounted for. Furthermore, CBS provides measures of impulsivity and 

risk aversion that do not depend on parametric model assumptions. 

 

Keywords: flexible modeling, heterogeneity, intertemporal choice, risky choice, generalized 

utility functions  



2 
 

 Intertemporal choices (ITCs) and risky choices (RCs) are heavily studied across many 

disciplines. ITCs are decisions regarding outcomes that occur at different times: for example, 

deciding between spending money now versus saving and investing that money for later, 

smoking now versus having better health later, or whether to pay an additional price for 

expedited shipping in order to receive a package earlier. RCs are decisions made regarding 

outcomes that occur probabilistically: buying lottery tickets, investing in stock markets, 

gambling, etc. ITCs and RCs are studied both in basic and applied research. In basic research, 

researchers are interested in how people make ITCs or RCs and have generated many different 

proposals for the utility functions that underlie these choices. In applied research, researchers are 

often interested in how individual differences in ITC and RC relate to real world behaviors such 

as pathological gambling, smoking, susceptibility to mental illness, drug and alcohol abuse, 

education level and financial status (Alessi & Petry, 2003; Anderson & Mellor, 2008; Brañas-

Garza, Georgantzís, & Guillén, 2007; Kirby, Petry, Nancy, & Bickel, Warren, 1999; Krain et al., 

2008; Lejuez, Aklin, Bornovalova, & Moolchan, 2005; Lejuez et al., 2003; Lempert, Steinglass, 

Pinto, Kable, & Simpson, 2019; Schepis, McFetridge, Chaplin, Sinha, & Krishnan-Sarin, 2011; 

Shamosh & Gray, 2008)(Alessi & Petry, 2003; Anderson & Mellor, 2008; Brañas-Garza et al., 

2007; Kirby et al., 1999; Krain et al., 2008; Lejuez et al., 2005, 2003; Schepis et al., 2011; 

Shamosh & Gray, 2008). 

ITC and RC research, be it basic or applied, relies heavily on parametric utility models 

(Table 1). Parametric models have two benefits that make them popular. First, parametric utility 

models can distill complex patterns of behavior into one or two interpretable parameters. For 

example, the discount rate parameter in ITC models represent the rate at which the value of 

future time options decline; the risk-aversion parameter in RC models (often substituted by the 
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value function curvature parameter) represent the deviation of utilities from risk-neutral expected 

value. These interpretable parameters are especially useful in applied research that seeks to 

correlate these measures with other variables such as health or intelligence. Of course, in order to 

obtain these measures, one must fit the models to data, which brings us to the second benefit of 

parametric models: simplicity in usage. Unlike non-parametric approaches that require very 

carefully planned experimental designs or a large number of data-points (e.g., Abdellaoui, 2003; 

Myerson, Green, & Warusawitharana, 2006; Wakker & Deneffe, 1996), parametric utility 

models can be nested inside logit or probit choice models and fit to any dataset using simple 

procedures such as maximum likelihood estimation (MLE). Hence, parametric utility models 

provide a simple and interpretable method for describing behavior in ITC and RC. 

 However, established parametric models in ITC and RC have difficulty accounting for an 

important phenomenon: the heterogeneity and non-regularity in utility function shapes. While 

parametric utility models can allow for some heterogeneity in their free parameters that alter the 

shape of the function, recent evidence shows that different people behave according to different 

utility model forms altogether and that there is no ‘one correct model’ that can describe 

everyone’s behavior equally well (Bruhin, Fehr-Duda, & Epper, 2009; Cavagnaro, Aranovich, 

McClure, Pitt, & Myung, 2016; Franck, Koffarnus, House, & Bickel, 2015; Myerson et al., 

2006). Adding to this concern, even if a multitude of models are considered (e.g., by using 

mixture models), there is no guarantee that the data comes from one of the considered utility 

functions. This evidence for heterogeneity is troubling for the large body of research in ITC and 

RC that relies on assumed parametric utility models to make descriptions and predictions of 

behavior and to make inferences from empirical data. 

In sum, while parametric models are useful in their simplicity and interpretability, their 
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assumptions can be questionable at the individual level due to heterogeneous utility function 

forms that cannot be accounted for by simply allowing for heterogeneity in parameters. Given 

this, we believe that a flexible semi-parametric approach (as in Cubic Bezier Splines described 

here) to utility modeling can provide many benefits over parametric utility models. 

First, a flexible utility model can better describe and predict ITC and RC by avoiding 

model misspecification. Model misspecification errors are likely if one assumes the same 

parametric utility function for everyone even if the free parameters are allowed to vary across 

people. Hence, instead of assuming a single parametric model, we can approximate a much 

greater class of models; by avoiding model misspecification, a flexible approximation of 

individually unique functions can lead to increased descriptive and predictive powers in ITC and 

RC. 

Second, a flexible approach can identify novel patterns of behavior. Existing parametric 

models were developed to account for established behavioral phenomena at the population level; 

therefore, these model assume that patterns of behavior fall within a certain range, thereby being 

unable to identify novel patterns that fall outside this range. For example, in ITC, parametric 

models typically assume constant or decreasing discount rates over time. As an example, the 

commonly employed exponential model assumes a constant multiplicative discount rate as can 

be seen from its discounting function: 𝑓𝑓(𝐷𝐷) = 𝑒𝑒−𝑘𝑘𝑎𝑎 = (𝑒𝑒−𝑘𝑘)𝑎𝑎 = 𝛿𝛿𝑎𝑎. More generally, the 

discount rate at a given delay D* can be calculated as ℎ(𝐷𝐷∗) = ln (−ln (𝑓𝑓(𝐷𝐷∗))/𝐷𝐷∗), which is a 

constant in the case of exponential function: ln(–ln(e–kD*) / D*) = ln(k). All other common 

models, as shown in Fig. 1A, show decreasing discount rates over time. RC models too, also 

only allow for certain behavioral patterns; RC parametric models typically assume that people 

cannot alternate between risk-averse and risk-seeking behavior more than once across 
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probabilities. For example, the expected utility model (𝑈𝑈 = 𝐴𝐴𝛼𝛼 ∙ 𝑝𝑝 in a gamble of winning A with 

probability p or nothing otherwise) assumes that a person is either risk-averse or risk-seeking 

throughout all probabilities depending on whether the value function curvature parameter (𝛼𝛼) is 

below 1 or above 1, respectively. More generally, if we convert the RC models into a 

discounting form of 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑝𝑝), we can measure the degree of risk-aversion at a given 

probability 𝑝𝑝∗ by 𝑞𝑞(𝑝𝑝∗) = ln(𝑓𝑓(𝑝𝑝∗)/𝑝𝑝∗), which is the log odds of subjective to objective 

probabilities. As shown in Fig. 1B, expected utility theory and hyperbolic models assume that 

people are risk-averse or risk-seeking throughout all probabilities, while prospect theory models 

and generalized hyperbolic models assume that people’s behavior can ‘switch’ at most once from 

risk-seeking to risk-aversion (or vice versa) as probabilities increase (indicated by the change of 

sign in 𝑞𝑞(𝑝𝑝∗)). In both ITC and RC, then, existing parametric models cannot identify consistent 

patterns of behavior that go outside of the range specified by these model’s assumptions. 

However, a flexible approach that makes no assumptions of specific behavioral patterns can 

detect novel behaviors unaccounted for by existing models, as we will demonstrate empirically. 

Third, a flexible approach can provide interpretable measures of impulsivity and risk-

aversion without assuming a parametric utility model. These measures of impulsivity and risk-

aversion are of wide interest in applied ITC and RC research. Currently, measures of impulsivity 

and risk-aversion are obtained by fitting the free parameters in a parametric utility model (e.g., 

the discount rate in ITC models, value function curvature in RC models). Consequently, 

researchers often face the concern that their findings may be dependent on their choice of 

parametric model and the assumptions that come with it. To allay these concerns, researchers 

often perform the same analysis multiple times using different utility models to show the 

robustness of their results (e.g., Ballard & Knutson, 2009; Kable & Glimcher, 2007). However, 
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not only is this a burden on researchers whose research is not focused on the ‘correct’ form of 

utility function, but it is also an imperfect solution as there always could be another model to 

consider. A more effective solution is to use a flexible utility model that does not make rigid 

assumptions about the form of the utility function, so that the measure of impulsivity and risk 

aversion is based more on the empirical data than on the parametric model assumptions 

(Myerson et al., 2006). 

 In this paper, we propose a flexible utility modeling tool based on cubic Bezier splines 

and show empirically that 1) it provides better description and prediction of our ITC and RC data 

as measured by in-sample and out-of-sample metrics, 2) it can be used to find novel patterns of 

behavior in both ITC and RC, including some individuals who show increasing discount rates 

over time in ITC and some who show switch multiple times between risk-aversion and risk-

seeking across probabilities in RC, and 3) it provides measures of impulsivity and risk aversion 

without parametric model assumptions. We also provide statistical packages in MATLAB and R 

to be used for future research (see below). 

CUBIC BEZIER SPLINES MODEL SPECIFICATION 

What are cubic Bezier splines (CBS; de Casteljau, 1963), and why did we choose CBS 

over alternative methods to provide flexible utility modeling? In this section, we briefly explain 

what qualities we were looking for in a flexible method, how that ruled out other possible 

methods, and how CBS can be used as a choice model in ITC and RC. 

There were three primary criteria we wanted in a flexible utility model: ease of use, 

interpretability, and normative constraints. Ease of use was of primary importance as the 

currently existing methods for flexible utility models could not be used on most datasets. A 
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common non-parametric utility modeling procedure is to use interpolations to construct utility 

functions; however, these procedures require specialized datasets such as adaptive choices or 

choice sets constructed according to a specific mathematical formula (Abdellaoui, 2003; 

Myerson et al., 2006; Wakker & Deneffe, 1996). Unlike such methods, our goal was to provide a 

general likelihood-based method utility model that could be embedded in a logit or probit choice 

model so that it can be applied to any choice dataset just like parametric models. 

Our second criterion was interpretability: rather than ‘black-box’ models such as neural 

nets, gaussian processes, regression trees, etc., we wanted to have an interpretable structure to 

the utility model and its output. Hence, we opted for the discounted utility form of 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑋𝑋); 

in ITC, this would be 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝐷𝐷) where amount (A) is discounted as a function of delay (D), 

and in RC, this would be 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑝𝑝) where amount (A) is discounted as a function of 

probability (p). The discounting form has several benefits: 1) most ITC models are already in 

discounting form, 2) most RC models could be analytically converted to discounting forms, 3) 

discounting forms are easily identifiable through choice, and 4) the discounting form allows a 

measure of impulsivity and risk aversion to be solely contained in one fitted function, which 

makes interpretation of the utility function easy (see supplemental materials for details on RC 

model conversion and identifiability of prospect theory forms). Embedding this discounted utility 

function inside a binary logit choice model gives us the following specification: 

log�𝑝𝑝(𝑐𝑐ℎ𝑜𝑜𝑖𝑖𝑐𝑐𝑒𝑒𝑡𝑡 = 1)𝑝𝑝(𝑐𝑐ℎ𝑜𝑜𝑖𝑖𝑐𝑐𝑒𝑒𝑡𝑡 = 2)
� = 𝜎𝜎(𝑈𝑈1𝑡𝑡 − 𝑈𝑈2𝑡𝑡), 𝑈𝑈𝑗𝑗𝑡𝑡 = 𝐴𝐴𝑗𝑗𝑡𝑡 ∙ 𝑓𝑓�𝑋𝑋𝑗𝑗𝑡𝑡�, 𝑗𝑗 = 1,2 (1) 

where 𝜎𝜎 is a free parameter that determines the relationship between the scale of the utilities 

(𝑈𝑈1𝑡𝑡, 𝑈𝑈2𝑡𝑡) and choice, and 𝑋𝑋𝑗𝑗𝑡𝑡 is either delay or probability, depending on the task. Hence, the 

key question came down to this: how to flexibly approximate 𝑓𝑓�𝑋𝑋𝑗𝑗𝑡𝑡�? 



8 
 

Our last criterion, in regards to specifying 𝑓𝑓�𝑋𝑋𝑗𝑗𝑡𝑡�, was an ability to incorporate two 

normative constriants: smoothness and monotonicity. Given a continuously smooth input 

variable such as delay or probability, it made normative sense that the output variable of utility 

was also continuously smooth. In ITC, it makes normative sense for utility to decline 

monotonically as a function of delay while in RC, to increase monotonically as a function of 

probability. The two normative constraints of smoothness and monotonicity are already implicit 

in almost all of the existing parametric utility models and can serve as important priors that 

combat over-flexibility. Hence the goal was to estimate a smooth, monotonic univariate 

transformation of 𝑓𝑓�𝑋𝑋𝑗𝑗𝑡𝑡�. However, the monotonicity constraint makes the use of several 

methods difficult. Polynomial or fourier basis regressions, while continuously smooth, control 

the flexibility of the curve by changing the order of the equation, which unfortunately also 

changes the order of the derivative and complicates the constraining problem (see supplemental 

materials for discussion on B-splines). Hence, we found that by chaining multiple pieces of 

cubic-order Bezier splines, each of them separately monotonically constrained, we can 

approximate 𝑓𝑓(𝑋𝑋) in a smooth, monotonic manner, without requiring speicalized datasets. 

Piecewise connected CBS are already widely used in graphics software, fonts, and 

interpolations, but have seen limited use as function approximators compared to other types of 

splines. This is because while most splines are defined in the form of y = f(x), where the y 

coordinate is expressed as a function of x, CBS’s functional form is much more general: both the 

x and y coordinates are independently expressed as functions of a third variable t. A single piece 

of CBS is defined by four points (P0x, P0y), (P1x, P1y), (P2x, P2y), (P3x, P3y) (Fig. 2A). The 

coordinates of these four points become the parameters of the CBS as the x and y-coordinates of 

the spline are controlled independently by two separate cubic functions. 
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 𝑥𝑥 = 𝑚𝑚(𝑡𝑡) =  (1 − 𝑡𝑡)3𝑃𝑃0𝑥𝑥 + 3(1 − 𝑡𝑡)2𝑡𝑡𝑃𝑃1𝑥𝑥 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑃𝑃2𝑥𝑥 + 𝑡𝑡3𝑃𝑃3𝑥𝑥, 0 ≤ 𝑡𝑡 ≤ 1 (2) 

𝑦𝑦 = 𝑛𝑛(𝑡𝑡) =  (1 − 𝑡𝑡)3𝑃𝑃0𝑦𝑦 + 3(1 − 𝑡𝑡)2𝑡𝑡𝑃𝑃1𝑦𝑦 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑃𝑃2𝑦𝑦 + 𝑡𝑡3𝑃𝑃3𝑦𝑦, 0 ≤ 𝑡𝑡 ≤ 1 (3) 

These two functions can jointly be used to approximate the function 𝑓𝑓(𝐷𝐷) in ITC or 𝑓𝑓(𝑝𝑝) in RC 

by 𝑦𝑦 = 𝑛𝑛�𝑚𝑚−1(𝑥𝑥)� as long as 𝑥𝑥 = 𝑚𝑚(𝑡𝑡) and 𝑦𝑦 = 𝑛𝑛(𝑡𝑡) are both monotonic functions of t. We 

found that the constraint for monotonicity is very simple: if the x and y coordinates of the two 

middle points (P1 and P2) stay between that of the end points (P0 and P3), the resulting CBS is 

monotonic (i.e., 𝑃𝑃1𝑥𝑥,𝑃𝑃2𝑥𝑥 ∈ [𝑃𝑃0𝑥𝑥,𝑃𝑃3𝑥𝑥], and 𝑃𝑃1𝑦𝑦,𝑃𝑃2𝑦𝑦 ∈ �𝑃𝑃0𝑦𝑦,𝑃𝑃3𝑦𝑦�; see supplemental materials for 

proof). It is also important to note that the CBS’s local derivative at the end point equals the 

slope of the line connecting the end point with its neighboring point (i.e., 𝑃𝑃2𝑃𝑃3������ in Fig. 2). Using 

this property, multiple pieces of CBS can be smoothly joined by equating the local derivative 

(i.e., ensuring that three points P2 P3 P4 are on the same line in Fig. 2B). Fig. 3 shows the CBS 

parameters involved in modeling 𝑓𝑓(𝐷𝐷) and 𝑓𝑓(𝑝𝑝) in ITC and RC using either 1-piece or 2-pieces 

of CBS. 

Because the CBS form (𝑦𝑦 = 𝑛𝑛�𝑚𝑚−1(𝑥𝑥)�; eq. 2 and 3) cannot be succinctly expressed as 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), the likelihood function for the choice model using CBS also cannot be succinctly 

expressed. Instead, shown below is the general MLE steps (a pseudo-algorithm) used to fit a 

CBS-based choice model: 

1. Start with some initial CBS points (Fig. 3 shows relevant points for each case) 

2. For all 𝑋𝑋𝑗𝑗𝑡𝑡 (delay or probability), find 𝑡𝑡𝑗𝑗𝑡𝑡∗  that satisfies 𝑋𝑋𝑗𝑗𝑡𝑡 = 𝑚𝑚�𝑡𝑡𝑗𝑗𝑡𝑡∗ � as given in eq. 2. 

3. Then, calculate 𝑈𝑈𝑗𝑗𝑡𝑡 = 𝐴𝐴𝑗𝑗𝑡𝑡 ∙ 𝑛𝑛(𝑡𝑡𝑗𝑗𝑡𝑡∗ ) as given in eq. 3  

4. Use eq. 1 to calculate the log-likelihood of all choices 
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5. Propose new parameters using gradient descent while maintaining constraints in Fig. 3. 

6. Repeat step 2 through 6 until convergence 

In this paper, the CBS functions were fit using MATLAB’s optimization tool (fmincon). For this 

paper, we only entertain 1-piece and 2-piece CBS as they seemed sufficient in approximating the 

parametric utility models shown in Table 1 (utility function recovery simulation results are 

shown in supplemental materials). The MATLAB code used to fit the data is available online 

as a package in a ready-to-use form (https://github.com/sangillee/CBSm), and the R version of 

the package can be downloaded from CRAN under the name ‘CBSr’ (currently going through 

review at CRAN), and represents another contribution of this research. 

EMPIRICAL METHODS 

Using real ITC and RC data, we demonstrate the benefits of a CBS modeling approach. 

We utilize ITC and RC data collected in Kable et al. (2017). 166 participants completed binary 

choice tasks in ITC and RC and 128 of them returned after 10 weeks to perform the same task 

again in session 2. In each session, participants made 120 binary choices each in the ITC task 

and RC task. The choices in the ITC tasks were between a smaller immediate monetary reward 

that was always $20 today (i.e., the day of the experiment) and a larger later monetary reward 

(e.g., $Y in D days; D ~ [20 180], Y ~ [22,85]). The choices in the RC tasks were between a 

smaller certain monetary reward that was always $20 and a larger probabilistic monetary reward 

(e.g., $Y with probability p; p ~ [.09 .98], Y ~ [21 85]). We treated session 1 and 2 as if they are 

separate participants and only included sessions with at least two or more of each choice types 

(i.e., at least two smaller reward choices and two larger reward choices in 120 trials), which ruled 

out 9 sessions for ITC and 4 sessions in RC. This was because at least two of each choice type 

was necessary for leave-one-trial-out cross validation; otherwise the training dataset may have 
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entirely one-sided choices (i.e., all smaller reward choices or all larger reward choices). 

We empirically show the three benefits of CBS’s flexible utility function. First, we 

compare the descriptive and predictive capabilities of CBS against other parametric models in 

Table 1. For all models (including CBS), we measured their in-sample and out-of-sample 

prediction accuracies and Tjur’s D. Tjur’s D (coefficient of discrimination) is the difference of 

the mean choice probabilities of each choice type. For example, a good model of ITC should 

have high p(delayed choice) for delayed choices but low p(delayed choice) for immediate 

choices. Hence, the difference between the mean of those two choice probabilities is bounded 

between 0 (random model) and 1 (perfect model) and tells how well the two choice types are 

discriminated in out-of-sample predictions. Even if two models have the same hit rate accuracy, 

Tjur’s D is higher for models that classify the trials with larger discrimination in choice 

probabilities. All models were fit using a logit choice model of the following form: 

log�𝑝𝑝(𝑐𝑐ℎ𝑜𝑜𝑖𝑖𝑐𝑐𝑒𝑒𝑡𝑡 = 1)𝑝𝑝(𝑐𝑐ℎ𝑜𝑜𝑖𝑖𝑐𝑐𝑒𝑒𝑡𝑡 = 2)
� = 𝜎𝜎(𝑈𝑈1𝑡𝑡 − 𝑈𝑈2𝑡𝑡) (4) 

where 𝜎𝜎 modeled the overall scale of the utility difference between the two options. The utilities 

of each options at each trial (𝑈𝑈1𝑡𝑡 , 𝑈𝑈2𝑡𝑡) were modeled according to the form shown on Table 1. 

Second, we use CBS to demonstrate novel patterns of behavior. Using the out-of-sample 

prediction values of Tjur’s D, we show that a portion of participants are better fit by CBS models 

because they exhibit behavior violating the aforementioned assumptions of extant parametric 

models. Specifically, we show that, in ITC, some participants exhibited increasing discount rate 

over time, and in RC, some participants exhibited multiple alternations between risk aversion 

and risk seeking across probabilities. 
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Third and finally, we use CBS to obtain measures of impulsivity and risk-aversion 

without assuming a parametric utility model. The CBS measures of impulsivity and risk-aversion 

can be obtained by measuring the area under the curve (AUC) of the fitted CBS function (see 

supplemental materials for analytic expression). Since CBS models ITC and RC utility in 

discounting form (𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑋𝑋)), the AUC of the discounting function 𝑓𝑓(𝑋𝑋) serves as a measure 

of how much the amount is discounted as a function of delay or probability. In previous research, 

AUC of discounting form utility functions has been proposed and used as a measure of 

impulsivity and risk-aversion in non-parametric utility estimation (Myerson et al., 2006). We 

show that the AUC of CBS fits can serve as stable, subject-specific measure of impulsivity and 

risk-aversion, just like the parameter estimates of extant parametric models, by testing cross-

session consistency (i.e., correlation) of ITC and RC AUC. 

EMPIRICAL RESULTS 

Increased descriptive & predictive power 

CBS showed higher in-sample and out-of-sample accuracies and Tjur’s D than all of the 

tested parametric models (Fig 4). For both in-sample accuracy and Tjur’s D, we found that 2-

piece CBS function provides performance superior to all other methods in both ITC and RC, 

followed by 1-piece CBS. These in-sample results are somewhat expected given that models 

with more parameters are generally more likely to provide higher performance metrics. 

However, even in out-of-sample prediction CBS provides the highest accuracy and Tjur’s D 

compared to all other parametric models in both ITC and RC. This clearly demonstrates that 

CBS is not simply providing a flexible function that overfits empirical data; rather its flexibility 

is important in capturing individual characteristics so as to increase descriptive and predictive 
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power. In ITC, out-of-sample accuracy was highest for the 1-piece CBS model followed by the 

2-piece CBS model, while out-of-sample Tjur’s D was highest for 2-piece CBS model followed 

by the 1-piece CBS model. This may suggest that while 1-piece CBS model may provide the 

highest hit rate accuracy, the 2-piece CBS model may be able to better separate the two choice 

types. In RC, both the out-of-sample accuracy and Tjur’s D was highest for the 2-piece CBS 

model with substantial lead over the next runner-up 1-piece CBS model. This pattern may 

suggest that RC data may generally require more complex functions to adequately model 

behavior compared to ITC data as we describe below. 

 To provide further insight, we show eight example participants’ data that span the variety 

of choice patterns in the data. Their choices and their model fits are shown in Fig. 5 and Fig. 6. 

Both the fit and the choices are shown in relative amounts. The relative amount is the immediate 

amount divided by the larger amount; for example, in ITC, a choice of $20 vs. $40 in 6 days is 

essentially asking if f(D = 6) is greater or less than 0.5, which is the relative amount of 20/40. By 

plotting each question in terms of relative amount and delay, we can see whether the fitted 

function (drawn in solid black line) is appropriately dividing the two choice types (shown in 

circles and Xs). Panel A shows 4 participants’ data whose highest LOOCV Tjur’s D came from 

extant parametric models. The top row shows the parametric model fits while the middle row 

shows the CBS model fits. In these cases, participants’ choices were well aligned with known 

parametric models and CBS shows good approximations of them. Given larger datasets, CBS 

will likely match the parametric models in these participants. Panel B, on the other hand, shows 

4 participants’ data whose highest LOOCV Tjur’s D came from CBS. We can see in the top row 

that even the best extant parametric models are unable to separate the choices well. In contrast, 

CBS fits a rather unconventional, but flexible monotonic function that separates the two choice 
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types. 

 More specifically, participants who are best fit by CBS as shown in Fig. 5 and Fig. 6 

seem to exhibit behaviors that cannot be accounted for by parametric models. Fig. 5 shows that 

in ITC, several participants seem to exhibit a utility function that decreases sharply at certain 

delays. Such sharp decreases in utility indicate suddenly increasing impatience and discount 

rates, which cannot be accounted for by any of the parametric models we considered. Fig. 6 

shows four participants who are best fit by CBS seemingly due to their utility function having 

more complexity via multiple inflection points. Generally, it seems that the participants are risk-

averse in low probabilities (as shown by the fitted curve being below the identity line), while 

being risk-seeking around p = .5, and being risk-averse again above .5. This pattern of multiple 

switches between risk-aversion and risk-seeking behavior deviates from the established 

parametric models which can only account for either overall risk-aversion or risk-seeking 

throughout all probabilities, or a one-time switch between risk-aversion and risk-seeking. 

Identifying novel patterns of behavior 

 Using fitted CBS functions, we identified novel systematic patterns of behavior in both 

ITC and RC. In ITC, we found many participants have increasing daily discount rates, and hence 

were unaccounted for by the parametric models (Fig. 7A, 7B). When we grouped the fitted CBS 

functions based on the average daily change of discount rate, the best parametric model’s 

LOOCV Tjur’s D was as good as that of CBS models when participants had decreasing discount 

rates, which is the commonly assumed pattern. However, when the average daily discount rates 

were increasing, the CBS models significantly outperformed the best parametric models in 

LOOCV (Fig. 7A). When we examined the fitted CBS functions, we found that when the 

average daily change was negative, the median CBS function looked very similar to other ITC 
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parametric models; on the other hand, when the average daily discount rate was positive (i.e., 

increasing discount rate over time), we found that the median of the CBS functions became 

linear or even concave, neither of which could be accounted for by parametric ITC models. 

 In RC, we found that many participants switch multiple times between risk-aversion and 

risk-seeking as probabilities increase; a behavior that is unaccounted for by the parametric 

models as all parametric models of RC allow either no switching between risk-aversion and risk-

seeking or a single switch point. Concordantly, CBS’s LOOCV Tjur’s D were significantly 

higher than the best parametric models’ LOOCV Tjur’s D for participants with 2 or more 

switches (Fig. 7C). This result suggests that participants exhibit potentially much more complex 

patterns of behavior than what parametric models have assumed. Interestingly, even in 

participants that do not switch between risk-aversion and risk-seeking, we found that CBS 

significantly outperforms other parametric models in LOOCV. Fig. 7D shows the median CBS 

fitted functions grouped by the number of switches between risk-averse and risk-seeking 

behavior (as seen by how many times the function crosses the identity line). We can see that 

when participants switch once, their average function resembles a typical prospect theory S-

shaped function (albeit risk-averse in low probabilities). This simple form is likely captured well 

by most parametric utility models, thereby leading to similar predictive performance between 

parametric and CBS models. However, when participants’ risk aversion switches twice or three 

times, the average function clearly cannot be captured by any of the parametric RC models. 

Furthermore, although the parametric utility models can account for non-switching behavior as 

well, we can see that the average function for non-switching behavior has some inflection points 

that cannot be captured by the parametric models (cf. Fig. 1B). 

Model-agnostic measures of impulsivity and risk aversion 
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We found the CBS measures of impulsivity and risk-aversion to be highly correlated 

across the 2 sessions 10 weeks apart (Fig. 8). This result suggests that CBS’s measure of 

impulsivity and risk-aversion can pick up stable individual traits that are often needed in applied 

ITC and RC research. Using the 2-piece CBS fits to the real choice data, we calculated, for each 

session, an overall measure of impulsivity and risk aversion by calculating the AUC of the fitted 

CBS function. The cross-session Pearson correlations of the AUCs were very high at r = 0.79 (p 

< .001) for ITC and r = 0.60 (p < .001) for RC. These measures were comparable to the cross-

session consistencies of extant parametric models’ impulsivity and risk aversion measures; the 

hyperbolic model’s discount rate (logk) had cross-session correlation of r = 0.80, and EUT’s 

risk-aversion measure (log 𝛼𝛼) had cross-session correlation of r = 0.65. This shows that CBS’s 

measure of impulsivity and risk aversion can provide a stable individual-specific measure of 

overall impatience or risk aversion without assuming a fully parametric model. 

DISCUSSION 

Cubic Bezier Splines are a promising flexible method that can approximate individual 

utility functions without fully parametric assumptions. By relaxing the parametric assumptions, it 

can help researchers better account for heterogeneous utility functions in ITC and RC. Here we 

introduced how CBS can be used to parsimoniously approximate univariate functions, especially 

given monotonicity constraints. Using CBS, we have shown that by estimating a general class of 

utility models of the form 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑋𝑋), we can approximate a wide class of models that include 

most of the often-used parametric models. Such properties allowed us to demonstrate three 

benefits of CBS method over extant parametric model approaches in ITC and RC. 

First, CBS can provide individually tailored utility functions, which led to improved 

descriptive (in-sample) and predictive (out-of-sample) capabilities. In datasets with 
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heterogeneous utility functions, having an individually tailored utility function allows 

researchers to circumvent potential model misspecifications. Using CBS approximations 

provided a stronger defense against model misspecifications than entertaining a multitude of 

models as empirical data may not be describable by any known parametric models. We have 

shown, using a large empirical choice dataset, that CBS provides, in both in-sample and out-of-

sample metrics, superior performance in description and prediction of choices compared to all of 

the often-used parametric utility models that we tested. 

Second, CBS can be used to detect novel patterns of behavior that violate extant models’ 

assumptions. In the current paper, we have identified two novel patterns of behavior from ITC 

and RC data. In ITC, we found that there are participants who exhibit increasing discount rates 

and therefore cannot be accounted for by the currently established parametric models of ITC. 

Such participants exhibited concave utility functions which may be indicative of a heuristic (e.g., 

deciding not to wait after a certain delay). In RC, we found that there are participants who 

alternate between risk-aversion and risk-seeking multiple times within the probability range of [0 

1]. Such complex patterns of behavior could not be described by the established parametric 

models of RC which assume at most one switch between risk-aversion and risk-seeking 

behavior. Having found these patterns, future studies in ITC and RC may be able to identify new 

ways of clustering the said patterns to identify participants who may use different sets of 

psychological processes when making decisions (e.g., Reeck, Wall, & Johnson, 2017). 

Third, CBS provides measures of impatience and risk aversion that do not depend on a 

specific parametric utility model. Given the heterogeneity of utility functions in choice data, 

there has always been a need to characterize individual’s overall behavior without having to rely 

on a specific model (Myerson et al., 2006). The area under the curve (AUC) of the estimated 
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CBS function serves as an overall measure of impulsivity or risk aversion that is robust to model 

misspecifications even in the face of heterogeneous data. Furthermore, unlike the previous 

nonparametric approaches (e.g., Abdellaoui, 2003; Myerson, Green, & Warusawitharana, 2006; 

Wakker & Deneffe, 1996), CBS can be estimated from any choice dataset without large or 

specially structured datasets. 

CBS also has the potential to aid other research questions. First, it can aid the study of 

choice stochasticity by more accurately dissociating between model misspecification and choice 

noise. Goodness-of-fit measures for parametric utility functions do not provide good assessments 

of choice noise because one cannot distinguish whether the data is stochastically noisy or if the 

utility model is simply misspecified. Previous research has focused on the monotonicity of utility 

functions to make a theoretical distinction between model misspecification and genuine noise 

(Johnson & Bickel, 2008). Since CBS models that we present here have only the general 

normative assumption of monotonicity, the noise estimates from CBS only includes the 

stochasticity that cannot be explained with a monotonic utility function. Future research may 

seek to correlate choice stochasticity with other measures such as impulsivity, risk-aversion, age, 

education, and/or IQ.  

Second, CBS can provide more accurate estimates of latent utilities, which will also aid 

current efforts to relate such utilities to other behavioral and neural measures (Levy & Glimcher, 

2012; Venkatraman, Payne, & Huettel, 2014). For example, numerous studies have examined 

drift-diffusion and similar models that can incorporate response time data into choice data 

(Busemeyer & Townsend, 1993; Clithero, 2018; Dai & Busemeyer, 2014; Forstmann, Ratcliff, & 

Wagenmakers, 2016; Ratcliff, Smith, Brown, & McKoon, 2016). By using utility estimates that 

can describe participants’ choices better than traditional parametric utility estimates, 
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development and validation of these models can be improved. Also, decision neuroscience 

research often requires estimates of utilities that can be used to search for correlates of valuation 

in the brain (e.g., Kable & Glimcher, 2007; Knutson, 2005). These efforts can also benefit from 

more refined estimates of utility that better predicts participants’ choices. 

Despite these substantial benefits, it is important to note that there are some drawbacks of 

flexible approaches like CBS. CBS, or at least the current version, is best used on datasets that 

have reasonable coverage over a range of values, as there’s no ‘default’ shape that CBS tends 

towards in absence of data. In future research, CBS’s extrapolation capabilities can be enhanced 

under a Bayesian framework by using priors toward a commonly used utility function (e.g., 

hyperbolic, or EUT) such that CBS can default to more simple forms in the absence of data, but 

take on a more complex form given sufficient data. Alternatively, future studies may develop 

adaptive questioning schemes that are based on CBS estimations to provide an efficient flexible 

estimation of utility functions. 

As we provide CBS as a new tool for describing, understanding, and predicting decisions, 

we hope that this research is the start of using flexible models to explore many topics not only 

related to economic decision-making, but also other cognitive, affective, and social behaviors 

whose models have latent variables. We hope that across many areas of human behavior, the 

behavioral patterns and heterogeneity that went unnoticed under formal parametric assumptions 

can now easily be brought to surface and studied. 
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TABLES 

 

Intertemporal Choice Models Form Name Utility Function 
Approx. 
by CBS 

Samuelson, 1937 Exponential (E) 𝑈𝑈 = 𝐴𝐴 ∙ exp(−𝑘𝑘𝐷𝐷) Y 

Mazur, 1987 Hyperbolic (H) 𝑈𝑈 = 𝐴𝐴 ∙ (1 + 𝑘𝑘𝐷𝐷)−1 Y 

Green, Fry, & Myerson, 1994 Generalized Hyperbolic (Gh) 𝑈𝑈 = 𝐴𝐴 ∙  (1 + 𝑘𝑘𝐷𝐷)−𝑠𝑠 Y 

Roelofsma, 1996 Log Time (Lt) 𝑈𝑈 = 𝐴𝐴 ∙ 𝐷𝐷−𝑘𝑘 Y 

Laibson, 1997 Quasi-hyperbolic (Q) 𝑈𝑈 = 𝐴𝐴 ∙ 𝛽𝛽 exp(−𝑘𝑘𝐷𝐷) Y 

McClure, et al., 2007 Double Exponential (De) 𝑈𝑈 = 𝐴𝐴 ∙ (𝑤𝑤𝑒𝑒−𝑎𝑎𝑎𝑎 + (1 −𝑤𝑤)𝑒𝑒−𝑏𝑏𝑎𝑎) Y 

 

Risky Choice Models Form Name Utility Function 
Approx. 
by CBS 

Von Neumann & Morgenstern, 1945 Expected Utility Theory (Eut) 𝑈𝑈 = 𝐴𝐴 ∙ 𝑝𝑝1/𝛼𝛼 *Y 

Rachlin et al., 1991 
Hyperbolic (H) 𝑈𝑈 = 𝐴𝐴 ∙  �1 + ℎ �1− 𝑝𝑝𝑝𝑝 ��−1 *Y 

Goldstein & Einhorn, 1987 GE-weight Prospect T. (Ge) 𝑈𝑈 = 𝐴𝐴 ∙ � 𝛿𝛿𝑝𝑝𝛾𝛾𝛿𝛿𝑝𝑝𝛾𝛾 + (1 − 𝑝𝑝)𝛾𝛾�1/𝛼𝛼
 *Y 

Tversky & Kahneman, 1992 TK-weight Prospect T. (T) 𝑈𝑈 = 𝐴𝐴 ∙ � 𝑝𝑝𝛾𝛾
(𝑝𝑝𝛾𝛾 + (1− 𝑝𝑝)𝛾𝛾)

1𝛾𝛾�
1/𝛼𝛼

 *Y 

Prelec, 1998 Prelec-weight Prospect T. (P) 𝑈𝑈 = 𝐴𝐴 ∙ (exp(−𝛿𝛿(− ln𝑝𝑝)𝛾𝛾))1/𝛼𝛼 *Y 

Green & Myerson, 2004 
Generalized Hyperbolic (Gh) 𝑈𝑈 = 𝐴𝐴 ∙  �1 + ℎ �1− 𝑝𝑝𝑝𝑝 ��−𝑠𝑠  *Y 

Markowitz, 1959 Risk-Return (R) 𝑈𝑈 = 𝐴𝐴 ∙ 𝑝𝑝 − 𝑏𝑏 ∙ 𝑉𝑉𝑎𝑎𝑜𝑜 N 

Slovic & Lichtenstein, 1968 Attribute (A) 𝑈𝑈 = 𝛽𝛽0 + 𝛽𝛽1𝐴𝐴 + 𝛽𝛽2𝑝𝑝 N 

Weber et al., 2004 Coefficient of Variation (C) 𝑈𝑈 =  𝐴𝐴 ∙ 𝑝𝑝 − 𝑏𝑏 ∙ 𝐶𝐶𝑉𝑉 N 

 

Table 1. Survey of commonly used ITC and RC models. Each row shows, from left to right, 
the reference of the parametric model, the name of the form (with short abbreviation), the model 
specification, and whether the model can be approximated by the CBS function of the form in 
this paper. Across all ITC models, utility is expressed as a product of A, the amount of the 
delayed outcome, and f(D), which is a function of the delay. In RC models, A is the amount of 
the risky outcome, p is the probability of winning that outcome. We only show here the model 
forms for a simple gamble in which there is a probability p of winning A and probability 1-p of 
winning nothing. *The RC models marked with an asterisk are written in an analytically 
converted form that allows to be approximated by CBS in the form of 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑝𝑝) (see 
supplemental materials section A for the conversion proof). 

 

  



22 
 

FIGURES 

 

 

 

Figure 1. Parametric models’ pattern of behavior. Each parametric model assumes a 
particular behavioral pattern. Shown in panel A is the delay-specific discount rate of ITC models 
in Table 1. All parametric models of ITC in consideration show either a constant (exponential) or 
decreasing delay-specific discount rates. Shown in panel B is the probability-specific degree of 
risk aversion, which is the log of the ratio between objective and subjective probabilities. A 
measure above 0 would indicate over-appreciation of probabilities and hence risk-seeking, while 
a measure below 0 would indicate risk-aversion. All parametric models of RC in consideration 
assume a behavioral pattern that switches between risk-aversion and risk-seeking at most once. 
In other words, probability-specific measure of risky choice for all RC parametric models can 
cross 0 (risk-neutral point) at most once. 
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Figure 2. 1-piece and 2-piece CBS (A and B, respectively). Example 1-piece CBS is shown in 
panel A, and 2-piece CBS is shown in panel B. While each piece requires 4 points, because 
adjoining points overlap, 2-piece CBS requires 7 points. 
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Figure 3. Model specification of ITC (A) and RC (B) using 1-piece (left) and 2-piece CBS 

(right). Panel A above shows how CBS is used to flexibly model the delay discounting function 
and panel B shows how CBS models the monotonically increasing probability distortions. In 
both ITC and RC, the coordinates of the points are free parameters that are estimated. The 
parameter constraints are shown below each panel in dotted boxes. In the case of 2-piece CBS, 
there is one less degrees of freedom than number of parameters due to the necessity of (x2,y2), 
(x3,y3), and (x4,y4) being on the same line. 
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Figure 4. In-sample and out-of-sample prediction performance in ITC (A, left), and RC (B 

right). In ITC, 6 parametric models and 2 CBS models were assessed; in RC, 10 parametric 
models and 2 CBS models were assessed. In both in-sample and out-of-sample, each model’s 
accuracy (top row) and Tjur’s D (bottom row) were assessed. The error bars represent the 
standard error of the mean. 
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Figure 5. Plots of eight example participants' choices, their best parametric fits and their 

best CBS fits as determined by LOOCV. Panel A shows 4 participants whose highest LOOCV 

Tjur’s D came from parametric models and panel B shows 4 participants whose highest LOOCV 

Tjur’s D came from CBS. In each panel, the top row shows the best parametric model (by 

LOOCV) and the bottom row shows the CBS fit. Panel A participants were selected such that the 

diverse parametric forms can be shown; panel B participants were selected to show variety of 

CBS fits that did not conform to parametric forms. 
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Figure 6. Plots of eight example participants' choices, their best parametric fits and their 

best CBS fits as determined by LOOCV. Panel A shows 4 participants whose highest LOOCV 

Tjur’s D came from parametric models and panel B shows 4 participants whose highest LOOCV 

Tjur’s D came from CBS. In each panel, the top row shows the best parametric model (by 

LOOCV) and the bottom row shows the CBS fit. Panel A participants were selected such that the 

diverse parametric forms can be shown; panel B participants were selected to show variety of 

CBS fits that did not conform to parametric forms. 
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Figure 7. Deviation from common parametric forms. Panel A shows CBS prediction 

performance minus the maximum of parametric models’ prediction performance. CBS shows 

increasingly better predictions as the average daily change in discount rate becomes positive. 

Panel B shows the average fitted CBS functions for ITC grouped by the average daily change of 

discount rate. The solid line is the median function, with gray shade showing the standard errors. 

Panel C shows that, in RC, CBS provides better predictions to participants who do not alternate 

between risk aversion and risk seeking or alternate more than one time. Panel D shows the 

average fitted CBS functions for RC grouped by the number of switches between risk-aversion 

and risk-seeking behavior. * t-test against 0, p <.05. *** p < .001. 
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Figure 8. Cross-session correlation of overall measure of delay discounting (left) and risk 

aversion (right) as measured by Area Under the Curve (AUC) of CBS. The abscissa marks 

the AUC measure of each participant in session 1 and the ordinate marks the AUC measure of 

each participant in session 2. The cross-session Pearson correlation measure of AUC was 0.79 

for ITC and 0.60 for RC, both with p-values less than .001. 
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Supplemental Materials 

 

A. Transformation of various RC models 

Unlike ITC models that are mostly in the form of U = A · f(X), several RC models have either the 
prospect theory form of U = f(A) · g(p), or the probability discounting form of U = A · g(θ) where θ = (1 – 
p) / p. Hence it is theoretically easier for CBS to nest a variety of forms if we use the general form of  U = 
f(A) · g(p). However, there are several reasons why we decided to use CBS to approximate the general 
structure of U = A · f(p). 

First, other forms can be analytically converted into the form of U = A · f(p). Prospect theory 
forms can be analytically converted into a simple form in the case of a simple gamble, which is very 
widely used. Consider a simple gamble and its certainty equivalent: CEα = Aα · wp. We can de-
exponentiate both sides to achieve CE = A · wp1/α. Since wp is being raised to an exponent, it does not 
alter its values at 0 and 1 which still remain 0 and 1 after exponentiation. Hence this can be estimated 
generally using the form U = A · f(p) with CBS. Discounting functions in the form of U = A · g(θ) can 
also be converted by plugging in θ = (1 – p) / p. For example, in the case of the generalized hyperbolic 
function U = A / (1+hθ)s, it can be converted into U = A · (1-h+h/p)-s. As can be seen from the formula, 
when p = 0, the right term goes to 0 and when p = 1, the right term goes to 1. 

 The second reason is that the form of U = A · f(p) is easier to interpret. Because prospect theory 
posits utility as a product of two functions, neither one of them is solely responsible for the participant’s 
risk preference. Consequently, the prospect theory form does not immediately illuminate whether one is 
risk-averse or the degree of the risk-aversion. In the converted form, however, one can immediately 
identify the degree of risk-aversion and even identify the range of probabilities at which the person is 
risk-averse and risk-seeking. Any point at which f(p) is above the identity line is indicative of risk-seeking 
behavior, while any point below the identity line is indicative of risk-averse behavior. 

 The third reason is that the prospect theory form is much harder to identify than the discounting 
form. This is again because prospect theory is a product of two separate functions U = f(A) · g(p); if one’s 
f(A) is generally high, one can lower the g(p) to compensate to achieve the same utility. Fox and Poldrack 
(2009) noted this difficulty and suggested that researchers take caution. Bruhin et al. (2009) have noted in 
their paper that “fitting a (prospect theory) model for each individual is … frequently impossible and 
often not desirable in the first place.” We also provide our own simulation results in appendix E that 
clearly shows the confound between f(A) and g(p). 

 

B. Monotonic B-splines and relationship to CBS 

Basis-splines (more commonly referred to as B-splines), which CBS is a special case of, 
have been used in scenarios with monotonicity constraints (Brezger & Steiner, 2008; 
Leitenstorfer & Tutz, 2007); but the monotonicity constraint of B-splines has only been worked 
out for evenly spaced knots, which does not allow the data to determine the appropriate position 
of the knots. In this paper, we provide a method for allowing the data to control the position of 
the knots, thereby providing a more flexible approach with a fewer number of parameters 
(knots). This is done by connecting multiple small B-splines, each of which only has four knots, 
and can analytically be constrained for monotonicity even with free positioning of the knots. 
Here we use Bernstein basis function for the splines which makes them Bezier splines. 
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C. Compulsory and Slope Conditions of CBS 

Because chains of CBS are locally adjustable, the derivation of constraints only need to be 
worked out with regards to one CBS. A single piece of CBS is described by the following two parametric 
curves: 𝑥𝑥(𝑡𝑡) = (1 − 𝑡𝑡)3𝑥𝑥1 + 3(1 − 𝑡𝑡)2𝑡𝑡𝑥𝑥2 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑥𝑥3 + 𝑡𝑡3𝑥𝑥4, 0 ≤ 𝑡𝑡 ≤ 1 (1) 𝑦𝑦(𝑡𝑡) = (1 − 𝑡𝑡)3𝑦𝑦1 + 3(1 − 𝑡𝑡)2𝑡𝑡𝑦𝑦2 + 3(1 − 𝑡𝑡)𝑡𝑡2𝑦𝑦3 + 𝑡𝑡3𝑦𝑦4, 0 ≤ 𝑡𝑡 ≤ 1 (2) 

In order to use CBS to approximate a function of the form 𝑦𝑦 = 𝑓𝑓(𝑥𝑥), we can assume 𝑥𝑥1 < 𝑥𝑥4 in order to 

have a spline of non-zero length. Also, we must ensure that 𝑥𝑥(𝑡𝑡) is a monotonically increasing function of 𝑡𝑡 in [0  1]. Otherwise, multiple values of 𝑦𝑦 may exist for one 𝑥𝑥. 

One may also want to impose additional constraints on CBS. In terms of the first derivative, one 

can make it monotonically increasing or monotonically decreasing. Given that 𝑥𝑥(𝑡𝑡) is a monotonically 

increasing function of 𝑡𝑡, it is only necessary to control for 𝑦𝑦(𝑡𝑡) for this slope constraint. One may also 
want to constrain CBS with the sign of the second derivative to be concave or convex. 

The derivative of 𝑥𝑥(𝑡𝑡) with regards to 𝑡𝑡 is as follows: 𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 = 3{(−𝑥𝑥1 + 3𝑥𝑥2 − 3𝑥𝑥3 + 𝑥𝑥4)𝑡𝑡2 + 2(𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3)𝑡𝑡 − 𝑥𝑥1 + 𝑥𝑥2} (3) 

To ensure that 𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡 is positive in [0  1]: 1) 𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡 is positive at 𝑡𝑡 = 0 and 𝑡𝑡 = 1, and 2) 𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡 = 0 has 

no real roots in [0  1]. The first condition gives the following two inequalities: 𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥3 < 𝑥𝑥4 (4) 

 For the second condition, we employ a monotonic transformation of 𝑧𝑧 = 𝑡𝑡/(1 − 𝑡𝑡), in which case 

0 < 𝑡𝑡 < 1 translates to 0 < 𝑧𝑧. Then we only need to ensure that 𝑑𝑑𝑥𝑥/𝑑𝑑𝑧𝑧 = 0 does not have any positive 

real roots. After conversion and arrangement, 𝑑𝑑𝑥𝑥/𝑑𝑑𝑧𝑧 = 0 becomes the following: 

(𝑥𝑥3 − 𝑥𝑥4)𝑧𝑧2 + 2(𝑥𝑥2 − 𝑥𝑥3)𝑧𝑧 + 𝑥𝑥1 − 𝑥𝑥2 = 0 (5) 

Since 𝑥𝑥3 ≠ 𝑥𝑥4, equation (5) is quadratic and the roots are the following: 

𝑧𝑧 =
(𝑥𝑥3 − 𝑥𝑥2) ± �(𝑥𝑥3 − 𝑥𝑥2)2 − (𝑥𝑥2 − 𝑥𝑥1)(𝑥𝑥4 − 𝑥𝑥3)𝑥𝑥3 − 𝑥𝑥4 (6) 

It must be that either the determinant is negative or that it is non-negative but the roots are negative. In 
order for the determinant to be negative, the following must be true: −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2 < �(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) (7) 

If the determinant is non-negative, the converse is true: 𝑥𝑥3 − 𝑥𝑥2 ≤ −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1)         𝑜𝑜𝑜𝑜       �(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) ≤ 𝑥𝑥3 − 𝑥𝑥2 (8) 

If the left part of inequality (8) is true, it means that 𝑥𝑥3 − 𝑥𝑥2 is negative, which leads to at least one root of 𝑧𝑧 (equation 6) being positive (since the denominator is negative). Hence, only the right part of inequality 
(8) can be true. 

 Combining all our results so far, we have the following compulsory conditions: 𝑥𝑥1 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥3 < 𝑥𝑥4, −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2 (9) 
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While these conditions guarantee that 𝑥𝑥(𝑡𝑡) is a monotonic function of 𝑡𝑡, we found that it is not ideal in 
that the final constraint is a non-linear inequality that entangles the 4 coordinates simultaneously, thereby 
reducing their independence. For this reason, we provide a more restrictive constraint of monotonicity 
that also allows the parameters to be more independent from each other: 𝑥𝑥1 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥3 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥3, 𝑥𝑥2 < 𝑥𝑥4 (10) 

These constraints make it so that as long as 𝑥𝑥2 and 𝑥𝑥3 stay within [𝑥𝑥1, 𝑥𝑥4], monotonicity is conserved. We 
can show that this satisfies the conditions on (9) by the following proof. 

 If 𝑥𝑥2 < 𝑥𝑥3, then 0 < 𝑥𝑥3 − 𝑥𝑥2, which obviously satisfies −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2. If 

otherwise (𝑥𝑥2 ≥ 𝑥𝑥3), then it means that 𝑥𝑥1 < 𝑥𝑥3 ≤ 𝑥𝑥2 < 𝑥𝑥4 under conditions in (10). Then, we can see 

that (𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) = {(𝑥𝑥4 − 𝑥𝑥2) + (𝑥𝑥2 − 𝑥𝑥3)}{(𝑥𝑥2 − 𝑥𝑥3) + (𝑥𝑥3 − 𝑥𝑥1)} = (𝑥𝑥2 − 𝑥𝑥3)2 +
(𝑥𝑥4 − 𝑥𝑥2)(𝑥𝑥2 − 𝑥𝑥3) + (𝑥𝑥3 − 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥3) + (𝑥𝑥4 − 𝑥𝑥2)(𝑥𝑥3 − 𝑥𝑥1) and that this is strictly greater 

(𝑥𝑥3 − 𝑥𝑥2)2 since all terms are positive. Therefore, −�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) < 𝑥𝑥3 − 𝑥𝑥2 is satisfied. 

 Finally, we can see that the very first inequality in (10) is now obsolete because the other 

inequalities (e.g., 𝑥𝑥1 < 𝑥𝑥2, 𝑥𝑥2 < 𝑥𝑥4) already imply it. The constraint for slope is very similar to the 

compulsory condition as one only needs to swap 𝑥𝑥 and 𝑦𝑦. 

 

D. Curvature Conditions of CBS 

 Constraint for curvature must be done using the second derivative 𝑑𝑑2𝑦𝑦/𝑑𝑑𝑥𝑥2: 

𝑑𝑑2𝑦𝑦𝑑𝑑𝑥𝑥2 =

𝑑𝑑𝑑𝑑𝑡𝑡 �𝑑𝑑𝑦𝑦/𝑑𝑑𝑡𝑡𝑑𝑑𝑥𝑥/𝑑𝑑𝑡𝑡�𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 =

𝑑𝑑2𝑦𝑦𝑑𝑑𝑡𝑡2 𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 − 𝑑𝑑𝑦𝑦𝑑𝑑𝑡𝑡 𝑑𝑑2𝑥𝑥𝑑𝑑𝑡𝑡2�𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡�3 (11) 

Since our interest lies in constraining the sign of the 2nd derivative, the denominator is unnecessary for 

our purpose as it is always positive. The numerator becomes the following quadratic function of 𝑡𝑡: 𝑝𝑝𝑡𝑡2 + 𝑞𝑞𝑡𝑡 + 𝑜𝑜 (12) 𝑝𝑝 =  (𝑦𝑦1 − 2𝑦𝑦2 + 𝑦𝑦3)(𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3 − 𝑥𝑥4) − (𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3)(𝑦𝑦1 − 3𝑦𝑦2 + 3𝑦𝑦3 − 𝑦𝑦4) 𝑞𝑞 =  (𝑥𝑥1 − 𝑥𝑥2)(𝑦𝑦1 − 3𝑦𝑦2 + 3𝑦𝑦3 − 𝑦𝑦4)− (𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3 − 𝑥𝑥4) 𝑜𝑜 =  (𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3) − (𝑥𝑥1 − 𝑥𝑥2)(𝑦𝑦1 − 2𝑦𝑦2 + 𝑦𝑦3) 

Let 𝑉𝑉0 and 𝑉𝑉1 denote the evaluation of equation 11 at 𝑡𝑡 = 0 and 𝑡𝑡 = 1: 𝑑𝑑2𝑦𝑦𝑑𝑑𝑥𝑥2�𝑡𝑡=0 ∝ 𝑜𝑜 = 𝑉𝑉0 = −𝑥𝑥2𝑦𝑦1 +  𝑥𝑥3𝑦𝑦1 +  𝑥𝑥1𝑦𝑦2 −  𝑥𝑥3𝑦𝑦2 −  𝑥𝑥1𝑦𝑦3 +  𝑥𝑥2𝑦𝑦3 (13) 𝑑𝑑2𝑦𝑦𝑑𝑑𝑥𝑥2�𝑡𝑡=1 ∝ 𝑝𝑝 + 𝑞𝑞 + 𝑜𝑜 = 𝑉𝑉1 = −𝑥𝑥3𝑦𝑦2 +  𝑥𝑥4𝑦𝑦2 +  𝑥𝑥2𝑦𝑦3 −  𝑥𝑥4𝑦𝑦3 −  𝑥𝑥2𝑦𝑦4 +  𝑥𝑥3𝑦𝑦4 (14) 

The interpretation of 𝑉𝑉0 and 𝑉𝑉1 becomes clear when one considers their various forms: 𝑉𝑉0 = −𝑥𝑥2𝑦𝑦1 +  𝑥𝑥3𝑦𝑦1 +  𝑥𝑥1𝑦𝑦2 −  𝑥𝑥3𝑦𝑦2 −  𝑥𝑥1𝑦𝑦3 +  𝑥𝑥2𝑦𝑦3 (15) 

=  (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦3 − 𝑦𝑦1) − (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦1) 
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=  (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦3 − 𝑦𝑦1) − (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦3) 

=  (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) − (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦3) 𝑉𝑉1 =  −𝑥𝑥3𝑦𝑦2 +  𝑥𝑥4𝑦𝑦2 +  𝑥𝑥2𝑦𝑦3 −  𝑥𝑥4𝑦𝑦3 −  𝑥𝑥2𝑦𝑦4 +  𝑥𝑥3𝑦𝑦4 (16) 

=  (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦2) 

=  (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦2 − 𝑦𝑦3) − (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦2) 

=  (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦3) − (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦3) 

As can be seen from above, a constraint of 𝑉𝑉0 > 0 or 𝑉𝑉1 < 0 is essentially constraining the relationship 

between the slopes between the three points (points 1,2, and 3 for 𝑉𝑉0, and points 2,3, and 4 for 𝑉𝑉1). 

In order for the entire CBS to convex, it does not suffice for the signs of 𝑉𝑉0 and 𝑉𝑉1 to be both 
positive. We must additionally ensure that equation 11 does not have a root between 0 and 1. Again, we 
use a monotonic transformation𝑧𝑧 = 𝑡𝑡/(1 − 𝑡𝑡), in which case the relevant part (the part that modulates the 

sign) of equation  11 becomes the following: 𝑉𝑉1𝑧𝑧2 + (𝑞𝑞 + 2𝑜𝑜)𝑧𝑧 + 𝑉𝑉0. Then, the two roots of this formula 
is as follows: −(𝑞𝑞 + 2𝑜𝑜) ± �(𝑞𝑞 + 2𝑜𝑜)2 − 4𝑉𝑉0𝑉𝑉1

2𝑉𝑉1 (17) 

If the determinant is negative, it means the following constraint is true: −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑜𝑜 < 2�𝑉𝑉0𝑉𝑉1 (18) 

If the determinant is non-negative, it means the converse is true: 𝑞𝑞 + 2𝑜𝑜 ≤ −2�𝑉𝑉0𝑉𝑉1    𝑜𝑜𝑜𝑜    2�𝑉𝑉0𝑉𝑉1 ≤ 𝑞𝑞 + 2𝑜𝑜 (19) 

Since 𝑉𝑉1 > 0, we know that the denominator of equation 16 is positive and hence the numerator must be 
negative. If the left part of inequality 18 is true, it follows that both roots of equation 16 is positive. Hence 
only the right side of inequality 18 can hold. Combining the constraints, we have the following for a fully 
convex curve: 𝑉𝑉0 > 0, 𝑉𝑉1 > 0, −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑜𝑜 (20) 

 While this is a sufficient condition of a fully convex curve, it is difficult to utilize because the 
underlying variables are intertwined. If we use the monotonicity constraint from the compulsory condition 
(9), we can simplify this (20) further. 

First, we prove that 𝑉𝑉0 > 0,𝑉𝑉1 > 0, 0 < 𝑞𝑞 + 2𝑜𝑜 is a sufficient condition for convexity using proof 
by contradiction. Let's assume that there is a fully convex curve that satisfies the following constraints: 𝑉𝑉0 > 0,𝑉𝑉1 > 0,−2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑜𝑜 ≤ 0.  

If𝑥𝑥2 < 𝑥𝑥3, it implies 𝑥𝑥1 < 𝑥𝑥2 < 𝑥𝑥3 < 𝑥𝑥4 by (9), and the following conditions hold: 𝑉𝑉0 > 0 ⟺ (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦3 − 𝑦𝑦1)− (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦1) > 0 ⟺ 𝑦𝑦3 − 𝑦𝑦1𝑥𝑥3 − 𝑥𝑥1 >
𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 (21) 

𝑉𝑉1 > 0 ⟺ (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦2) > 0 ⟺ 𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 >
𝑦𝑦4 − 𝑦𝑦2𝑥𝑥4 − 𝑥𝑥2 (22) 



5 
 𝑞𝑞 + 2𝑜𝑜 ≤ 0 ⟺ (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) ≤ 0 ⟺ 𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 ≤ 𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 (23) 

Also, by the inequality of arithmetic and geometric means, we also see that if −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑜𝑜 holds, −(𝑉𝑉0 + 𝑉𝑉1) < 𝑞𝑞 + 2𝑜𝑜 also holds, giving us the following inequality: −(𝑉𝑉0 + 𝑉𝑉1) < 𝑞𝑞 + 2𝑜𝑜 ⟺ (𝑥𝑥3 − 𝑥𝑥1)(𝑦𝑦4 − 𝑦𝑦2) − (𝑥𝑥4 − 𝑥𝑥2)(𝑦𝑦3 − 𝑦𝑦1) > 0 ⟺ 𝑦𝑦4 − 𝑦𝑦2𝑥𝑥4 − 𝑥𝑥2 >
𝑦𝑦3 − 𝑦𝑦1𝑥𝑥3 − 𝑥𝑥1 (24) 

Combination of inequality 21, 22, and 24 give us the following inequality: 𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 >
𝑦𝑦4 − 𝑦𝑦2𝑥𝑥4 − 𝑥𝑥2 >

𝑦𝑦3 − 𝑦𝑦1𝑥𝑥3 − 𝑥𝑥1 >
𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 (25) 

However, this is directly contradicted by inequality 23. Hence 𝑥𝑥2 < 𝑥𝑥3 cannot hold. 

 If 𝑥𝑥2 ≥ 𝑥𝑥3, we expand the condition of −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑜𝑜 ≤ 0: −2��(𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) − (𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦2 − 𝑦𝑦3)��(𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦3) − (𝑥𝑥2 − 𝑥𝑥3)(𝑦𝑦4 − 𝑦𝑦3)� <

(𝑥𝑥2 − 𝑥𝑥1)(𝑦𝑦4 − 𝑦𝑦3) − (𝑥𝑥4 − 𝑥𝑥3)(𝑦𝑦2 − 𝑦𝑦1) ≤ 0 (26)

 

From the compulsory condition on equation 9, we have �(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) > 𝑥𝑥2 − 𝑥𝑥3. We can 

multiply both sides by�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1), which gives us (𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) >  (𝑥𝑥2 −𝑥𝑥3)�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1). Since both sides of inequality 26 are negative, we can divide the left side with a 

smaller positive number and the right side with a larger positive number and still maintain the inequality. 

Hence we divide the left side with (𝑥𝑥2 − 𝑥𝑥3)�(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 − 𝑥𝑥1) and the right side with(𝑥𝑥4 − 𝑥𝑥3)(𝑥𝑥2 −𝑥𝑥1). This gives us the following: 

−2��𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 − 𝑦𝑦2 − 𝑦𝑦3𝑥𝑥2 − 𝑥𝑥3� �𝑦𝑦2 − 𝑦𝑦3𝑥𝑥2 − 𝑥𝑥3 − 𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3� <
𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 − 𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 (27) 

Applying the inequality of arithmetic and geometric mean on the left side, we have the following: −�𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 − 𝑦𝑦2 − 𝑦𝑦3𝑥𝑥2 − 𝑥𝑥3 +
𝑦𝑦2 − 𝑦𝑦3𝑥𝑥2 − 𝑥𝑥3 − 𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3� <

𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 − 𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 (28) 

However, the left-side equals the right side and the inequality provides a contradiction. Hence whether 𝑥𝑥2 < 𝑥𝑥3 or 𝑥𝑥2 ≥ 𝑥𝑥3, our initial assumption of 𝑉𝑉0 > 0, 𝑉𝑉1 > 0, −2�𝑉𝑉0𝑉𝑉1 < 𝑞𝑞 + 2𝑜𝑜 ≤ 0 does not hold. 

Concordantly, we have 𝑉𝑉0 > 0,𝑉𝑉1 > 0, 0 < 𝑞𝑞 + 2𝑜𝑜. 

 Now if we assume 𝑥𝑥3 ≤ 𝑥𝑥2, these conditions give us contradiction: 𝑉𝑉0 > 0,𝑉𝑉1 > 0 ⟺  
𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 <

𝑦𝑦3 − 𝑦𝑦2𝑥𝑥3 − 𝑥𝑥2 <
𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 (29) 

𝑞𝑞 + 2𝑜𝑜 > 0 ⟺ 𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 >
𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 (30) 

Hence, 𝑥𝑥2 < 𝑥𝑥3 and the convexity condition can be simplified as the following: 𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 <
𝑦𝑦3 − 𝑦𝑦2𝑥𝑥3 − 𝑥𝑥2 <

𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 (31) 
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E. Smoothness Conditions of multi-piece CBS 

 So far, all the constraints have been worked out with regards to a single piece of CBS. However, 
in order to model more complex functions, one would need to chain multiple pieces of CBS functions 
together. In order to guarantee a smooth transition between the two chained CBS functions, there are 
some constraints that one should impose. 

 First, the derivative of CBS must be continuous at the joining point of two CBS functions. This is 
straightforward as the line between the anchor point and its control point marks the local derivative. 
Hence, one should just ensure that the two control points of an anchor point is on the same line. Second, if 
the control handles (i.e., the distance between anchor point and its control points) becomes very short, 
there is potential for a kink in that location (Supplemental Fig 1). Therefore, it can be useful to constrain 
the minimal distance between control points and their anchor point. 

 

Supplemental Figure 1. Two-piece CBS. Panel A on the left shows the kink that forms when the control 

points become too close to the anchor point at the joining point of two CBS functions. Panel B shows a 

smooth transition between two pieces of CBS functions thanks to the appropriate distance between 

control points and anchor point. 

The table below summarizes all the constraints. 

Compulsory 𝑥𝑥1 < 𝑥𝑥2 < 𝑥𝑥4, 𝑥𝑥1 < 𝑥𝑥3 < 𝑥𝑥4 

Slope 

Monotonically increasing 𝑦𝑦1 < 𝑦𝑦2 < 𝑦𝑦4, 𝑦𝑦1 < 𝑦𝑦3 < 𝑦𝑦4 

Monotonically decreasing 𝑦𝑦1 > 𝑦𝑦2 > 𝑦𝑦4, 𝑦𝑦1 > 𝑦𝑦3 > 𝑦𝑦4 

Curvature 

Convex 
𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 <

𝑦𝑦3 − 𝑦𝑦2𝑥𝑥3 − 𝑥𝑥2 <
𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 

Concave 
𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 − 𝑥𝑥1 >

𝑦𝑦3 − 𝑦𝑦2𝑥𝑥3 − 𝑥𝑥2 >
𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4 − 𝑥𝑥3 

Smoothness 

For a n – piece CBS function,  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 =
𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 , ∀𝑖𝑖 = 3𝑗𝑗 + 1, 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛 − 1}. 

And, 𝑚𝑚2 < (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1)2, 𝑚𝑚2 < (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)2 
For a small number m (m = 0.1 in this paper). 
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F. Parameter Recovery of Prospect Theory 

 Prospect theory forms can be extremely hard to estimate from simple gambles. This is not 

because the estimation doesn’t converge, but rather due to collinearity that exists between two 

parameters: value function exponent and probability weighting function elevation parameter. Here we 

show in three ways why this would be the case. 

 Intuitively, both parameters control the same behavior. Consider a fair gamble where one option 

is $20 for sure and the other is 50% chance of winning $40. A risk-averse agent would generally choose 

the $20. However, this could be either because the agent has an underappreciated probability for 50% and 

feel that the chance is not good, or because the agent feels that $40 is not worth twice as much as $20. 

The former would be in the domain of the probability weighting function while the latter would be in the 

domain of value function. Hence it is clear that both functions can explain the same behavior to a certain 

degree. 

 Mathematically, the confound is the clearest in Prelec’s 2-parameter probability weighting 

function (1998). This is by no means a drawback of Prelec’s function as other functions also share the 

same confound; rather if anything, it would be the advantage of Prelec’s function for clarifying this 

relationship. Consider an equivalence in utility between a certain smaller monetary option (SA) and a 

larger risky monetary option (LA) with probability p. Then, the equation would be of the following: 𝑆𝑆𝐴𝐴𝛼𝛼 = 𝐿𝐿𝐴𝐴𝛼𝛼 ∙ 𝑒𝑒−𝛿𝛿(−𝑙𝑙𝑙𝑙𝑙𝑙)𝑟𝑟 (32) 

Note that by de-exponentiating both sides of the equation, one can achieve the following: 𝑆𝑆𝐴𝐴 = 𝐿𝐿𝐴𝐴 ∙ 𝑒𝑒−𝛿𝛿𝛼𝛼(−𝑙𝑙𝑙𝑙𝑙𝑙)𝑟𝑟 (33) 

This is simply a model where the value exponent is 1 and the Prelec probability weighting function has an 

elevation parameter 𝛿𝛿/𝛼𝛼. So, the two parameters are entirely colinear in describing the relationship 

between two utilities. 

Simulation-wise, this confound results in the estimated parameters varying wildly by little noise. 

Here we show a small simulation that illustrates the confound in parameter recovery of prospect theory 

models. We generate choice data using a 2-parameter Prelec function (Prelec, 1998) and show that the 

recovered parameters show a clear correlation between the elevation of the probability weighting function 

and the curvature of the value function. 

 For simplicity, we generate choice data using only one parameter combination: 𝑜𝑜 = 0.5, 𝛿𝛿 = 1, 𝛼𝛼 = 0.8. We employed stimuli from three different datasets. One is the Kable et al. (2017) stimuli of 120 

binary choices between a simple gamble and a certain amount. Second is the stimuli from Erev et al. 

(2002) that has 200 binary choices between two simple gambles. Third is the stimuli from Stott (2006) 

that has 90 binary choices between two two-outcome gambles. The second and the third dataset’s 

parameter recovery capabilities have been examined in Broomell & Bhatia (2014), but only with regards 

to a 1-parameter Prelec function instead of the 2-parameter that we are using. 

 Choice probabilities were generated using a logit specification: 𝑝𝑝(𝑐𝑐ℎ𝑜𝑜𝑖𝑖𝑐𝑐𝑒𝑒 = 1) = �1 + exp�−𝑏𝑏(𝑈𝑈1 − 𝑈𝑈2)��−1 (34) 

We used cumulative prospect theory model with 2-parameter Prelec function for calculation of utilities. 

For stimuli from Kable et al. (2017) and Erev et al. (2002), this was the following: 
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 𝑈𝑈 = 𝑓𝑓(𝑝𝑝) ∙ 𝐴𝐴𝛼𝛼 (35) 

Where the p is the probability of winning the simple gamble and A is the amount. In the case of stimuli 

from Stott (2006), the specification for a two-outcome gamble of winning a large amount (A) with 

probability p and a smaller amount (SA) with probability 1-p becomes the following: 𝑈𝑈 = 𝑓𝑓(𝑝𝑝) ∙ 𝐴𝐴𝛼𝛼 + �1 − 𝑓𝑓(𝑝𝑝)� ∙ 𝑆𝑆𝐴𝐴𝛼𝛼 . (36) 

In both cases 𝑓𝑓(𝑝𝑝) =  exp[−𝛿𝛿(− ln 𝑝𝑝)𝛾𝛾]. Since the scaling factor b in eq. 32 also controls the choice 

stochasticity, we set it such that on average, each simulated choice set would differ from the true 

preference in 3 out of 100 choices (𝑏𝑏 = 7.1 for Kable et al. (2017), 𝑏𝑏 = 3.3 for Erev et al. (2002), and 𝑏𝑏 = 0.063 for Stott (2006)). Given the choice probabilities, we simulated 500 choice sets for each of the 

three stimuli set and then fitted each of the 1,500 choice sets using the same model as the generating 

model. Then we examined the pattern between the fitted parameters. 

 There was a clear, strong correlation between the elevation parameter 𝛿𝛿 and the curvature 

parameter 𝛼𝛼. The three panels from Supplemental Fig 2 shows the scatterplot of the recovered 

parameters. All three stimuli sets resulted in a near-linear correlation between the two parameters. 

Furthermore, the range of fitted values were very broad, suggesting that these two parameters are hardly 

identifiable. While the true value of alpha was 0.8, its fitted values ranged anywhere between 0.2 and 1.5, 

resulting in a variety of value functions from extremely diminishing marginal returns to extremely 

increasing marginal returns. The fitted elevation parameter delta was also widely varying between 0.3 and 

2, resulting in diverse probability weighting functions that show from overall overweighting of 

probabilities to overall underweighting of probabilities. In over 91% of all simulations, the fitted 

parameter combination resulted in higher log-likelihood than the true parameter combinations, which 

suggest that these results are not due to failed convergence of maximum likelihood estimation. 

 

 

Supplemental Figure 2. Parameter recovery results. The three panel shows the scatterplot of recovered 

parameters alpha and delta for each of the three stimuli sets. 
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G. Simulated Utility Function Recovery Using CBS 

To show that CBS can nest many of the utility functions used for ITC and RC, we 
simulated choices from various utility functions and assessed if CBS can accurately recover 
them. We simulated binary choice from 6 models for ITC and 6 models for RC, each with 4 
parameter combinations. The chosen models and their 4 parameter combinations are shown in 

Supplemental Table 2. Each simulated choice was between a smaller monetary amount of $20 
(fixed across all trials), and a larger monetary amount that varied from trial to trial. The larger 
monetary amount was either delayed (for ITC models) or probabilistic (for RC models). The 
amount of the larger monetary option on each trial was created by uniformly sampling the ratio 
between the smaller and larger monetary amount (0 ~ 1; e.g., ratio of 0.5 means the smaller 
amount is half that of the larger amount). In ITC simulation, the delays were uniformly sampled 
from 0~180 days, and in RC simulation, the probabilities were uniformly sampled from 0~1. 
Dataset sizes ranged from 72 to 202 choices based on how finely we sampled the range of 
delay/probability and amount. The difference in utilities of the two options were used in a logit 
model (eq. 3, main manuscript) to generate choice probabilities, according to which we 
generated binary choices. For each of the (6+6) x 4 = 48 functions x 14 dataset size conditions 
(72~202), we simulated 200 datasets. The scaling parameter 𝜎𝜎 was fixed at 1, as it is not a 
variable of interest in our study. After fitting each choice dataset with CBS (both 1-piece and 2-
piece), we measured the mean absolute error (MAE) between the fitted CBS functions and the 
true simulating functions to assess CBS’s recovery of true functions. Since the error is measured 
relative to the true function, the MAE is best interpreted as an out-of-sample measure; it is not a 
given that more flexible models will have lower MAEs as it may overfit the choice noise instead 
of the true function. 

CBS shows excellent recovery of various latent utility functions. Supplemental Fig. 3 
and Supplemental Fig. 4 show the true functions and their average CBS fits from 202 choice 
dataset conditions. In both ITC and RC, we see that both 1-piece and 2-piece CBS functions 
provide very close recovery of a wide variety of utility functions. Closer inspection shows that 1-
piece CBS has some difficulties with sharp kinks or curves with multiple inflection points. 2-
piece CBS shows near perfect approximation of all the utility functions tested. Given this result, 
more than 2 pieces of CBS do not seem necessary for modeling ITC or RC. 

CBS shows little error even at smaller dataset sizes. Supplemental Table 3 shows the 
mean MAEs of CBS fits under different simulating functions and dataset sizes. Note that this is 
not the MAE of the average fit (which is Supplemental Fig. 3 and Supplemental Fig. 4), but 
rather the average MAE of the fits. The former would show CBS fits after averaging out the 
choice noise, but the latter shows how much CBS fits are deterred by choice noise. The latter 
also tells us the expected MAE for CBS fits under different dataset sizes. Concordantly, we see 
that the mean MAEs decrease as the size of dataset gets larger. Nevertheless, the expected MAEs 
are very small in all dataset sizes (below 0.05 for all cases, where the range of absolute errors can 
be between 0 and 1). Generally, we see that 1-piece CBS has lower errors than 2-piece CBS 
except for a few cases. 
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Simulating Function 
Equivalent Expression in 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑋𝑋) form 

Simulating Parameters 

Exponential 𝑓𝑓(𝐷𝐷) = exp(−𝑘𝑘𝐷𝐷) ln 𝑘𝑘 ∈ {−8,−6,−4,−2} 

Hyperbola 𝑓𝑓(𝐷𝐷) = (1 + 𝑘𝑘𝐷𝐷)−1 ln 𝑘𝑘 ∈ {−8,−6,−4,−2} 

General Hyp. 𝑓𝑓(𝐷𝐷) = (1 + 𝑘𝑘𝐷𝐷)−𝑠𝑠 (ln 𝑘𝑘 , 𝑠𝑠) ∈ {(−7, 0.5), (−7, 2), (−4, 0.5), (−4, 2)} 

Logarithmic Time 𝑓𝑓(𝐷𝐷) = 𝐷𝐷−𝑘𝑘 𝑘𝑘 ∈ {0.4, 0.2, 0.1, 0.05} 

Quasi-hyperbolic 𝑓𝑓(𝐷𝐷) = 𝛽𝛽 exp(−𝑘𝑘𝐷𝐷) (𝛽𝛽, ln 𝑘𝑘) ∈ {(0.4,−7), (0.4,−4), (0.8,−7), (0.8,−4)} 

Double Exp. 𝑓𝑓(𝐷𝐷) = 𝑤𝑤𝑒𝑒−𝑎𝑎𝑎𝑎 + (1 − 𝑤𝑤)𝑒𝑒−𝑏𝑏𝑎𝑎 ln𝑎𝑎 = −8, ln 𝑏𝑏 = −3,𝑤𝑤 ∈ {0.7, 0.5, 0.3, 0.1} 

EUT 𝑓𝑓(𝑝𝑝) = 𝑝𝑝1/𝛼𝛼 𝛼𝛼 ∈ {0.2, 0.6, 1, 2} 

Hyperbola 𝑓𝑓(𝑝𝑝) = �1 + ℎ(𝑝𝑝−1 − 1)�−1 ℎ ∈ {0.1, 0.5, 2, 7} 

GE weighting 𝑓𝑓(𝑝𝑝) = � 𝛿𝛿𝑝𝑝𝛾𝛾𝛿𝛿𝑝𝑝𝛾𝛾 + (1− 𝑝𝑝)𝛾𝛾�1/𝛼𝛼
 𝛼𝛼 = 0.8, (𝛿𝛿, 𝛾𝛾) ∈ {(0.5,0.5), (0.5,2), (2, 0.5), (2, 2)} 

TK weighting 𝑓𝑓(𝑝𝑝) = � 𝑝𝑝𝛾𝛾
(𝑝𝑝𝛾𝛾 + (1 − 𝑝𝑝)𝛾𝛾)

1𝛾𝛾�
1/𝛼𝛼

 𝛼𝛼 = 0.8, 𝛾𝛾 ∈ {0.25, 0.5, 1, 3} 

Prelec weighting 𝑓𝑓(𝑝𝑝) = exp�− 𝛿𝛿𝛼𝛼 (− ln𝑝𝑝)𝛾𝛾� 𝛼𝛼 = 0.8, (𝛿𝛿, 𝛾𝛾) ∈ {(0.5,0.5), (0.5,2), (2, 0.5), (2, 2)} 

General Hyp. 1 𝑓𝑓(𝑝𝑝) = �1 + ℎ(𝑝𝑝−1 − 1)�−𝑠𝑠 (ℎ, 𝑠𝑠) ∈ {(2, 0.3), (7, 0.3), (2, 1.5), (7, 1.5)} 

 

Supplemental Table 2. Simulating utility functions for CBS recovery. Shown above are the 

ITC models (1~6) and RC models (7~12) expressed in 𝑈𝑈 = 𝐴𝐴 ∙ 𝑓𝑓(𝑋𝑋) form (see Supplemental 

Materials Section A for transformations). The parameter sets used to simulate choice datasets 

are shown on the right column. 
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Supplemental Figure 3. Average CBS fits from ITC choice dataset simulation. CBS fits are 

shown overlaid on top of 6 different ITC utility functions. The first and the third row shows the 

true simulating utility functions and their average CBS fits. The average CBS fits were 

calculated by taking the mean of the 200 fitted CBS functions from the largest choice dataset 

(400 choices). The second and the fourth row shows the mean error of the fitted CBS functions 

and the true simulating functions. 
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Supplemental Figure 4. Average CBS fits from RC dataset simulation. CBS fits are shown 

overlaid on top of 6 different RC utility functions (converted into probability space). The first 

and the third rows show the true simulating utility functions and their average CBS fits. The 

average CBS fits were calculated by taking the mean of the 200 fitted CBS functions from the 

largest choice dataset (400 choices). The second and the fourth rows show the mean error of the 

fitted CBS functions and the true simulating functions. 
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Data 
Size 

ITC 
Exponential 

ITC 
Hyperbola 

ITC 
Gen. Hyp. 

ITC 
Log Time 

ITC 
Quai-hyp 

ITC 
Double Exp. 

49 .033 .037 .036 .042 .038 .043 .040 .047 .038 .040 .045 .048 
64 .030 .031 .031 .036 .033 .036 .033 .044 .029 .037 .034 .043 
81 .028 .028 .027 .032 .030 .034 .026 .035 .028 .025 .033 .040 

100 .025 .026 .025 .030 .027 .031 .025 .032 .026 .028 .027 .035 
121 .024 .024 .022 .028 .024 .028 .022 .032 .023 .024 .022 .038 
144 .023 .023 .021 .026 .022 .026 .021 .031 .022 .018 .019 .035 
169 .021 .019 .019 .024 .020 .024 .018 .031 .021 .019 .018 .028 
196 .020 .019 .018 .025 .019 .023 .017 .035 .020 .016 .016 .026 
255 .019 .017 .017 .020 .018 .021 .016 .027 .019 .015 .015 .020 
256 .019 .016 .016 .023 .017 .020 .014 .023 .018 .014 .015 .021 
289 .018 .016 .014 .021 .016 .019 .014 .019 .018 .013 .014 .019 
324 .018 .018 .014 .020 .015 .018 .013 .019 .017 .013 .013 .019 
361 .017 .016 .014 .022 .014 .018 .012 .019 .017 .012 .012 .017 
400 .017 .015 .013 .019 .013 .016 .012 .017 .016 .011 .012 .017 

  

Data 
Size 

RC 
EUT 

RC 
Hyperbola 

RC 
GE weight 

RC 
TK weight 

RC 
Prelec Weight 

RC 
Gen. Hyp. 

49 .032 .046 .038 .051 .041 .044 .034 .039 .039 .045 .037 .046 
64 .028 .040 .032 .042 .036 .039 .032 .033 .032 .038 .030 .040 
81 .025 .034 .027 .036 .030 .035 .026 .030 .031 .034 .025 .033 

100 .020 .029 .023 .030 .024 .028 .025 .026 .028 .029 .021 .030 
121 .018 .025 .020 .027 .021 .027 .024 .022 .027 .026 .019 .026 
144 .015 .023 .019 .026 .022 .024 .022 .020 .025 .024 .016 .024 

169 .014 .022 .017 .024 .020 .021 .022 .019 .025 .022 .014 .022 

196 .014 .021 .016 .022 .017 .020 .019 .017 .025 .019 .014 .021 

255 .012 .019 .015 .020 .016 .019 .019 .018 .023 .019 .013 .019 

256 .012 .018 .014 .019 .014 .018 .019 .017 .022 .018 .013 .017 

289 .011 .016 .013 .018 .014 .017 .018 .014 .023 .017 .012 .016 

324 .010 .016 .012 .017 .015 .016 .018 .014 .023 .016 .011 .015 

361 .010 .015 .011 .016 .015 .015 .017 .013 .023 .014 .010 .015 

400 .009 .014 .011 .016 .014 .015 .017 .013 .022 .014 .010 .014 

 

Supplemental Table 3. Mean Absolute Error (MAE) for utility function recovery with CBS. 

Across various dataset sizes (left most column), the average MAE between the fitted CBS 

functions and the true simulating functions are shown (1-piece on left 2-piece on right). The 

lower MAE of the two CBS functions are bolded. 
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H. Summary measure of impulsivity and risk-aversion via CBS AUC 

The area under the curve (AUC) of fitted CBS functions serves as a summary measure of 
impulsivity and risk-aversion. While AUC can be easily calculated numerically via 
approximations, the analytical expression for its calculation is quite straightforward. In the case 
of a 2-piece CBS function, one can simply add up the AUC of each individual piece. The 
formula for AUC can be calculated quite straightforwardly by applying integration on equations 
(1) and (2) of main manuscript. Let (xi, yi) denote the coordinates of the point Pi. Then, the AUC 
of each CBS piece is as follows: � y dx

x3x0 =
1

20
� 6x1y0 − 6x0y1 − 10x0y0 − 3x0y2 + 3x2y0 − x0y3 − 3x1y2

+3x2y1 + x3y0 − 3x1y3 + 3x3y1 − 6x2y3 + 6x3y2 + 10x3y3� (37) 

 

 

I. Supplemental references 

Brezger, A., & Steiner, W. J. (2008). Monotonic Regression Based on Bayesian P–Splines. 
Journal of Business & Economic Statistics. https://doi.org/10.1198/073500107000000223 

Bruhin, A., Fehr-Duda, H., & Epper, T. (2009). Risk and Rationality: Uncovering Heterogeneity 
in Probability Distortion. Ssrn, 78(4), 1375–1412. 

Fox, C. R., & Poldrack, R. A. (2009). Prospect theory and the brain. In Neuroeconomics (pp. 
145–173). 

Leitenstorfer, F., & Tutz, G. (2007). Generalized monotonic regression based on B-splines with 
an application to air pollution data. Biostatistics. https://doi.org/10.1093/biostatistics/kxl036 

 


