BayesMallows: An R Package for Probabilistic Preference Learning with the Mallows Rank Model

Øystein Sørensen

2018-09-30

The BayesMallows package implements methods for Bayesian preference learning with the Mallows rank model, as originally described in Vitelli et al. (2018), and further developed in Asfaw et al. (2016) and Crispino et al. (2018). This vignette describes the usage of the package, starting from the complete data cases, through top-\(k\) rankings, pairwise comparisons, and finally clustering. We refer to the above mentioned papers, as well as the review Liu et al. (2018) for a thorough description of the methods. The necessary methods for data preprocessing, tuning of algorithms, and assessment of the posterior distributions will be described along the way. For ways to compute the partition function of the Mallows rank model with various distance measures, please see the separate vignette.

Mixture of Mallows Models

library(BayesMallows)

We also need some packages for plotting and data wrangling.

library(dplyr)
library(ggplot2)
library(tidyr)

Overview of Package

Functions

Here is an overview of the most used function. You can read their documentation with ?function_name, or search for an example in this vignette.

Main functions in the BayesMallows package.
Function Name Description
compute_mallows Compute the posterior distribution of the Bayesian Mallows model. This is the main function of the package. Returns an object of class BayesMallows.
compute_mallows_mixtures Compute multiple Mallows models with different number of mixture components. This is a convenience function for determining the number of mixtures to use.
sample_mallows Sample from the Mallows model.
plot.BayesMallows Quick plots of the posterior densities of \(\alpha\) and \(\rho\).
assess_convergence Study the convergence of the Markov chain, in order to determine burnin and other algorithm parameters.
plot_elbow Create an elbow plot for comparing models with different number of clusters.
plot_top_k Plot the top-\(k\) rankings. Particularly relevant when the data is in the form of pairwise comparisons.
assign_cluster Compute the cluster assignment of assessors.
compute_map_consensus Compute the MAP estimate of the latent ranks.
compute_cp_consensus Rank the items according to their CP consensus.
compute_posterior_intervals Compute Bayesian posterior intervals for the parameters.
generate_initial_ranking Generate an initial ranking, for the case of missing data or pairwise comparisons.
generate_transitive_closure Generate the transitive closure for a set of pairwise comparisons.
estimate_partition_function Estimate the partition function of the Mallows model using either importance sampling or an asymptotic approximation.

Datasets

Here is an overview of the example datasets in BayesMallows. You can read their documentation with ?dataset_name, or search for an example in this vignette.

Example datasets in the BayesMallows package.
Dataset Name Description
beach_preferences Stated pairwise preferences between random subsets of 15 images of beaches, by 60 assessors.
sushi_rankings Complete rankings of 10 types of sushi by 5000 assessors.
potato_visual Complete rankings of 20 potatoes by weight, based on visual inspection, by 12 assessors.
potato_weighing Complete rankings of 20 potatoes by weight, where the assessors were allowed to weigh the potatoes in their hands, by 12 assessors.
potato_true_ranking Vector of true weight rankings for the 20 potatoes in the example datasets potato_visual and potato_weighing.

Mallows’ Rank Model

We here give an informal review of the Mallows model (Mallows (1957)). The distribution of a ranking \(r \in \mathcal{P}_{n}\) of \(n\) items is modeled as

\[ P(r | \alpha, \rho) = Z_{n}(\alpha)^{-1} \exp\left\{-\frac{\alpha}{n} d(r, \rho)\right\} 1_{\mathcal{P}_{n}}(r), \]

where \(\mathcal{P}_{n}\) is the set of all permutations of \(1, \dots, n\), \(\alpha\) is a scale parameter, \(\rho \in \mathcal{P}_{n}\) is a latent consensus ranking, \(d(\cdot, \cdot)\) is a distance measure, \(1_{S}(\cdot)\) is the indicator function for the set \(S\), and \(Z_{n}(\alpha)\) is the partition function, or normalizing constant.

Given \(N\) observed rankings, \(R_{1}, \dots, R_{N}\), the likelihood of the model is

\[ P(R_{1}, \dots, R_{N} | \alpha, \rho) = Z_{n}(\alpha)^{-N} \exp\left\{-\frac{\alpha}{n} \sum_{j=1}^{N}d(R_{j}, \rho)\right\} \prod_{j=1}^{N} \left\{1_{\mathcal{P}_{n}}(R_{j}) \right\}. \]

The rankings argument to compute_mallows is assumed to be a matrix of the form \((R_{1}, R_{2}, \dots, R_{N})^{T}\), i.e., each row contains a ranking and each column is an item.

Prior Distributions

For \(\alpha\) we use an exponential prior, with density \(\pi(\alpha | \lambda) = \lambda \exp(-\lambda \alpha).\) The rate parameter \(\lambda\) can be set by the user with the lambda argument to compute_mallows. For \(\rho\) we assume a uniform prior distribution on \(\mathcal{P}_{n}\), with density \(\pi(\rho) = 1_{\mathcal{P}_{n}}(\rho) /n!.\)

Metropolis-Hastings Algorithm

We use a Metropolis-Hastings algorithm for computing the posterior distributions of \(\alpha\) and \(\rho\). We propose \(\alpha\) from a lognormal distribution \(\log \mathcal{N}(\log(\alpha), \sigma_{\alpha}^{2})\). We propose \(\rho\) with a leap-and-shift algorithm, described in detail in Vitelli et al. (2018). The standard deviation \(\sigma_{\alpha}^{2}\) and the leap size can be set by the user with the arguments alpha_prop_sd and leap_size to compute_mallows.

Partial Rankings

If each assessor \(j\) has ranked a subset of the items \(\mathcal{A}_{j}\), we use data augmentation to fill in the missing ranks. We define the augmented data vectors \(\tilde{R}_{1}, \dots, \tilde{R}_{N}\), and use a uniform prior for each assessor with support \(\mathcal(P)_{n} \setminus R_{j}\), i.e., the set of rankings not already chosen. The Metropolis-Hastings algorithm now alternates between sampling \(\tilde{R}_{1}, \dots, \tilde{R}_{N}\) given the current \(\alpha\) and \(\rho\), and sampling \(\alpha\) and \(\rho\) given the current \(\tilde{R}_{1}, \dots, \tilde{R}_{N}\).

Pairwise Comparisons

When the assessors have stated a set of pairwise comparisons, rather than rankings, we use the same data augmentation ideas as for partial rankings, but the proposal distribution is slightly more complicated in order to ensure that the proposed ranking is compliant with the ordering implied by the pairwise comparisons. In addition, the transitive closure of the stated ordering has to be computed, in order to find all implied orderings. From a user perspective, no new algorithm parameters need to be considered.

Mixtures of Mallows Models

When the assessor pool is heterogeneous, one might assume that there exist several latent consensus rankings, \(\rho_{1}, \dots, \rho_{C}\), one for each cluster of assessors. Letting \(z_{1}, \dots, z_{N} \in\{1, \dots, C\}\) assign each assessor to each cluster, the likelihood of the observed rankings is

\[P(R_{1}, \dots, R_{N} | \{\alpha_{c}, \rho_{c}\}_{c=1,\dots,C}, z_{1},\dots,z_{N}) = \prod_{j=1}^{N}\frac{1_{\mathcal{P}_{n}}(\rho)}{Z_{n}(\alpha_{z_{j}})}\exp\left\{ -\frac{\alpha_{z_{j}}}{n} d(R_{j}, \rho_{z_{j}})\right\}. \] For the scale parameters \(\alpha_{1}, \dots, \alpha_{C}\) we assume the exponential prior as before, all with the same rate parameter \(\lambda\). We assume that the cluster labels are a priori distributed according to \(P(z_{1}, \dots, z_{N} | \tau_{1}, \dots, \tau_{C}) = \prod_{j=1}^{N} \tau_{z_{j}}\), where \(\tau_{c}\) is the a priori probability that an assessor belongs to cluster \(c\). For \(\tau_{1}, \dots, \tau_{C}\) we assume the Dirichlet prior \(\pi(1, \dots, C) = \Gamma(\psi C)\Gamma(\psi)^{-C}\prod_{c=1}^{C}\tau_{c}^{\psi - 1}\), where \(\Gamma(\cdot)\) is the gamma function. The user can control the value of \(\psi\) with the psi argument to compute_mallows.

BayesMallows User Guide

Having described the model, we now show some case studies demonstrating the use of the BayesMallows package. To reduce the computing time, we have typically taken a fairly small number of posterior samples, and rather focused on demonstrating the different methods. In general, we recommend taking a larger number of samples than what we do here, in order to obtain good approximations of the posterior distributions.

Completely Ranked Data

BayesMallows comes with example data described in Liu et al. (2018). A total of 12 assessors were asked to rank 20 potatoes based on their weight. In the first round, the assessors were only allowed to study the potatoes visually, while in the second round, the assessors were also allowed to hold the potatoes in their hands in order to compare them. The data sets are named potato_visual and potato_weighing, respectively. The true ordering of the potatoes’ weights are stored in the vector potato_true_ranking.

The potato_visual dataset is shown below. The column names P1, …, P20 represent potatoes, and the row names A1, …, A12 represent assessors. The potato_weighing dataset has a similar structure.

Example dataset potato_visual.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
A1 10 18 19 15 6 16 4 20 3 5 12 1 2 9 17 8 7 14 13 11
A2 10 18 19 17 11 15 6 20 4 3 13 1 2 7 16 8 5 12 9 14
A3 12 15 18 16 13 11 7 20 6 3 8 2 1 4 19 5 9 14 10 17
A4 9 17 19 16 10 15 5 20 3 4 8 1 2 7 18 11 6 13 14 12
A5 12 17 19 15 7 16 2 20 3 9 13 1 4 5 18 11 6 8 10 14
A6 10 15 19 16 8 18 6 20 3 7 11 1 2 4 17 9 5 13 12 14
A7 9 16 19 17 10 15 5 20 3 8 11 1 2 6 18 7 4 14 12 13
A8 14 18 20 19 11 15 6 17 4 3 10 1 2 7 16 8 5 12 9 13
A9 8 16 18 19 12 13 6 20 5 3 7 1 4 2 17 10 9 15 14 11
A10 7 17 19 18 9 15 5 20 3 10 11 1 2 6 16 8 4 13 12 14
A11 12 16 19 15 13 18 7 20 3 5 11 1 2 6 17 10 4 14 8 9
A12 14 15 19 16 12 18 8 20 3 4 9 1 2 7 17 6 5 13 10 11

Algorithm Tuning

The compute_mallows function is the workhorse of BayesMallows. It runs the Metropolis-Hastings algorithm and returns the posterior distribution of the scale parameter \(\alpha\) and the latent ranks \(\rho\) of the Mallows model. To see all its arguments, please run ?compute_mallows in the console.

We start by using all the default values of the parameters, so we only need to supply the matrix of ranked items. We use the potato_visual data printed above.

model_fit <- compute_mallows(potato_visual)

The argument returned is a list object of class BayesMallows, which contains a whole lot of information about the MCMC run.

class(model_fit)
names(model_fit)

The function assess_convergence produces plots for visual convergence assessment. We start by studying \(\alpha\), which is the default. The plot is shown below, and looks good enough, at least to begin with.

assess_convergence(model_fit)

Next, we study the convergence of \(\rho\). To avoid too complicated plots, we pick 5 items to plot. Again, you can read more about this function by running ?assess_convergence in the console.

assess_convergence(model_fit, type = "rho", items = 1:5)

Based on these plots, it looks like the algorithm starts to converge after around 1000 iterations. Discarding the first 1000 iterations as burn-in hence seems like a safe choice. We create a new list element for model_fit called burnin, in which this choice is saved. Having done this, we do not have to provide a burnin argument to subsequent analyses of the posterior distributions.

model_fit$burnin <- 1000

Posterior Distributions

Once we are confident that the algorithm parameters are reasonable, we can study the posterior distributions of the model parameters using the generic function plot.BayesMallows.

Scale Parameter \(\alpha\)

With a burnin of 1000, the original model_fit object from the previous subsection has 1000 MCMC samples. The default parameter of plot.BayesMallows is \(alpha\), so we can study the posterior distribution with the simple statement below.

plot(model_fit)

We can also get the posterior credible intervals for \(\alpha\):

intervals <- compute_posterior_intervals(model_fit, parameter = "alpha")
parameter mean median conf_level hpdi central_interval
alpha 10.95 10.908 95 % [9.759,12.241] [9.718,12.229]

Latent Ranks \(\rho\)

Obtaining posterior samples from \(\rho\) is in general harder than for \(\alpha\). Some items tend to be very sticky. We start by plotting the model_fit object from above. We now have to tell plot.BayesMallows that we want a plot of type = "rho" and all the items. This gives us posterior the posterior density of all the items.

plot(model_fit, type = "rho", items = 1:20)

We can also find the posterior intervals of the latent ranks:

compute_posterior_intervals(model_fit, parameter = "rho")
item parameter mean median conf_level hpdi central_interval
P1 rho 10 10 95 % [9,11] [9,11]
P2 rho 17 17 95 % [16,18] [16,18]
P3 rho 19 19 95 % [19] [19]
P4 rho 16 16 95 % [16,18] [16,18]
P5 rho 10 10 95 % [9,12] [9,12]
P6 rho 15 15 95 % [15] [15]
P7 rho 6 6 95 % [5,7] [5,7]
P8 rho 20 20 95 % [20] [20]
P9 rho 3 3 95 % [3] [3]
P10 rho 4 4 95 % [4] [4]
P11 rho 11 11 95 % [9,11] [9,11]
P12 rho 1 1 95 % [1] [1]
P13 rho 2 2 95 % [2] [2]
P14 rho 7 7 95 % [6,7] [6,7]
P15 rho 18 18 95 % [17,18] [17,18]
P16 rho 8 8 95 % [8] [8]
P17 rho 5 5 95 % [5,6] [5,6]
P18 rho 14 14 95 % [13,14] [13,14]
P19 rho 12 12 95 % [10],[12] [10,12]
P20 rho 13 13 95 % [13,14] [13,14]

Jumping over \(\alpha\)

Updating \(\alpha\) in each step may not be necessary. With the alpha_jump argument, we can tell the MCMC algorithm to update \(\alpha\) only every alpha_jumpth iteration.

model_fit <- compute_mallows(potato_visual, alpha_jump = 10)

We should assess convergence again:

assess_convergence(model_fit, type = "alpha")

Thinning

Saving a large number of iterations of \(\rho\) gets quite expensive, so compute_mallows has a rho_thinning parameter. It specifies that only each rho_thinningth iteration of \(\rho\) should be saved to memory. We double the number of iterations, while setting rho_thinning = 2. This gives us the same number of posterior samples.

Please be careful with thinning. In this small data example it is definitely wasteful! Running the same number of iterations without thinning always gives a better approximation of the posterior distribution. Thinning might be useful when you need to run a large number of iterations to explore the space of latent ranks, and the latent ranks from all iterations do not fit in memory. (See, e.g., Gelman et al. (2004) for a discussion of thinning).

model_fit <- compute_mallows(potato_visual, alpha_jump = 10, rho_thinning = 2)

Varying the Distance Metric

We can try to use the Kendall distance instead of the footrule distance.

model_fit <- compute_mallows(potato_visual, metric = "kendall")

Validation of Input

It is also worth pointing out that compute_mallows checks if the input data are indeed ranks. Let us try this by manipulating the first row of potato_visual, giving rank 1 to the first two items:

potato_modified <- potato_visual
potato_modified[1, 1:2] <- 1

model_fit <- compute_mallows(potato_modified)
#> Error in compute_mallows(potato_modified): Not valid permutation.

Top-\(k\) Rankings

Encoding of Missing Ranks

Now imagine that the assessors in the potato experiment were asked to rank only the top-five heaviest potatoes. We generate these data by retaining only ranks 5 or higher in potato_visual, setting the rest to NA.

potato_top <- potato_visual * if_else(potato_visual > 5, NA_integer_, 1L)

In Vitelli et al. (2018) it is shown that the unranked items do not effect the MAP estimates of the ranked items in this top-k setting. In this case, there are 8 potatoes which have been ranked, and so the unranked potatoes should have uniform posterior distributions between 9 and 20. However, arriving at these uniform posteriors require a large number of MCMC iterations, so we instead remove these items:

item_ranked <- apply(potato_top, 2, function(x) !all(is.na(x)))
potato_top <- potato_top[, item_ranked, drop = FALSE]

We are now left with this 12 by 8 matrix:

Example dataset potato_top.
P7 P9 P10 P12 P13 P14 P16 P17
A1 4 3 5 1 2 NA NA NA
A2 NA 4 3 1 2 NA NA 5
A3 NA NA 3 2 1 4 5 NA
A4 5 3 4 1 2 NA NA NA
A5 2 3 NA 1 4 5 NA NA
A6 NA 3 NA 1 2 4 NA 5
A7 5 3 NA 1 2 NA NA 4
A8 NA 4 3 1 2 NA NA 5
A9 NA 5 3 1 4 2 NA NA
A10 5 3 NA 1 2 NA NA 4
A11 NA 3 5 1 2 NA NA 4
A12 NA 3 4 1 2 NA NA 5

Metropolis-Hastings Algorithm with Missing Ranks

The compute_mallows function automatically recognizes the NA values as missing ranks, and augments the data, as described in Section 4.1 of Vitelli et al. (2018). Let us try:

model_fit <- compute_mallows(potato_top, save_augmented_data = TRUE)

Looking at the returned object, we see that any_missing is TRUE, so compute_mallows has correctly detected that there are missing values. We set save_augmented_data = TRUE so we can get a diagnostic plot for the convergence of the data augmentation. After you are confident that the algorithm converges, you might want to use the default save_augmented_data = FALSE, because saving the data takes memory.

model_fit$any_missing
#> [1] TRUE

model_fit also has assessor-wise acceptance rates for the augmentation.

model_fit$aug_acceptance
assessor acceptance_rate
1 0.56
2 0.56
3 0.90
4 0.58
5 0.59
6 0.59
7 0.58
8 0.54
9 0.56
10 0.56
11 0.51
12 0.55

Algorithm Tuning

The tuning of \(\alpha\) and \(\rho\) can be done exactly as described above for the full potato data. Let us now study the convergence of the data augmentation.

Looking back, we see that assessor 1 does not have values for potatoes 14, 16, and 17. Hence, we expect these to jump between ranks 6, 7, and 8, since the 5 ranked items are fixed to values 1,…,5. Below we have plotted potato 14, which fluctuates between 6 and 8. You can confirm that these same happens to 16 and 17.

assess_convergence(model_fit, type = "Rtilde", assessors = 1, 
                   items = "P14")

Assessor 1 has ranks for potatoes 7, 9, 10, 12, and 13, which are fixed. You can confirm that they are fixed by running the following command.

assess_convergence(model_fit, type = "Rtilde", assessors = 1, 
                   items = c("P7", "P9", "P10", "P12", "P13"))

Posterior Distributions

We can study the posterior distributions of \(\alpha\) and \(\rho\) just like we did above.

Other Distance Measures

Like for the complete ranks, we can vary the distance measure used in the Mallows model. Here are command for running with Cayley, Kendall, and Spearman distance.

model_fit <- compute_mallows(potato_top, metric = "cayley")
model_fit <- compute_mallows(potato_top, metric = "kendall")
model_fit <- compute_mallows(potato_top, metric = "spearman")

Ranks Missing at Random

If the ranks are missing at random, we cannot remove the unranked items as we did for top-\(k\) rankings above. Let us assume that 10 % of the data in potato_visual have disappeared due to a disk failure. We generate these in the code chunk below:

missing_indicator <- if_else(
  runif(nrow(potato_visual) * ncol(potato_visual)) < 0.1,
                            NA_real_, 1)
potato_missing <- potato_visual * missing_indicator

The data now look like the following:

Example dataset potato_missing.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
A1 10 NA 19 NA 6 16 4 20 3 5 12 1 2 9 NA 8 7 14 13 11
A2 10 NA 19 17 11 NA 6 20 4 3 13 1 2 7 16 8 5 12 9 14
A3 12 15 18 16 13 11 7 20 6 3 8 2 1 4 19 5 9 14 10 17
A4 9 17 19 16 10 15 5 20 3 4 8 1 2 7 18 11 6 13 NA 12
A5 12 17 19 NA 7 16 2 20 3 9 13 1 4 5 18 11 6 8 10 14
A6 NA 15 19 16 8 18 6 20 3 7 11 1 2 4 17 9 5 13 12 14
A7 9 16 19 17 10 15 5 20 3 8 11 NA 2 6 18 7 4 14 12 NA
A8 14 18 20 19 11 15 6 17 4 3 10 1 2 NA 16 8 5 12 9 13
A9 8 NA 18 NA 12 13 6 20 5 3 NA 1 4 NA 17 10 9 15 14 11
A10 7 17 19 18 NA 15 NA 20 3 10 11 1 2 6 16 8 NA 13 12 14
A11 NA 16 19 15 NA 18 7 20 3 NA 11 NA 2 6 17 10 4 NA 8 9
A12 14 15 19 16 12 18 8 20 3 4 9 1 2 7 17 6 5 NA 10 NA

Algorithm Tuning

We supply potato_missing to compute_mallows as before:

model_fit <- compute_mallows(potato_missing)

We check the convergence with the following commands. The plots (not shown) would show good convergence before 1,000 iterations.

assess_convergence(model_fit)
assess_convergence(model_fit, type = "rho", items = 1:6)

Again, we can look at the acceptance rates for the augmented data. Now let us compare it to the number of missing ranks per assessor.

bind_cols(model_fit$aug_acceptance, 
          n_missing = apply(potato_missing, 1, function(x) sum(is.na(x))))
assessor acceptance_rate n_missing
1 0.61 3
2 0.66 2
3 1.00 0
4 1.00 1
5 1.00 1
6 1.00 1
7 0.55 2
8 1.00 1
9 0.19 4
10 0.45 3
11 0.11 5
12 0.99 2

We see that for assessors who have either 0 or 1 missing ranks, their augmentations are always accepted. In the case of 0 missing ranks, there is in fact no augmentation going on at all, but we use the convention that the assessor’s own complete data is accepted.

Posterior Distributions

The posterior distributions can be studied as shown above.

Pairwise Preferences

Handling of pairwise preferences in the Mallows rank model is described in Section 4.2 of Vitelli et al. (2018).

Introduction

Let us start by considering a toy example with two assessors and five items. Assessor 1 has stated a set of preferences \[ \mathcal{B}_{1} = \left\{A_{1} \prec A_{2}, A_{2} \prec A_{5}, A_{4} \prec A_{5} \right\} \] and assessor 2 has the set of preferences \[ \mathcal{B}_{2} = \left\{ A_{1} \prec A_{2}, A_{2} \prec A_{3}, A_{3} \prec A_{4} \right\}. \]

Data Model

Each time an assessor is asked to compare two objects, a measurement is made. Therefore, in order to keep the data tidy (Wickham (2014)), we define a dataframe in which each row corresponds to a pairwise comparison. The columns (variables) are the assessor, the bottom item, and the top item.

In the code snippet below, we define such a dataframe for the toy example presented above:

pair_comp <- tribble(
  ~assessor, ~bottom_item, ~top_item,
  1, 1, 2,
  1, 2, 5,
  1, 4, 5,
  2, 1, 2,
  2, 2, 3,
  2, 3, 4
)
knitr::kable(pair_comp, caption = "Dataset `pair_comp`.")
Dataset pair_comp.
assessor bottom_item top_item
1 1 2
1 2 5
1 4 5
2 1 2
2 2 3
2 3 4

Transitive Closure

Next, we need to find the transitive closure for the set of pairwise comparisons given by each user. BayesMallows comes with a function generate_transitive_closure to do just this.

pair_comp_tc <- generate_transitive_closure(pair_comp)

As we can see, pair_comp_tc has an additional row containing the relation \(A_{4} \prec A_{5}\) for assessor 1. For assessor 2, \[\text{tc}(\mathcal{B}_{2}) = \mathcal{B}_{2} \cup \left\{ A_{1} \prec A_{3}, A_{1} \prec A_{4}, A_{2} \prec A_{4}\right\},\] so three new rows have been added.

Dataframe pair_comp_tc.
assessor bottom_item top_item
1 1 2
1 1 5
1 2 5
1 4 5
2 1 2
2 1 3
2 2 3
2 1 4
2 2 4
2 3 4

The dataframe returned by generate_transitive_closure inherits from tibble, but has subclass BayesMallowsTC. The compute_mallows function uses this information to ensure that the object provided has been through the generate_transitive_closure function. If it has not, compute_mallows will do it for us, but this may lead to additional computing time when running several diagnostic runs and trying out different parameters, since the transitive closure will be recomputed each time.

Initial Ranking

We can also generate an initial ranking, consistent with the pairwise comparisons. Again, compute_mallows will do it for us, but we may save time by computing it once and for all before we starting running the algorithms.

initial_ranking <- generate_initial_ranking(pair_comp_tc)

Rather than digging deeper into this toy example, we go on with a real application.

Beach Preferences

The beach preference dataset is described in Section 6.2 of Vitelli et al. (2018), and is available in the dataframe beach_preferences in BayesMallows. In short, \(60\) assessors were each asked to perform a random set of pairwise comparisons between pictures of \(15\) beaches. The first few rows are listed below.

beach_preferences
Example dataset beach_preferences
assessor bottom_item top_item
1 2 15
1 5 3
1 13 3
1 4 7
1 5 15
1 12 6

Transitive Closures

We start by generating the transitive closure of the preferences.

beach_tc <- generate_transitive_closure(beach_preferences)

We can compare the dataframes before and after. We see that the number of rows has been approximately doubled, and that beach_tc has subclass BayesMallowsTC has it should.

str(beach_preferences)
#> Classes 'tbl_df', 'tbl' and 'data.frame':    1442 obs. of  3 variables:
#>  $ assessor   : num  1 1 1 1 1 1 1 1 1 1 ...
#>  $ bottom_item: num  2 5 13 4 5 12 14 7 8 14 ...
#>  $ top_item   : num  15 3 3 7 15 6 6 9 10 9 ...
str(beach_tc)
#> Classes 'BayesMallowsTC', 'tbl_df', 'tbl' and 'data.frame':  2921 obs. of  3 variables:
#>  $ assessor   : num  1 1 1 1 1 1 1 1 1 1 ...
#>  $ bottom_item: int  4 5 7 4 5 7 8 9 13 14 ...
#>  $ top_item   : int  1 1 1 3 3 3 3 3 3 3 ...

Initial Ranking

Next, we generate an initial ranking.

beach_init_rank <- generate_initial_ranking(beach_tc)

We can also take a look at the first 6 rows in it.

First 6 rows in beach_init_rank.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 15 3 14 13 2 10 12 6 4 1 5 8 11 9
5 15 14 6 2 13 12 11 1 7 4 10 9 8 3
3 9 7 15 14 2 6 13 1 8 12 11 10 5 4
5 15 2 14 11 8 9 10 1 4 3 13 7 12 6
9 15 7 5 6 1 14 13 4 3 2 12 11 8 10
9 13 5 12 15 3 7 11 1 6 4 14 8 10 2

Let us add column names to the initial ranking. This will make the plots more informative. But be aware that if the names are too long, some plots will be filled with text. We therefore name them B1, B2, …, B15.

colnames(beach_init_rank) <- paste0("B", seq(from = 1, to = ncol(beach_init_rank), by = 1))

Algorithm Tuning

We can now check the convergence, using the same tools as before.

test_run <- compute_mallows(
  rankings = beach_init_rank, 
  preferences = beach_tc,
  save_augmented_data = TRUE
  )

The trace plots for \(\alpha\) and \(\rho\) show good convergence.

Convergence of Rtilde

When using assess_convergence, we can set type = "Rtilde" and choose assessors and items. We now illustrate this by going a bit deeper into some assessors. Referring to the mathematical notation in the top of the vignette, Rtilde corresponds to the augmented rankings \(\tilde{R}_{1}, \dots, \tilde{R}_{N}\).

Assessor 1

Let us look at Beach 2 for assessor 1.

beach_tc %>% 
  filter(assessor == 1, bottom_item == 2 | top_item == 2)
assessor bottom_item top_item
1 2 6
1 2 15

It is implied by the preferences of assessor 1 that \(\{B_{2} \prec B_{6}\}\) and \(\{B_{2} \prec B_{15}\}\).

assess_convergence(test_run, type = "Rtilde", 
                   assessors = 1, items = c(2, 6, 15))

This seems correct.

Next, no ordering is implied between beach 2 and 4 for assessor 1.

beach_tc %>% 
  filter(assessor == 1, bottom_item %in% c(2, 4), top_item %in% c(2, 4)) %>% 
  nrow()
#> [1] 0

The traces of item 2 and 4 do indeed cross.

assess_convergence(test_run, type = "Rtilde", 
                   assessors = 1, items = c(2, 4))

No ordering is implied between beach 5 and beach 8 either:

beach_tc %>% 
  filter(assessor == 1, bottom_item %in% c(5, 8), top_item %in% c(5, 8)) %>% 
  nrow()
#> [1] 0

The traces of beaches 5 and 8 do indeed cross.

assess_convergence(test_run, type = "Rtilde", 
                   assessors = 1, items = c(5, 8))

Assessor 2

We go on with assessor 2. Let us take a look at, say, beach 10.

beach_tc %>% 
  filter(assessor == 2, bottom_item == 10 | top_item == 10)
assessor bottom_item top_item
2 10 5
2 7 10

Beach 10 is preferred to beach 7, but disfavored to beach 5. The trace plot does indeed show this:

assess_convergence(test_run, type = "Rtilde", 
                   assessors = 2, items = c(5, 7, 10))

No ordering is implied between beach 1 and beach 15 for assessor 2.

beach_tc %>% 
  filter(assessor == 1, bottom_item %in% c(1, 15), top_item %in% c(1, 15)) %>% 
  nrow()
#> [1] 0

Their traces do indeed cross.

assess_convergence(test_run, type = "Rtilde", 
                   assessors = 2, items = c(1, 15))

We delete the test run before going on.

rm(test_run)

Posterior Distributions

Based on the convergence diagnostics, and being fairly conservative, we set burnin = 1000, and take an additional 5,000 samples. We still save the augmented data, because we are going to call the function plot_top_k below.

model_fit <- compute_mallows(
  rankings = beach_init_rank, 
  preferences = beach_tc,
  nmc = 6000,
  save_augmented_data = TRUE
  )

model_fit$burnin <- 1000

The posterior densities of \(\alpha\) and \(\rho\) can be studied as shown above.

CP Consensus

We can rank the beaches according to the cumulative probability (CP) consensus. This functionality is provided by compute_cp_consensus, which returns a dataframe.

compute_cp_consensus(model_fit)
ranking item cumprob
1 B9 0.85
2 B6 1.00
3 B3 0.79
4 B11 0.98
5 B15 0.99
6 B10 1.00
7 B1 1.00
8 B7 0.53
9 B5 0.72
10 B13 1.00
11 B4 0.54
12 B8 0.98
13 B12 0.64
14 B14 0.97
15 B2 1.00

MAP Consensus

The maximum a posterior (MAP) consensus ranking is the a posterior most likely value of \(\rho\).

compute_map_consensus(model_fit)
probability item map_ranking
0.17 B9 1
0.17 B6 2
0.17 B3 3
0.17 B11 4
0.17 B15 5
0.17 B10 6
0.17 B1 7
0.17 B7 8
0.17 B5 9
0.17 B13 10
0.17 B8 11
0.17 B4 12
0.17 B12 13
0.17 B14 14
0.17 B2 15

Posterior Intervals

We can compute posterior intervals for several parameters. Here we do it for \(\rho\).

compute_posterior_intervals(model_fit, parameter = "rho")
item parameter mean median conf_level hpdi central_interval
B1 rho 7 7 95 % [7] [7]
B2 rho 15 15 95 % [14,15] [14,15]
B3 rho 3 3 95 % [3,4] [3,4]
B4 rho 12 11 95 % [11,13] [11,13]
B5 rho 9 9 95 % [8,10] [8,10]
B6 rho 2 2 95 % [1,2] [1,2]
B7 rho 9 8 95 % [8,9] [8,10]
B8 rho 12 12 95 % [11,12] [11,12]
B9 rho 1 1 95 % [1,2] [1,2]
B10 rho 6 6 95 % [6] [6]
B11 rho 4 4 95 % [3,4] [3,4]
B12 rho 13 13 95 % [13,15] [12,15]
B13 rho 10 10 95 % [8,10] [8,10]
B14 rho 14 14 95 % [12,15] [12,15]
B15 rho 5 5 95 % [5] [5]

Posterior Probability of Being Ranked Top-\(k\)

We can also find the posterior probability for each beach of being ranked top-\(k\), both in \(\rho\) and among the assessors.

We can do a top-\(k\) plot with plot_top_k. By default, k = 3. It may be necessary to do some experimentation with the rel_widths argument to get a good looking plot.

plot_top_k(model_fit, rel_widths = c(1, 8))

Clustering of Assessors

In many situations, it is interesting to divide the assessors into clusters, in which each the assessors in each cluster have similar preferences. In Vitelli et al. (2018), Section 4.3, it is shown how the Bayesian Mallows model can be extended to do exactly this, with a mixture approach. BayesMallows supports this through the optional argument n_clusters to compute_mallows.

Introduction

To illustrate how to perform clustering, let us create some clusters in the potato_visual dataset. This dataset has 12 assessors. We leave the first 6 assessors as is, but for the last 6, we revert the rankings.

potato_manipulated <- potato_visual
potato_manipulated[7:12, ] <- 21 - potato_manipulated[7:12, ]
Dataset potato_manipulated.
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20
A1 10 18 19 15 6 16 4 20 3 5 12 1 2 9 17 8 7 14 13 11
A2 10 18 19 17 11 15 6 20 4 3 13 1 2 7 16 8 5 12 9 14
A3 12 15 18 16 13 11 7 20 6 3 8 2 1 4 19 5 9 14 10 17
A4 9 17 19 16 10 15 5 20 3 4 8 1 2 7 18 11 6 13 14 12
A5 12 17 19 15 7 16 2 20 3 9 13 1 4 5 18 11 6 8 10 14
A6 10 15 19 16 8 18 6 20 3 7 11 1 2 4 17 9 5 13 12 14
A7 12 5 2 4 11 6 16 1 18 13 10 20 19 15 3 14 17 7 9 8
A8 7 3 1 2 10 6 15 4 17 18 11 20 19 14 5 13 16 9 12 8
A9 13 5 3 2 9 8 15 1 16 18 14 20 17 19 4 11 12 6 7 10
A10 14 4 2 3 12 6 16 1 18 11 10 20 19 15 5 13 17 8 9 7
A11 9 5 2 6 8 3 14 1 18 16 10 20 19 15 4 11 17 7 13 12
A12 7 6 2 5 9 3 13 1 18 17 12 20 19 14 4 15 16 8 11 10

Let us try first without clustering.

model_fit <- compute_mallows(rankings = potato_manipulated)

Looking at the convergence of \(\alpha\), we see that this model does not settle on a consensus ranking.

assess_convergence(model_fit)

Let us instead introduce clustering:

model_fit <- compute_mallows(
  rankings = potato_manipulated, 
  n_clusters = 2
  )

Algorithm Tuning

Convergence of \(\alpha\)

We can assess convergence in the usual way. Let us start with alpha. The assess_convergence method now shows one trace per cluster.

assess_convergence(model_fit)

Convergence of \(\rho\)

We plot the potato that is most often ranked heaviest (P8), and the potato that is most often ranked lightest (P12).

assess_convergence(model_fit, type = "rho", items = c(8, 12))

Convergence of Cluster Probabilities

We also see that the probability of each cluster, \(\tau_{1}\) and \(\tau_{2}\), fluctuate around 0.5, which is just as expected, since we reverted half of the rankings.

assess_convergence(model_fit, type = "cluster_probs")

We now go on to show clustering in a real data example.

Sushi Data

The BayesMallows package comes with a set of sushi preference data, in which 5000 assessors each have ranked a set of 10 types of sushi (Kamishima (2003)). Here are the first few rows of the dataset.

sushi_rankings
First 6 rows of example dataset sushi_rankings.
shrimp sea eel tuna squid sea urchin salmon roe egg fatty tuna tuna roll cucumber roll
2 8 10 3 4 1 5 9 7 6
1 8 6 4 10 9 3 5 7 2
2 8 3 4 6 7 10 1 5 9
4 7 5 6 1 2 8 3 9 10
4 10 7 5 9 3 2 8 1 6
4 6 2 10 7 5 1 9 8 3

With clustering, we can see if there are subsets of assessors with similar preferences. We set nmc = 1000 here, to speed up the vignette building. The argument include_wcd specifies whether to compute within-cluster distance during MCMC. When n_cluster > 1 it defaults to TRUE, otherwise to FALSE. Hence, in order to get the within-cluster distance for the one-cluster case, we set include_wcd = TRUE when calling compute_mallows:

model_fit1 <- compute_mallows(sushi_rankings, nmc = 1000, include_wcd = TRUE)
model_fit2 <- compute_mallows(sushi_rankings, n_clusters = 2, nmc = 1000)

Algorithm Tuning

It is useful to look at the trace plots of \(\alpha_{1}, \dots, \alpha_{C}\).

assess_convergence(model_fit2)

We can also look at the trace plot of the cluster probabilities, \(\tau_{1}\) and \(\tau_{2}\):

assess_convergence(model_fit2, type = "cluster_probs")

It seems like \(\alpha\) is mixing rapidly. Let us set burnin = 400, and compute the CP consensus for the case with two clusters.

model_fit1$burnin <- 400
model_fit2$burnin <- 400

Posterior Distributions

CP Consensus

We can find the CP consensus for each of the two clusters.

cp_consensus_sushi <- compute_cp_consensus(model_fit2)

We can now look at each cluster:

filter(cp_consensus_sushi, cluster == "Cluster 1")
cluster ranking item cumprob
Cluster 1 1 fatty tuna 1
Cluster 1 2 tuna 1
Cluster 1 3 shrimp 1
Cluster 1 4 squid 1
Cluster 1 5 tuna roll 1
Cluster 1 6 sea eel 1
Cluster 1 7 egg 1
Cluster 1 8 salmon roe 1
Cluster 1 9 cucumber roll 1
Cluster 1 10 sea urchin 1
filter(cp_consensus_sushi, cluster == "Cluster 2")
cluster ranking item cumprob
Cluster 2 1 fatty tuna 1
Cluster 2 2 sea urchin 1
Cluster 2 3 salmon roe 1
Cluster 2 4 sea eel 1
Cluster 2 5 tuna 1
Cluster 2 6 shrimp 1
Cluster 2 7 tuna roll 1
Cluster 2 8 squid 1
Cluster 2 9 egg 1
Cluster 2 10 cucumber roll 1
Determining the Number of Clusters

We can also compute an elbow plot, using plot_elbow. Before doing that, we should look at its arguments:

args(plot_elbow)
#> function (..., burnin = NULL) 
#> NULL

plot_elbow requires the model fits for different number of clusters to be provided as the first arguments, either comma separated, or as a list. The other argument is burnin, which must be named. If each model provided has its burnin element set, then this is taken as the default value of burnin.

In order to systematically investigate how many clusters to include, we can use the function compute_mallows_mixtures, which takes a vector that specifies the number of clusters, and calls compute_mallows once for each number.

We only need the within-cluster distances to compute the elbow plot. Thus, we can basically “thin out” all the other parameters, since we do not need them. This reduce the amount of memory used.

n_clusters <- seq(from = 1, to = 10)
nmc <- 2000
models <- compute_mallows_mixtures(n_clusters = n_clusters, 
                                   rankings = sushi_rankings,
                                   nmc = nmc, 
                                   cluster_assignment_thinning = nmc - 1,
                                   rho_thinning = nmc - 1,
                                   aug_thinning = nmc - 1
                                   )

Even though the result of compute_mallows_mixtures is a list of fitted models, we can specify burnin as an element in this case as well, and it is used by plot_elbow.

We can now provide the models list to plot_elbow.

plot_elbow(models, burnin = 1000)

Let us choose 5 clusters. We then compute this model, now without the extreme thinning.

model <- compute_mallows(rankings = sushi_rankings, nmc = nmc, n_clusters = 5)
plot(model, burnin = 1000, type = "cluster_assignment")

We can also the function assign_cluster to get the a posteriori cluster assignment for each assessor.

cluster_assignment <- assign_cluster(model, burnin = 1000, soft = FALSE)
The first few rows of cluster_assignment.
assessor probability map_cluster
1 0.861 Cluster 5
2 0.635 Cluster 5
3 0.661 Cluster 4
4 0.854 Cluster 1
5 0.601 Cluster 5
6 0.785 Cluster 5
7 0.590 Cluster 1
8 0.654 Cluster 4
9 0.568 Cluster 4
10 0.536 Cluster 5
11 0.655 Cluster 3
12 0.894 Cluster 2
13 0.706 Cluster 2
14 0.839 Cluster 4
15 0.671 Cluster 2
16 0.705 Cluster 2
17 0.696 Cluster 5
18 0.945 Cluster 2
19 0.588 Cluster 1
20 0.797 Cluster 1
21 0.926 Cluster 1
22 0.529 Cluster 2
23 0.728 Cluster 5
24 0.848 Cluster 1
25 0.874 Cluster 4
26 0.753 Cluster 1
27 0.937 Cluster 5
28 0.417 Cluster 1
29 0.601 Cluster 3
30 0.700 Cluster 2
31 0.834 Cluster 3
32 0.453 Cluster 4
33 0.710 Cluster 2
34 0.392 Cluster 3
35 0.761 Cluster 4
36 0.699 Cluster 2
37 0.409 Cluster 2
38 0.500 Cluster 3
39 0.822 Cluster 2
40 0.889 Cluster 4
41 0.939 Cluster 5
42 0.856 Cluster 4
43 0.333 Cluster 1
44 0.651 Cluster 1
45 0.533 Cluster 5
46 0.627 Cluster 4
47 0.883 Cluster 2
48 0.822 Cluster 4
49 0.818 Cluster 5
50 0.741 Cluster 3
51 0.482 Cluster 2
52 0.910 Cluster 5
53 0.594 Cluster 1
54 0.810 Cluster 4
55 0.856 Cluster 2
56 0.475 Cluster 2
57 0.669 Cluster 2
58 0.731 Cluster 5
59 0.466 Cluster 5
60 0.483 Cluster 3
61 0.840 Cluster 2
62 0.628 Cluster 4
63 0.847 Cluster 3
64 0.853 Cluster 4
65 0.949 Cluster 5
66 0.398 Cluster 4
67 0.708 Cluster 2
68 0.860 Cluster 2
69 0.586 Cluster 4
70 0.386 Cluster 2
71 0.450 Cluster 2
72 0.579 Cluster 4
73 0.937 Cluster 4
74 0.604 Cluster 5
75 0.669 Cluster 1
76 0.428 Cluster 2
77 0.676 Cluster 4
78 0.771 Cluster 4
79 0.952 Cluster 4
80 0.531 Cluster 2
81 0.839 Cluster 5
82 0.495 Cluster 3
83 0.757 Cluster 3
84 0.962 Cluster 4
85 0.870 Cluster 3
86 0.378 Cluster 3
87 0.895 Cluster 2
88 0.579 Cluster 2
89 0.451 Cluster 2
90 0.535 Cluster 1
91 0.496 Cluster 1
92 0.758 Cluster 3
93 0.566 Cluster 2
94 0.629 Cluster 3
95 0.886 Cluster 5
96 0.718 Cluster 1
97 0.534 Cluster 1
98 0.572 Cluster 2
99 0.415 Cluster 3
100 0.702 Cluster 4
101 0.953 Cluster 4
102 0.376 Cluster 1
103 0.716 Cluster 2
104 0.819 Cluster 5
105 0.790 Cluster 2
106 0.537 Cluster 1
107 0.757 Cluster 3
108 0.554 Cluster 2
109 0.426 Cluster 3
110 0.895 Cluster 2
111 0.887 Cluster 2
112 0.960 Cluster 4
113 0.480 Cluster 1
114 0.961 Cluster 4
115 0.916 Cluster 4
116 0.730 Cluster 2
117 0.592 Cluster 5
118 0.688 Cluster 1
119 0.572 Cluster 1
120 0.553 Cluster 2
121 0.800 Cluster 1
122 0.955 Cluster 5
123 0.342 Cluster 3
124 0.385 Cluster 3
125 0.543 Cluster 1
126 0.627 Cluster 1
127 0.755 Cluster 1
128 0.551 Cluster 3
129 0.671 Cluster 5
130 0.486 Cluster 2
131 0.708 Cluster 1
132 0.390 Cluster 2
133 0.823 Cluster 4
134 0.899 Cluster 2
135 0.819 Cluster 4
136 0.634 Cluster 3
137 0.880 Cluster 4
138 0.510 Cluster 3
139 0.946 Cluster 5
140 0.604 Cluster 5
141 0.639 Cluster 5
142 0.964 Cluster 5
143 0.883 Cluster 4
144 0.520 Cluster 4
145 0.918 Cluster 4
146 0.859 Cluster 1
147 0.564 Cluster 4
148 0.602 Cluster 5
149 0.323 Cluster 4
150 0.734 Cluster 1
151 0.846 Cluster 2
152 0.905 Cluster 2
153 0.790 Cluster 1
154 0.390 Cluster 3
155 0.590 Cluster 2
156 0.719 Cluster 4
157 0.845 Cluster 1
158 0.830 Cluster 4
159 0.517 Cluster 4
160 0.964 Cluster 2
161 0.546 Cluster 2
162 0.607 Cluster 3
163 0.722 Cluster 2
164 0.762 Cluster 4
165 0.741 Cluster 4
166 0.897 Cluster 4
167 0.937 Cluster 4
168 0.951 Cluster 2
169 0.884 Cluster 2
170 0.910 Cluster 3
171 0.789 Cluster 3
172 0.836 Cluster 2
173 0.744 Cluster 2
174 0.576 Cluster 1
175 0.842 Cluster 1
176 0.503 Cluster 5
177 0.682 Cluster 2
178 0.560 Cluster 4
179 0.428 Cluster 4
180 0.777 Cluster 3
181 0.883 Cluster 2
182 0.298 Cluster 1
183 0.585 Cluster 1
184 0.607 Cluster 4
185 0.794 Cluster 2
186 0.802 Cluster 2
187 0.331 Cluster 1
188 0.866 Cluster 4
189 0.433 Cluster 2
190 0.949 Cluster 5
191 0.519 Cluster 1
192 0.853 Cluster 1
193 0.843 Cluster 4
194 0.499 Cluster 3
195 0.545 Cluster 1
196 0.928 Cluster 4
197 0.880 Cluster 5
198 0.836 Cluster 3
199 0.831 Cluster 2
200 0.740 Cluster 2
201 0.647 Cluster 4
202 0.705 Cluster 4
203 0.816 Cluster 4
204 0.512 Cluster 2
205 0.539 Cluster 3
206 0.811 Cluster 3
207 0.392 Cluster 2
208 0.706 Cluster 2
209 0.768 Cluster 5
210 0.818 Cluster 4
211 0.743 Cluster 3
212 0.389 Cluster 2
213 0.712 Cluster 4
214 0.827 Cluster 2
215 0.943 Cluster 4
216 0.603 Cluster 4
217 0.502 Cluster 4
218 0.761 Cluster 2
219 0.908 Cluster 4
220 0.289 Cluster 4
221 0.748 Cluster 4
222 0.594 Cluster 3
223 0.922 Cluster 4
224 0.735 Cluster 2
225 0.808 Cluster 1
226 0.611 Cluster 3
227 0.650 Cluster 3
228 0.971 Cluster 5
229 0.522 Cluster 1
230 0.902 Cluster 4
231 0.715 Cluster 2
232 0.744 Cluster 3
233 0.944 Cluster 2
234 0.961 Cluster 4
235 0.922 Cluster 4
236 0.906 Cluster 4
237 0.617 Cluster 5
238 0.871 Cluster 1
239 0.922 Cluster 2
240 0.478 Cluster 3
241 0.944 Cluster 4
242 0.846 Cluster 4
243 0.430 Cluster 4
244 0.427 Cluster 4
245 0.526 Cluster 2
246 0.530 Cluster 3
247 0.736 Cluster 4
248 0.727 Cluster 2
249 0.750 Cluster 3
250 0.412 Cluster 2
251 0.752 Cluster 3
252 0.725 Cluster 2
253 0.484 Cluster 2
254 0.833 Cluster 4
255 0.513 Cluster 3
256 0.574 Cluster 1
257 0.455 Cluster 3
258 0.406 Cluster 3
259 0.550 Cluster 2
260 0.329 Cluster 3
261 0.953 Cluster 4
262 0.622 Cluster 2
263 0.629 Cluster 1
264 0.835 Cluster 1
265 0.764 Cluster 1
266 0.711 Cluster 1
267 0.703 Cluster 4
268 0.714 Cluster 2
269 0.749 Cluster 1
270 0.903 Cluster 4
271 0.369 Cluster 2
272 0.780 Cluster 4
273 0.848 Cluster 4
274 0.808 Cluster 4
275 0.862 Cluster 3
276 0.709 Cluster 3
277 0.408 Cluster 1
278 0.403 Cluster 2
279 0.878 Cluster 4
280 0.560 Cluster 1
281 0.446 Cluster 3
282 0.965 Cluster 4
283 0.895 Cluster 3
284 0.704 Cluster 1
285 0.493 Cluster 5
286 0.824 Cluster 2
287 0.881 Cluster 4
288 0.976 Cluster 4
289 0.678 Cluster 4
290 0.833 Cluster 3
291 0.799 Cluster 2
292 0.577 Cluster 4
293 0.598 Cluster 3
294 0.701 Cluster 5
295 0.358 Cluster 3
296 0.878 Cluster 4
297 0.815 Cluster 5
298 0.670 Cluster 5
299 0.558 Cluster 1
300 0.528 Cluster 3
301 0.649 Cluster 5
302 0.919 Cluster 3
303 0.541 Cluster 2
304 0.448 Cluster 4
305 0.355 Cluster 2
306 0.644 Cluster 2
307 0.506 Cluster 2
308 0.946 Cluster 5
309 0.875 Cluster 2
310 0.826 Cluster 4
311 0.400 Cluster 1
312 0.909 Cluster 1
313 0.601 Cluster 1
314 0.760 Cluster 4
315 0.544 Cluster 1
316 0.849 Cluster 4
317 0.898 Cluster 4
318 0.323 Cluster 4
319 0.930 Cluster 2
320 0.531 Cluster 3
321 0.468 Cluster 2
322 0.769 Cluster 4
323 0.824 Cluster 2
324 0.930 Cluster 5
325 0.414 Cluster 4
326 0.920 Cluster 2
327 0.951 Cluster 5
328 0.614 Cluster 4
329 0.882 Cluster 2
330 0.569 Cluster 3
331 0.916 Cluster 3
332 0.718 Cluster 4
333 0.739 Cluster 3
334 0.975 Cluster 4
335 0.391 Cluster 1
336 0.468 Cluster 1
337 0.573 Cluster 3
338 0.610 Cluster 3
339 0.532 Cluster 1
340 0.641 Cluster 5
341 0.692 Cluster 3
342 0.713 Cluster 1
343 0.772 Cluster 1
344 0.877 Cluster 3
345 0.530 Cluster 3
346 0.572 Cluster 1
347 0.755 Cluster 5
348 0.648 Cluster 2
349 0.867 Cluster 4
350 0.523 Cluster 5
351 0.702 Cluster 2
352 0.430 Cluster 2
353 0.721 Cluster 2
354 0.609 Cluster 4
355 0.764 Cluster 1
356 0.798 Cluster 2
357 0.777 Cluster 3
358 0.811 Cluster 4
359 0.743 Cluster 2
360 0.815 Cluster 4
361 0.552 Cluster 1
362 0.763 Cluster 1
363 0.883 Cluster 4
364 0.953 Cluster 5
365 0.855 Cluster 4
366 0.907 Cluster 2
367 0.975 Cluster 4
368 0.702 Cluster 2
369 0.796 Cluster 2
370 0.500 Cluster 3
371 0.400 Cluster 5
372 0.742 Cluster 5
373 0.683 Cluster 3
374 0.532 Cluster 4
375 0.554 Cluster 2
376 0.478 Cluster 2
377 0.517 Cluster 3
378 0.941 Cluster 2
379 0.768 Cluster 1
380 0.389 Cluster 4
381 0.779 Cluster 3
382 0.509 Cluster 3
383 0.734 Cluster 2
384 0.480 Cluster 1
385 0.885 Cluster 5
386 0.936 Cluster 4
387 0.761 Cluster 1
388 0.507 Cluster 4
389 0.930 Cluster 5
390 0.786 Cluster 2
391 0.918 Cluster 5
392 0.803 Cluster 2
393 0.819 Cluster 2
394 0.485 Cluster 3
395 0.647 Cluster 5
396 0.559 Cluster 2
397 0.909 Cluster 4
398 0.935 Cluster 5
399 0.847 Cluster 3
400 0.390 Cluster 2
401 0.364 Cluster 3
402 0.573 Cluster 2
403 0.661 Cluster 4
404 0.870 Cluster 4
405 0.668 Cluster 2
406 0.706 Cluster 2
407 0.312 Cluster 1
408 0.447 Cluster 4
409 0.890 Cluster 5
410 0.597 Cluster 2
411 0.297 Cluster 1
412 0.690 Cluster 1
413 0.334 Cluster 1
414 0.675 Cluster 3
415 0.761 Cluster 1
416 0.933 Cluster 4
417 0.931 Cluster 2
418 0.515 Cluster 1
419 0.811 Cluster 5
420 0.786 Cluster 4
421 0.566 Cluster 1
422 0.548 Cluster 4
423 0.737 Cluster 1
424 0.925 Cluster 4
425 0.806 Cluster 2
426 0.505 Cluster 2
427 0.935 Cluster 3
428 0.579 Cluster 3
429 0.875 Cluster 3
430 0.366 Cluster 3
431 0.554 Cluster 2
432 0.651 Cluster 3
433 0.602 Cluster 4
434 0.903 Cluster 1
435 0.532 Cluster 5
436 0.904 Cluster 2
437 0.893 Cluster 4
438 0.745 Cluster 2
439 0.827 Cluster 3
440 0.804 Cluster 1
441 0.688 Cluster 2
442 0.868 Cluster 1
443 0.828 Cluster 2
444 0.521 Cluster 2
445 0.502 Cluster 3
446 0.890 Cluster 2
447 0.497 Cluster 4
448 0.643 Cluster 2
449 0.725 Cluster 2
450 0.933 Cluster 4
451 0.526 Cluster 5
452 0.803 Cluster 4
453 0.870 Cluster 2
454 0.350 Cluster 1
455 0.721 Cluster 4
456 0.642 Cluster 3
457 0.918 Cluster 2
458 0.502 Cluster 3
459 0.607 Cluster 1
460 0.566 Cluster 1
461 0.518 Cluster 2
462 0.722 Cluster 2
463 0.709 Cluster 2
464 0.299 Cluster 1
465 0.900 Cluster 2
466 0.581 Cluster 1
467 0.717 Cluster 2
468 0.966 Cluster 4
469 0.658 Cluster 5
470 0.695 Cluster 2
471 0.604 Cluster 5
472 0.701 Cluster 2
473 0.927 Cluster 5
474 0.564 Cluster 2
475 0.973 Cluster 5
476 0.823 Cluster 2
477 0.303 Cluster 5
478 0.507 Cluster 2
479 0.615 Cluster 3
480 0.946 Cluster 4
481 0.528 Cluster 2
482 0.964 Cluster 2
483 0.752 Cluster 4
484 0.885 Cluster 2
485 0.926 Cluster 4
486 0.566 Cluster 1
487 0.921 Cluster 5
488 0.925 Cluster 4
489 0.596 Cluster 4
490 0.306 Cluster 1
491 0.630 Cluster 5
492 0.757 Cluster 2
493 0.948 Cluster 4
494 0.636 Cluster 4
495 0.876 Cluster 4
496 0.680 Cluster 2
497 0.765 Cluster 5
498 0.719 Cluster 1
499 0.973 Cluster 5
500 0.676 Cluster 2
501 0.779 Cluster 1
502 0.656 Cluster 2
503 0.390 Cluster 2
504 0.824 Cluster 4
505 0.756 Cluster 1
506 0.925 Cluster 4
507 0.692 Cluster 4
508 0.522 Cluster 4
509 0.962 Cluster 5
510 0.808 Cluster 4
511 0.556 Cluster 3
512 0.714 Cluster 1
513 0.708 Cluster 3
514 0.505 Cluster 2
515 0.797 Cluster 2
516 0.731 Cluster 2
517 0.745 Cluster 3
518 0.914 Cluster 4
519 0.894 Cluster 4
520 0.901 Cluster 2
521 0.489 Cluster 1
522 0.890 Cluster 4
523 0.795 Cluster 4
524 0.709 Cluster 1
525 0.769 Cluster 4
526 0.719 Cluster 1
527 0.872 Cluster 4
528 0.456 Cluster 5
529 0.713 Cluster 5
530 0.592 Cluster 1
531 0.812 Cluster 2
532 0.571 Cluster 1
533 0.587 Cluster 1
534 0.597 Cluster 3
535 0.928 Cluster 1
536 0.389 Cluster 1
537 0.845 Cluster 2
538 0.853 Cluster 3
539 0.822 Cluster 5
540 0.474 Cluster 3
541 0.932 Cluster 4
542 0.675 Cluster 2
543 0.773 Cluster 3
544 0.584 Cluster 1
545 0.653 Cluster 2
546 0.706 Cluster 3
547 0.849 Cluster 2
548 0.574 Cluster 2
549 0.900 Cluster 3
550 0.703 Cluster 2
551 0.540 Cluster 2
552 0.505 Cluster 4
553 0.877 Cluster 3
554 0.524 Cluster 3
555 0.677 Cluster 4
556 0.908 Cluster 2
557 0.463 Cluster 2
558 0.571 Cluster 5
559 0.875 Cluster 4
560 0.486 Cluster 2
561 0.634 Cluster 1
562 0.702 Cluster 2
563 0.945 Cluster 2
564 0.553 Cluster 4
565 0.485 Cluster 5
566 0.772 Cluster 2
567 0.887 Cluster 4
568 0.357 Cluster 3
569 0.650 Cluster 4
570 0.541 Cluster 2
571 0.776 Cluster 2
572 0.909 Cluster 2
573 0.295 Cluster 5
574 0.618 Cluster 3
575 0.688 Cluster 3
576 0.666 Cluster 4
577 0.938 Cluster 4
578 0.655 Cluster 3
579 0.427 Cluster 5
580 0.903 Cluster 2
581 0.832 Cluster 2
582 0.371 Cluster 2
583 0.536 Cluster 2
584 0.570 Cluster 1
585 0.802 Cluster 3
586 0.802 Cluster 3
587 0.829 Cluster 3
588 0.584 Cluster 1
589 0.543 Cluster 4
590 0.855 Cluster 5
591 0.574 Cluster 2
592 0.737 Cluster 4
593 0.575 Cluster 1
594 0.687 Cluster 2
595 0.344 Cluster 2
596 0.777 Cluster 3
597 0.701 Cluster 4
598 0.428 Cluster 2
599 0.912 Cluster 5
600 0.521 Cluster 1
601 0.672 Cluster 2
602 0.899 Cluster 4
603 0.530 Cluster 2
604 0.436 Cluster 1
605 0.967 Cluster 5
606 0.553 Cluster 2
607 0.775 Cluster 2
608 0.804 Cluster 4
609 0.473 Cluster 4
610 0.898 Cluster 2
611 0.936 Cluster 2
612 0.636 Cluster 3
613 0.335 Cluster 4
614 0.959 Cluster 4
615 0.824 Cluster 2
616 0.924 Cluster 3
617 0.682 Cluster 1
618 0.709 Cluster 2
619 0.699 Cluster 1
620 0.622 Cluster 4
621 0.605 Cluster 4
622 0.736 Cluster 1
623 0.520 Cluster 2
624 0.533 Cluster 4
625 0.625 Cluster 2
626 0.558 Cluster 4
627 0.957 Cluster 4
628 0.587 Cluster 4
629 0.502 Cluster 1
630 0.854 Cluster 4
631 0.892 Cluster 5
632 0.474 Cluster 4
633 0.666 Cluster 4
634 0.797 Cluster 2
635 0.872 Cluster 1
636 0.601 Cluster 1
637 0.567 Cluster 4
638 0.501 Cluster 4
639 0.477 Cluster 5
640 0.837 Cluster 2
641 0.932 Cluster 4
642 0.675 Cluster 3
643 0.892 Cluster 2
644 0.892 Cluster 4
645 0.879 Cluster 4
646 0.930 Cluster 2
647 0.476 Cluster 4
648 0.828 Cluster 1
649 0.373 Cluster 3
650 0.940 Cluster 4
651 0.801 Cluster 2
652 0.567 Cluster 1
653 0.528 Cluster 2
654 0.613 Cluster 4
655 0.678 Cluster 3
656 0.710 Cluster 5
657 0.970 Cluster 5
658 0.447 Cluster 2
659 0.653 Cluster 2
660 0.323 Cluster 3
661 0.365 Cluster 2
662 0.464 Cluster 1
663 0.624 Cluster 3
664 0.384 Cluster 2
665 0.899 Cluster 1
666 0.924 Cluster 5
667 0.765 Cluster 2
668 0.792 Cluster 4
669 0.509 Cluster 5
670 0.780 Cluster 3
671 0.563 Cluster 1
672 0.845 Cluster 4
673 0.728 Cluster 5
674 0.362 Cluster 1
675 0.619 Cluster 4
676 0.820 Cluster 4
677 0.530 Cluster 4
678 0.382 Cluster 3
679 0.838 Cluster 4
680 0.932 Cluster 2
681 0.974 Cluster 5
682 0.878 Cluster 4
683 0.684 Cluster 5
684 0.622 Cluster 2
685 0.726 Cluster 1
686 0.661 Cluster 2
687 0.592 Cluster 4
688 0.682 Cluster 1
689 0.606 Cluster 4
690 0.946 Cluster 5
691 0.923 Cluster 4
692 0.825 Cluster 3
693 0.505 Cluster 2
694 0.407 Cluster 3
695 0.817 Cluster 4
696 0.733 Cluster 2
697 0.834 Cluster 4
698 0.759 Cluster 3
699 0.962 Cluster 4
700 0.558 Cluster 2
701 0.930 Cluster 4
702 0.972 Cluster 3
703 0.700 Cluster 2
704 0.945 Cluster 2
705 0.513 Cluster 3
706 0.864 Cluster 4
707 0.540 Cluster 1
708 0.724 Cluster 4
709 0.832 Cluster 2
710 0.764 Cluster 5
711 0.815 Cluster 2
712 0.939 Cluster 5
713 0.478 Cluster 1
714 0.418 Cluster 3
715 0.933 Cluster 1
716 0.951 Cluster 4
717 0.600 Cluster 3
718 0.806 Cluster 3
719 0.568 Cluster 1
720 0.560 Cluster 2
721 0.700 Cluster 2
722 0.890 Cluster 2
723 0.501 Cluster 1
724 0.784 Cluster 4
725 0.567 Cluster 2
726 0.946 Cluster 4
727 0.517 Cluster 1
728 0.949 Cluster 4
729 0.798 Cluster 2
730 0.422 Cluster 2
731 0.494 Cluster 2
732 0.795 Cluster 4
733 0.889 Cluster 4
734 0.944 Cluster 5
735 0.527 Cluster 3
736 0.814 Cluster 2
737 0.706 Cluster 5
738 0.475 Cluster 4
739 0.691 Cluster 1
740 0.664 Cluster 1
741 0.962 Cluster 2
742 0.740 Cluster 2
743 0.405 Cluster 1
744 0.507 Cluster 4
745 0.660 Cluster 2
746 0.824 Cluster 1
747 0.899 Cluster 3
748 0.817 Cluster 2
749 0.530 Cluster 3
750 0.574 Cluster 4
751 0.505 Cluster 4
752 0.727 Cluster 2
753 0.865 Cluster 1
754 0.834 Cluster 5
755 0.708 Cluster 2
756 0.680 Cluster 4
757 0.951 Cluster 5
758 0.950 Cluster 4
759 0.930 Cluster 5
760 0.714 Cluster 1
761 0.442 Cluster 1
762 0.910 Cluster 2
763 0.969 Cluster 4
764 0.702 Cluster 1
765 0.437 Cluster 1
766 0.576 Cluster 1
767 0.799 Cluster 4
768 0.870 Cluster 4
769 0.641 Cluster 5
770 0.847 Cluster 4
771 0.927 Cluster 1
772 0.483 Cluster 2
773 0.873 Cluster 4
774 0.587 Cluster 3
775 0.340 Cluster 1
776 0.634 Cluster 4
777 0.288 Cluster 3
778 0.835 Cluster 2
779 0.395 Cluster 5
780 0.654 Cluster 3
781 0.782 Cluster 5
782 0.684 Cluster 2
783 0.952 Cluster 3
784 0.927 Cluster 4
785 0.780 Cluster 5
786 0.537 Cluster 1
787 0.593 Cluster 5
788 0.399 Cluster 4
789 0.862 Cluster 1
790 0.797 Cluster 1
791 0.327 Cluster 3
792 0.428 Cluster 1
793 0.793 Cluster 2
794 0.781 Cluster 3
795 0.409 Cluster 2
796 0.703 Cluster 4
797 0.658 Cluster 2
798 0.989 Cluster 5
799 0.686 Cluster 2
800 0.647 Cluster 2
801 0.727 Cluster 2
802 0.488 Cluster 3
803 0.411 Cluster 4
804 0.584 Cluster 2
805 0.774 Cluster 1
806 0.892 Cluster 4
807 0.828 Cluster 1
808 0.789 Cluster 5
809 0.539 Cluster 1
810 0.470 Cluster 5
811 0.992 Cluster 5
812 0.543 Cluster 2
813 0.710 Cluster 4
814 0.512 Cluster 3
815 0.807 Cluster 4
816 0.685 Cluster 2
817 0.680 Cluster 4
818 0.794 Cluster 2
819 0.412 Cluster 1
820 0.854 Cluster 5
821 0.800 Cluster 2
822 0.435 Cluster 1
823 0.705 Cluster 5
824 0.711 Cluster 2
825 0.499 Cluster 5
826 0.972 Cluster 5
827 0.562 Cluster 2
828 0.839 Cluster 3
829 0.660 Cluster 2
830 0.934 Cluster 2
831 0.695 Cluster 4
832 0.725 Cluster 3
833 0.673 Cluster 2
834 0.525 Cluster 2
835 0.938 Cluster 4
836 0.481 Cluster 2
837 0.547 Cluster 3
838 0.896 Cluster 4
839 0.488 Cluster 4
840 0.604 Cluster 5
841 0.910 Cluster 5
842 0.716 Cluster 2
843 0.776 Cluster 4
844 0.935 Cluster 4
845 0.773 Cluster 4
846 0.800 Cluster 2
847 0.805 Cluster 4
848 0.499 Cluster 2
849 0.494 Cluster 3
850 0.558 Cluster 2
851 0.356 Cluster 3
852 0.566 Cluster 2
853 0.661 Cluster 3
854 0.797 Cluster 3
855 0.707 Cluster 2
856 0.811 Cluster 2
857 0.584 Cluster 2
858 0.848 Cluster 4
859 0.706 Cluster 4
860 0.894 Cluster 5
861 0.942 Cluster 4
862 0.967 Cluster 5
863 0.578 Cluster 2
864 0.730 Cluster 5
865 0.716 Cluster 2
866 0.921 Cluster 4
867 0.847 Cluster 3
868 0.680 Cluster 5
869 0.556 Cluster 3
870 0.846 Cluster 2
871 0.483 Cluster 5
872 0.851 Cluster 1
873 0.622 Cluster 4
874 0.677 Cluster 1
875 0.474 Cluster 5
876 0.873 Cluster 1
877 0.857 Cluster 3
878 0.838 Cluster 2
879 0.972 Cluster 4
880 0.887 Cluster 2
881 0.918 Cluster 3
882 0.870 Cluster 2
883 0.458 Cluster 4
884 0.947 Cluster 4
885 0.762 Cluster 3
886 0.790 Cluster 4
887 0.957 Cluster 4
888 0.885 Cluster 3
889 0.822 Cluster 4
890 0.876 Cluster 4
891 0.768 Cluster 3
892 0.919 Cluster 4
893 0.940 Cluster 4
894 0.651 Cluster 5
895 0.953 Cluster 3
896 0.593 Cluster 2
897 0.809 Cluster 5
898 0.607 Cluster 2
899 0.671 Cluster 1
900 0.949 Cluster 1
901 0.837 Cluster 4
902 0.470 Cluster 2
903 0.695 Cluster 5
904 0.578 Cluster 1
905 0.797 Cluster 4
906 0.329 Cluster 3
907 0.494 Cluster 1
908 0.925 Cluster 4
909 0.530 Cluster 1
910 0.771 Cluster 3
911 0.571 Cluster 1
912 0.542 Cluster 2
913 0.739 Cluster 2
914 0.894 Cluster 2
915 0.559 Cluster 1
916 0.859 Cluster 2
917 0.927 Cluster 5
918 0.491 Cluster 3
919 0.816 Cluster 2
920 0.940 Cluster 2
921 0.782 Cluster 3
922 0.488 Cluster 2
923 0.735 Cluster 3
924 0.675 Cluster 2
925 0.421 Cluster 3
926 0.684 Cluster 1
927 0.871 Cluster 5
928 0.756 Cluster 1
929 0.748 Cluster 2
930 0.537 Cluster 2
931 0.372 Cluster 2
932 0.851 Cluster 3
933 0.735 Cluster 3
934 0.551 Cluster 3
935 0.620 Cluster 4
936 0.899 Cluster 3
937 0.698 Cluster 2
938 0.458 Cluster 4
939 0.476 Cluster 3
940 0.873 Cluster 2
941 0.602 Cluster 1
942 0.780 Cluster 4
943 0.735 Cluster 2
944 0.570 Cluster 2
945 0.618 Cluster 2
946 0.569 Cluster 2
947 0.581 Cluster 1
948 0.910 Cluster 3
949 0.831 Cluster 4
950 0.737 Cluster 1
951 0.831 Cluster 3
952 0.407 Cluster 3
953 0.759 Cluster 1
954 0.899 Cluster 2
955 0.918 Cluster 5
956 0.826 Cluster 2
957 0.972 Cluster 5
958 0.970 Cluster 5
959 0.584 Cluster 5
960 0.902 Cluster 2
961 0.782 Cluster 3
962 0.548 Cluster 2
963 0.783 Cluster 3
964 0.681 Cluster 1
965 0.654 Cluster 4
966 0.395 Cluster 2
967 0.842 Cluster 3
968 0.561 Cluster 1
969 0.727 Cluster 2
970 0.854 Cluster 4
971 0.924 Cluster 1
972 0.835 Cluster 2
973 0.689 Cluster 1
974 0.515 Cluster 3
975 0.480 Cluster 2
976 0.684 Cluster 2
977 0.791 Cluster 1
978 0.450 Cluster 4
979 0.356 Cluster 1
980 0.849 Cluster 2
981 0.823 Cluster 2
982 0.698 Cluster 4
983 0.497 Cluster 3
984 0.681 Cluster 2
985 0.556 Cluster 2
986 0.747 Cluster 5
987 0.679 Cluster 2
988 0.985 Cluster 5
989 0.701 Cluster 3
990 0.900 Cluster 4
991 0.954 Cluster 4
992 0.917 Cluster 4
993 0.963 Cluster 4
994 0.608 Cluster 4
995 0.602 Cluster 2
996 0.887 Cluster 5
997 0.568 Cluster 2
998 0.557 Cluster 2
999 0.949 Cluster 3
1000 0.567 Cluster 2
1001 0.715 Cluster 4
1002 0.594 Cluster 4
1003 0.846 Cluster 3
1004 0.700 Cluster 1
1005 0.637 Cluster 2
1006 0.931 Cluster 3
1007 0.387 Cluster 3
1008 0.413 Cluster 2
1009 0.790 Cluster 3
1010 0.522 Cluster 2
1011 0.517 Cluster 1
1012 0.947 Cluster 3
1013 0.581 Cluster 1
1014 0.817 Cluster 4
1015 0.439 Cluster 5
1016 0.690 Cluster 5
1017 0.861 Cluster 4
1018 0.566 Cluster 2
1019 0.814 Cluster 2
1020 0.666 Cluster 5
1021 0.703 Cluster 3
1022 0.968 Cluster 4
1023 0.538 Cluster 4
1024 0.826 Cluster 5
1025 0.964 Cluster 4
1026 0.482 Cluster 5
1027 0.242 Cluster 4
1028 0.943 Cluster 2
1029 0.704 Cluster 1
1030 0.518 Cluster 2
1031 0.578 Cluster 2
1032 0.767 Cluster 1
1033 0.839 Cluster 2
1034 0.701 Cluster 1
1035 0.875 Cluster 4
1036 0.962 Cluster 5
1037 0.706 Cluster 1
1038 0.856 Cluster 5
1039 0.612 Cluster 1
1040 0.515 Cluster 3
1041 0.547 Cluster 2
1042 0.695 Cluster 2
1043 0.744 Cluster 5
1044 0.463 Cluster 5
1045 0.686 Cluster 4
1046 0.443 Cluster 3
1047 0.529 Cluster 4
1048 0.417 Cluster 3
1049 0.564 Cluster 1
1050 0.538 Cluster 2
1051 0.652 Cluster 2
1052 0.799 Cluster 4
1053 0.891 Cluster 2
1054 0.880 Cluster 5
1055 0.852 Cluster 1
1056 0.985 Cluster 5
1057 0.921 Cluster 3
1058 0.486 Cluster 1
1059 0.779 Cluster 5
1060 0.530 Cluster 5
1061 0.694 Cluster 2
1062 0.534 Cluster 4
1063 0.652 Cluster 4
1064 0.919 Cluster 4
1065 0.819 Cluster 2
1066 0.896 Cluster 4
1067 0.879 Cluster 4
1068 0.556 Cluster 2
1069 0.520 Cluster 3
1070 0.580 Cluster 3
1071 0.625 Cluster 1
1072 0.953 Cluster 2
1073 0.909 Cluster 4
1074 0.694 Cluster 4
1075 0.640 Cluster 2
1076 0.613 Cluster 2
1077 0.907 Cluster 3
1078 0.545 Cluster 1
1079 0.541 Cluster 1
1080 0.756 Cluster 2
1081 0.587 Cluster 4
1082 0.774 Cluster 3
1083 0.827 Cluster 2
1084 0.891 Cluster 4
1085 0.409 Cluster 3
1086 0.398 Cluster 4
1087 0.499 Cluster 3
1088 0.970 Cluster 2
1089 0.517 Cluster 2
1090 0.774 Cluster 3
1091 0.709 Cluster 1
1092 0.422 Cluster 5
1093 0.506 Cluster 1
1094 0.855 Cluster 4
1095 0.495 Cluster 2
1096 0.649 Cluster 5
1097 0.535 Cluster 4
1098 0.571 Cluster 1
1099 0.395 Cluster 3
1100 0.954 Cluster 5
1101 0.653 Cluster 2
1102 0.862 Cluster 1
1103 0.733 Cluster 2
1104 0.583 Cluster 3
1105 0.909 Cluster 2
1106 0.986 Cluster 5
1107 0.450 Cluster 4
1108 0.492 Cluster 2
1109 0.500 Cluster 4
1110 0.921 Cluster 4
1111 0.804 Cluster 5
1112 0.515 Cluster 3
1113 0.797 Cluster 4
1114 0.608 Cluster 1
1115 0.444 Cluster 2
1116 0.464 Cluster 4
1117 0.982 Cluster 5
1118 0.713 Cluster 4
1119 0.543 Cluster 2
1120 0.510 Cluster 2
1121 0.706 Cluster 1
1122 0.805 Cluster 4
1123 0.996 Cluster 5
1124 0.744 Cluster 3
1125 0.458 Cluster 1
1126 0.933 Cluster 4
1127 0.500 Cluster 2
1128 0.788 Cluster 3
1129 0.506 Cluster 2
1130 0.493 Cluster 3
1131 0.940 Cluster 5
1132 0.583 Cluster 2
1133 0.476 Cluster 1
1134 0.945 Cluster 2
1135 0.565 Cluster 3
1136 0.733 Cluster 4
1137 0.730 Cluster 4
1138 0.377 Cluster 2
1139 0.540 Cluster 1
1140 0.845 Cluster 2
1141 0.382 Cluster 2
1142 0.841 Cluster 2
1143 0.583 Cluster 2
1144 0.686 Cluster 2
1145 0.453 Cluster 2
1146 0.367 Cluster 2
1147 0.793 Cluster 4
1148 0.834 Cluster 2
1149 0.902 Cluster 5
1150 0.878 Cluster 2
1151 0.802 Cluster 4
1152 0.839 Cluster 1
1153 0.880 Cluster 3
1154 0.793 Cluster 3
1155 0.852 Cluster 2
1156 0.738 Cluster 4
1157 0.488 Cluster 2
1158 0.719 Cluster 3
1159 0.483 Cluster 3
1160 0.775 Cluster 3
1161 0.802 Cluster 2
1162 0.901 Cluster 2
1163 0.672 Cluster 4
1164 0.727 Cluster 2
1165 0.898 Cluster 5
1166 0.714 Cluster 2
1167 0.653 Cluster 4
1168 0.820 Cluster 3
1169 0.829 Cluster 4
1170 0.447 Cluster 3
1171 0.385 Cluster 4
1172 0.728 Cluster 4
1173 0.828 Cluster 2
1174 0.917 Cluster 2
1175 0.684 Cluster 5
1176 0.464 Cluster 5
1177 0.685 Cluster 2
1178 0.443 Cluster 5
1179 0.885 Cluster 3
1180 0.495 Cluster 5
1181 0.686 Cluster 2
1182 0.537 Cluster 2
1183 0.511 Cluster 1
1184 0.634 Cluster 4
1185 0.907 Cluster 4
1186 0.700 Cluster 2
1187 0.859 Cluster 4
1188 0.883 Cluster 5
1189 0.960 Cluster 2
1190 0.484 Cluster 2
1191 0.966 Cluster 4
1192 0.587 Cluster 4
1193 0.833 Cluster 1
1194 0.565 Cluster 2
1195 0.731 Cluster 2
1196 0.792 Cluster 1
1197 0.462 Cluster 3
1198 0.678 Cluster 1
1199 0.888 Cluster 3
1200 0.711 Cluster 2
1201 0.900 Cluster 3
1202 0.500 Cluster 4
1203 0.652 Cluster 1
1204 0.442 Cluster 2
1205 0.628 Cluster 1
1206 0.786 Cluster 5
1207 0.697 Cluster 2
1208 0.410 Cluster 2
1209 0.920 Cluster 4
1210 0.637 Cluster 1
1211 0.867 Cluster 4
1212 0.624 Cluster 5
1213 0.796 Cluster 4
1214 0.837 Cluster 2
1215 0.719 Cluster 2
1216 0.483 Cluster 2
1217 0.535 Cluster 1
1218 0.847 Cluster 3
1219 0.937 Cluster 4
1220 0.808 Cluster 5
1221 0.867 Cluster 1
1222 0.530 Cluster 4
1223 0.810 Cluster 2
1224 0.724 Cluster 1
1225 0.533 Cluster 5
1226 0.870 Cluster 1
1227 0.863 Cluster 5
1228 0.921 Cluster 4
1229 0.734 Cluster 2
1230 0.511 Cluster 1
1231 0.692 Cluster 2
1232 0.415 Cluster 1
1233 0.867 Cluster 5
1234 0.922 Cluster 1
1235 0.704 Cluster 5
1236 0.659 Cluster 3
1237 0.623 Cluster 2
1238 0.748 Cluster 1
1239 0.861 Cluster 4
1240 0.547 Cluster 1
1241 0.430 Cluster 2
1242 0.868 Cluster 4
1243 0.728 Cluster 2
1244 0.602 Cluster 1
1245 0.527 Cluster 4
1246 0.774 Cluster 2
1247 0.414 Cluster 3
1248 0.894 Cluster 2
1249 0.498 Cluster 2
1250 0.936 Cluster 4
1251 0.727 Cluster 3
1252 0.813 Cluster 2
1253 0.872 Cluster 1
1254 0.546 Cluster 4
1255 0.690 Cluster 2
1256 0.946 Cluster 5
1257 0.925 Cluster 4
1258 0.444 Cluster 1
1259 0.353 Cluster 2
1260 0.489 Cluster 3
1261 0.711 Cluster 3
1262 0.318 Cluster 5
1263 0.741 Cluster 1
1264 0.533 Cluster 2
1265 0.391 Cluster 1
1266 0.667 Cluster 2
1267 0.547 Cluster 3
1268 0.703 Cluster 2
1269 0.440 Cluster 3
1270 0.506 Cluster 1
1271 0.779 Cluster 3
1272 0.577 Cluster 2
1273 0.914 Cluster 5
1274 0.450 Cluster 5
1275 0.808 Cluster 2
1276 0.509 Cluster 3
1277 0.714 Cluster 4
1278 0.720 Cluster 2
1279 0.972 Cluster 2
1280 0.815 Cluster 4
1281 0.937 Cluster 3
1282 0.548 Cluster 2
1283 0.526 Cluster 1
1284 0.387 Cluster 3
1285 0.565 Cluster 2
1286 0.881 Cluster 4
1287 0.410 Cluster 3
1288 0.561 Cluster 1
1289 0.602 Cluster 2
1290 0.794 Cluster 4
1291 0.757 Cluster 1
1292 0.818 Cluster 2
1293 0.903 Cluster 2
1294 0.924 Cluster 5
1295 0.807 Cluster 4
1296 0.859 Cluster 1
1297 0.836 Cluster 4
1298 0.417 Cluster 4
1299 0.933 Cluster 1
1300 0.744 Cluster 3
1301 0.820 Cluster 2
1302 0.643 Cluster 3
1303 0.838 Cluster 1
1304 0.599 Cluster 2
1305 0.522 Cluster 2
1306 0.672 Cluster 4
1307 0.482 Cluster 1
1308 0.419 Cluster 5
1309 0.527 Cluster 1
1310 0.860 Cluster 4
1311 0.454 Cluster 1
1312 0.503 Cluster 2
1313 0.826 Cluster 5
1314 0.850 Cluster 2
1315 0.890 Cluster 3
1316 0.703 Cluster 2
1317 0.829 Cluster 2
1318 0.388 Cluster 2
1319 0.658 Cluster 2
1320 0.862 Cluster 3
1321 0.955 Cluster 4
1322 0.689 Cluster 3
1323 0.793 Cluster 2
1324 0.901 Cluster 4
1325 0.908 Cluster 1
1326 0.930 Cluster 5
1327 0.614 Cluster 4
1328 0.817 Cluster 2
1329 0.341 Cluster 1
1330 0.732 Cluster 2
1331 0.551 Cluster 4
1332 0.890 Cluster 2
1333 0.593 Cluster 1
1334 0.916 Cluster 4
1335 0.575 Cluster 2
1336 0.748 Cluster 1
1337 0.938 Cluster 4
1338 0.721 Cluster 2
1339 0.790 Cluster 3
1340 0.315 Cluster 1
1341 0.908 Cluster 3
1342 0.564 Cluster 4
1343 0.698 Cluster 1
1344 0.384 Cluster 1
1345 0.513 Cluster 1
1346 0.898 Cluster 2
1347 0.934 Cluster 5
1348 0.321 Cluster 5
1349 0.579 Cluster 1
1350 0.838 Cluster 5
1351 0.800 Cluster 3
1352 0.379 Cluster 4
1353 0.747 Cluster 3
1354 0.529 Cluster 2
1355 0.712 Cluster 5
1356 0.946 Cluster 2
1357 0.632 Cluster 1
1358 0.947 Cluster 4
1359 0.429 Cluster 5
1360 0.522 Cluster 3
1361 0.806 Cluster 2
1362 0.830 Cluster 5
1363 0.451 Cluster 2
1364 0.750 Cluster 2
1365 0.839 Cluster 1
1366 0.678 Cluster 4
1367 0.851 Cluster 4
1368 0.715 Cluster 2
1369 0.922 Cluster 4
1370 0.657 Cluster 3
1371 0.623 Cluster 3
1372 0.727 Cluster 3
1373 0.708 Cluster 2
1374 0.579 Cluster 1
1375 0.466 Cluster 3
1376 0.866 Cluster 1
1377 0.364 Cluster 3
1378 0.748 Cluster 1
1379 0.956 Cluster 5
1380 0.735 Cluster 1
1381 0.833 Cluster 5
1382 0.399 Cluster 3
1383 0.804 Cluster 2
1384 0.424 Cluster 4
1385 0.571 Cluster 1
1386 0.963 Cluster 3
1387 0.761 Cluster 1
1388 0.754 Cluster 1
1389 0.779 Cluster 2
1390 0.598 Cluster 2
1391 0.712 Cluster 2
1392 0.837 Cluster 3
1393 0.832 Cluster 2
1394 0.471 Cluster 1
1395 0.939 Cluster 4
1396 0.841 Cluster 1
1397 0.900 Cluster 1
1398 0.390 Cluster 3
1399 0.591 Cluster 2
1400 0.748 Cluster 4
1401 0.463 Cluster 1
1402 0.779 Cluster 1
1403 0.801 Cluster 5
1404 0.852 Cluster 3
1405 0.738 Cluster 1
1406 0.515 Cluster 5
1407 0.378 Cluster 2
1408 0.541 Cluster 2
1409 0.710 Cluster 5
1410 0.795 Cluster 5
1411 0.882 Cluster 4
1412 0.353 Cluster 3
1413 0.344 Cluster 1
1414 0.836 Cluster 2
1415 0.464 Cluster 4
1416 0.518 Cluster 2
1417 0.386 Cluster 1
1418 0.546 Cluster 5
1419 0.728 Cluster 2
1420 0.618 Cluster 1
1421 0.895 Cluster 3
1422 0.879 Cluster 2
1423 0.421 Cluster 2
1424 0.400 Cluster 3
1425 0.509 Cluster 4
1426 0.591 Cluster 5
1427 0.933 Cluster 4
1428 0.831 Cluster 2
1429 0.942 Cluster 4
1430 0.891 Cluster 3
1431 0.970 Cluster 2
1432 0.376 Cluster 4
1433 0.338 Cluster 3
1434 0.418 Cluster 3
1435 0.734 Cluster 2
1436 0.466 Cluster 2
1437 0.600 Cluster 3
1438 0.831 Cluster 2
1439 0.441 Cluster 2
1440 0.572 Cluster 5
1441 0.923 Cluster 2
1442 0.814 Cluster 5
1443 0.780 Cluster 4
1444 0.725 Cluster 5
1445 0.543 Cluster 1
1446 0.548 Cluster 2
1447 0.632 Cluster 3
1448 0.672 Cluster 5
1449 0.367 Cluster 5
1450 0.521 Cluster 1
1451 0.590 Cluster 2
1452 0.553 Cluster 4
1453 0.894 Cluster 4
1454 0.823 Cluster 3
1455 0.616 Cluster 1
1456 0.562 Cluster 1
1457 0.868 Cluster 4
1458 0.961 Cluster 4
1459 0.959 Cluster 4
1460 0.410 Cluster 2
1461 0.879 Cluster 5
1462 0.725 Cluster 2
1463 0.890 Cluster 5
1464 0.508 Cluster 1
1465 0.902 Cluster 5
1466 0.563 Cluster 1
1467 0.334 Cluster 2
1468 0.742 Cluster 5
1469 0.726 Cluster 4
1470 0.848 Cluster 5
1471 0.567 Cluster 2
1472 0.606 Cluster 1
1473 0.716 Cluster 3
1474 0.583 Cluster 1
1475 0.328 Cluster 3
1476 0.936 Cluster 3
1477 0.526 Cluster 3
1478 0.401 Cluster 2
1479 0.677 Cluster 1
1480 0.603 Cluster 2
1481 0.741 Cluster 4
1482 0.934 Cluster 4
1483 0.602 Cluster 1
1484 0.718 Cluster 1
1485 0.852 Cluster 4
1486 0.736 Cluster 4
1487 0.351 Cluster 5
1488 0.958 Cluster 1
1489 0.899 Cluster 1
1490 0.476 Cluster 4
1491 0.662 Cluster 2
1492 0.852 Cluster 2
1493 0.472 Cluster 5
1494 0.400 Cluster 1
1495 0.465 Cluster 3
1496 0.747 Cluster 1
1497 0.896 Cluster 3
1498 0.853 Cluster 3
1499 0.766 Cluster 1
1500 0.665 Cluster 4
1501 0.627 Cluster 5
1502 0.502 Cluster 2
1503 0.495 Cluster 4
1504 0.616 Cluster 2
1505 0.454 Cluster 5
1506 0.541 Cluster 4
1507 0.619 Cluster 4
1508 0.720 Cluster 4
1509 0.761 Cluster 5
1510 0.821 Cluster 2
1511 0.253 Cluster 3
1512 0.579 Cluster 3
1513 0.748 Cluster 2
1514 0.589 Cluster 1
1515 0.890 Cluster 2
1516 0.630 Cluster 3
1517 0.378 Cluster 2
1518 0.474 Cluster 5
1519 0.610 Cluster 3
1520 0.273 Cluster 3
1521 0.666 Cluster 4
1522 0.767 Cluster 2
1523 0.622 Cluster 1
1524 0.380 Cluster 2
1525 0.665 Cluster 3
1526 0.749 Cluster 3
1527 0.767 Cluster 1
1528 0.952 Cluster 2
1529 0.869 Cluster 4
1530 0.986 Cluster 5
1531 0.466 Cluster 2
1532 0.815 Cluster 2
1533 0.634 Cluster 1
1534 0.806 Cluster 4
1535 0.360 Cluster 1
1536 0.485 Cluster 2
1537 0.841 Cluster 1
1538 0.691 Cluster 3
1539 0.617 Cluster 2
1540 0.794 Cluster 4
1541 0.885 Cluster 2
1542 0.726 Cluster 4
1543 0.861 Cluster 4
1544 0.510 Cluster 1
1545 0.839 Cluster 4
1546 0.890 Cluster 4
1547 0.767 Cluster 5
1548 0.909 Cluster 3
1549 0.816 Cluster 4
1550 0.752 Cluster 5
1551 0.584 Cluster 3
1552 0.767 Cluster 4
1553 0.869 Cluster 4
1554 0.889 Cluster 2
1555 0.656 Cluster 3
1556 0.695 Cluster 2
1557 0.962 Cluster 4
1558 0.660 Cluster 3
1559 0.846 Cluster 1
1560 0.820 Cluster 2
1561 0.502 Cluster 3
1562 0.421 Cluster 2
1563 0.946 Cluster 2
1564 0.933 Cluster 4
1565 0.770 Cluster 4
1566 0.538 Cluster 1
1567 0.886 Cluster 2
1568 0.734 Cluster 2
1569 0.957 Cluster 4
1570 0.503 Cluster 1
1571 0.750 Cluster 5
1572 0.794 Cluster 2
1573 0.670 Cluster 5
1574 0.926 Cluster 4
1575 0.381 Cluster 3
1576 0.427 Cluster 5
1577 0.606 Cluster 4
1578 0.607 Cluster 5
1579 0.933 Cluster 4
1580 0.532 Cluster 1
1581 0.875 Cluster 4
1582 0.749 Cluster 5
1583 0.560 Cluster 1
1584 0.773 Cluster 3
1585 0.477 Cluster 5
1586 0.906 Cluster 1
1587 0.787 Cluster 2
1588 0.434 Cluster 4
1589 0.920 Cluster 4
1590 0.439 Cluster 1
1591 0.485 Cluster 3
1592 0.616 Cluster 1
1593 0.723 Cluster 2
1594 0.514 Cluster 4
1595 0.826 Cluster 2
1596 0.886 Cluster 1
1597 0.509 Cluster 4
1598 0.704 Cluster 2
1599 0.906 Cluster 1
1600 0.591 Cluster 4
1601 0.993 Cluster 5
1602 0.899 Cluster 5
1603 0.901 Cluster 4
1604 0.832 Cluster 2
1605 0.625 Cluster 3
1606 0.700 Cluster 2
1607 0.445 Cluster 1
1608 0.724 Cluster 4
1609 0.609 Cluster 1
1610 0.753 Cluster 1
1611 0.748 Cluster 1
1612 0.823 Cluster 2
1613 0.658 Cluster 4
1614 0.438 Cluster 2
1615 0.708 Cluster 1
1616 0.949 Cluster 4
1617 0.394 Cluster 3
1618 0.557 Cluster 2
1619 0.510 Cluster 2
1620 0.785 Cluster 3
1621 0.835 Cluster 1
1622 0.859 Cluster 4
1623 0.499 Cluster 5
1624 0.905 Cluster 4
1625 0.738 Cluster 2
1626 0.598 Cluster 1
1627 0.496 Cluster 4
1628 0.451 Cluster 4
1629 0.665 Cluster 4
1630 0.583 Cluster 1
1631 0.959 Cluster 3
1632 0.833 Cluster 5
1633 0.526 Cluster 2
1634 0.597 Cluster 2
1635 0.712 Cluster 5
1636 0.638 Cluster 1
1637 0.840 Cluster 1
1638 0.718 Cluster 2
1639 0.640 Cluster 4
1640 0.409 Cluster 4
1641 0.651 Cluster 3
1642 0.834 Cluster 5
1643 0.629 Cluster 4
1644 0.952 Cluster 5
1645 0.711 Cluster 5
1646 0.546 Cluster 2
1647 0.634 Cluster 3
1648 0.548 Cluster 3
1649 0.994 Cluster 5
1650 0.765 Cluster 2
1651 0.536 Cluster 1
1652 0.433 Cluster 1
1653 0.809 Cluster 5
1654 0.666 Cluster 2
1655 0.386 Cluster 3
1656 0.912 Cluster 4
1657 0.833 Cluster 1
1658 0.408 Cluster 3
1659 0.543 Cluster 5
1660 0.650 Cluster 2
1661 0.536 Cluster 3
1662 0.708 Cluster 2
1663 0.655 Cluster 3
1664 0.587 Cluster 2
1665 0.712 Cluster 4
1666 0.980 Cluster 4
1667 0.806 Cluster 1
1668 0.570 Cluster 1
1669 0.678 Cluster 1
1670 0.935 Cluster 4
1671 0.414 Cluster 3
1672 0.947 Cluster 2
1673 0.867 Cluster 4
1674 0.954 Cluster 4
1675 0.405 Cluster 3
1676 0.651 Cluster 4
1677 0.573 Cluster 1
1678 0.538 Cluster 1
1679 0.415 Cluster 3
1680 0.497 Cluster 3
1681 0.328 Cluster 3
1682 0.602 Cluster 5
1683 0.853 Cluster 3
1684 0.632 Cluster 1
1685 0.732 Cluster 1
1686 0.400 Cluster 3
1687 0.385 Cluster 2
1688 0.814 Cluster 2
1689 0.790 Cluster 5
1690 0.821 Cluster 2
1691 0.457 Cluster 3
1692 0.941 Cluster 4
1693 0.413 Cluster 5
1694 0.659 Cluster 1
1695 0.467 Cluster 3
1696 0.895 Cluster 3
1697 0.693 Cluster 5
1698 0.863 Cluster 3
1699 0.520 Cluster 1
1700 0.494 Cluster 3
1701 0.561 Cluster 1
1702 0.646 Cluster 1
1703 0.781 Cluster 3
1704 0.578 Cluster 2
1705 0.482 Cluster 3
1706 0.563 Cluster 1
1707 0.577 Cluster 4
1708 0.901 Cluster 4
1709 0.977 Cluster 4
1710 0.635 Cluster 5
1711 0.629 Cluster 2
1712 0.602 Cluster 1
1713 0.864 Cluster 2
1714 0.728 Cluster 2
1715 0.814 Cluster 1
1716 0.407 Cluster 2
1717 0.566 Cluster 4
1718 0.481 Cluster 5
1719 0.984 Cluster 4
1720 0.889 Cluster 1
1721 0.974 Cluster 5
1722 0.470 Cluster 1
1723 0.825 Cluster 2
1724 0.554 Cluster 2
1725 0.905 Cluster 2
1726 0.757 Cluster 4
1727 0.447 Cluster 3
1728 0.441 Cluster 3
1729 0.897 Cluster 2
1730 0.885 Cluster 3
1731 0.705 Cluster 2
1732 0.452 Cluster 3
1733 0.907 Cluster 2
1734 0.557 Cluster 2
1735 0.420 Cluster 3
1736 0.425 Cluster 5
1737 0.775 Cluster 5
1738 0.665 Cluster 4
1739 0.771 Cluster 3
1740 0.649 Cluster 3
1741 0.439 Cluster 2
1742 0.744 Cluster 1
1743 0.583 Cluster 1
1744 0.957 Cluster 2
1745 0.610 Cluster 1
1746 0.916 Cluster 5
1747 0.562 Cluster 4
1748 0.559 Cluster 1
1749 0.233 Cluster 3
1750 0.543 Cluster 2
1751 0.567 Cluster 5
1752 0.862 Cluster 4
1753 0.533 Cluster 3
1754 0.895 Cluster 1
1755 0.795 Cluster 4
1756 0.674 Cluster 3
1757 0.889 Cluster 4
1758 0.913 Cluster 3
1759 0.825 Cluster 3
1760 0.769 Cluster 2
1761 0.700 Cluster 5
1762 0.450 Cluster 1
1763 0.416 Cluster 1
1764 0.962 Cluster 4
1765 0.663 Cluster 2
1766 0.641 Cluster 4
1767 0.543 Cluster 1
1768 0.618 Cluster 2
1769 0.488 Cluster 5
1770 0.826 Cluster 2
1771 0.482 Cluster 1
1772 0.674 Cluster 4
1773 0.557 Cluster 2
1774 0.899 Cluster 3
1775 0.706 Cluster 4
1776 0.819 Cluster 2
1777 0.619 Cluster 3
1778 0.614 Cluster 1
1779 0.708 Cluster 2
1780 0.481 Cluster 1
1781 0.954 Cluster 2
1782 0.718 Cluster 2
1783 0.934 Cluster 4
1784 0.600 Cluster 2
1785 0.552 Cluster 2
1786 0.753 Cluster 2
1787 0.588 Cluster 2
1788 0.686 Cluster 2
1789 0.486 Cluster 1
1790 0.455 Cluster 3
1791 0.553 Cluster 5
1792 0.732 Cluster 1
1793 0.801 Cluster 2
1794 0.707 Cluster 2
1795 0.649 Cluster 3
1796 0.569 Cluster 2
1797 0.665 Cluster 3
1798 0.598 Cluster 4
1799 0.818 Cluster 3
1800 0.919 Cluster 3
1801 0.883 Cluster 2
1802 0.703 Cluster 1
1803 0.571 Cluster 5
1804 0.698 Cluster 2
1805 0.410 Cluster 4
1806 0.854 Cluster 4
1807 0.840 Cluster 1
1808 0.820 Cluster 2
1809 0.972 Cluster 2
1810 0.602 Cluster 4
1811 0.554 Cluster 3
1812 0.503 Cluster 2
1813 0.940 Cluster 5
1814 0.545 Cluster 3
1815 0.827 Cluster 2
1816 0.930 Cluster 4
1817 0.280 Cluster 3
1818 0.662 Cluster 4
1819 0.351 Cluster 2
1820 0.711 Cluster 4
1821 0.868 Cluster 3
1822 0.795 Cluster 4
1823 0.786 Cluster 3
1824 0.744 Cluster 4
1825 0.885 Cluster 4
1826 0.712 Cluster 4
1827 0.754 Cluster 4
1828 0.465 Cluster 1
1829 0.439 Cluster 1
1830 0.480 Cluster 4
1831 0.953 Cluster 5
1832 0.849 Cluster 1
1833 0.845 Cluster 2
1834 0.634 Cluster 2
1835 0.723 Cluster 4
1836 0.711 Cluster 2
1837 0.556 Cluster 2
1838 0.712 Cluster 3
1839 0.901 Cluster 2
1840 0.374 Cluster 4
1841 0.620 Cluster 3
1842 0.591 Cluster 4
1843 0.878 Cluster 1
1844 0.803 Cluster 2
1845 0.523 Cluster 1
1846 0.646 Cluster 5
1847 0.806 Cluster 4
1848 0.835 Cluster 5
1849 0.402 Cluster 4
1850 0.841 Cluster 3
1851 0.986 Cluster 5
1852 0.364 Cluster 2
1853 0.529 Cluster 5
1854 0.922 Cluster 2
1855 0.528 Cluster 5
1856 0.637 Cluster 4
1857 0.701 Cluster 3
1858 0.931 Cluster 4
1859 0.594 Cluster 2
1860 0.758 Cluster 2
1861 0.623 Cluster 4
1862 0.858 Cluster 1
1863 0.816 Cluster 3
1864 0.804 Cluster 2
1865 0.935 Cluster 4
1866 0.565 Cluster 2
1867 0.820 Cluster 2
1868 0.594 Cluster 4
1869 0.666 Cluster 3
1870 0.485 Cluster 3
1871 0.342 Cluster 4
1872 0.823 Cluster 2
1873 0.510 Cluster 5
1874 0.880 Cluster 5
1875 0.941 Cluster 4
1876 0.446 Cluster 4
1877 0.589 Cluster 2
1878 0.488 Cluster 1
1879 0.729 Cluster 1
1880 0.601 Cluster 5
1881 0.509 Cluster 1
1882 0.782 Cluster 1
1883 0.655 Cluster 4
1884 0.562 Cluster 3
1885 0.575 Cluster 5
1886 0.827 Cluster 2
1887 0.896 Cluster 4
1888 0.482 Cluster 1
1889 0.894 Cluster 5
1890 0.825 Cluster 4
1891 0.833 Cluster 2
1892 0.494 Cluster 1
1893 0.472 Cluster 2
1894 0.696 Cluster 4
1895 0.532 Cluster 2
1896 0.707 Cluster 5
1897 0.719 Cluster 3
1898 0.613 Cluster 2
1899 0.476 Cluster 3
1900 0.363 Cluster 4
1901 0.674 Cluster 2
1902 0.508 Cluster 3
1903 0.736 Cluster 5
1904 0.512 Cluster 1
1905 0.726 Cluster 3
1906 0.695 Cluster 2
1907 0.819 Cluster 2
1908 0.457 Cluster 4
1909 0.846 Cluster 3
1910 0.872 Cluster 5
1911 0.879 Cluster 4
1912 0.729 Cluster 3
1913 0.889 Cluster 4
1914 0.863 Cluster 2
1915 0.629 Cluster 2
1916 0.826 Cluster 4
1917 0.325 Cluster 1
1918 0.888 Cluster 4
1919 0.524 Cluster 1
1920 0.892 Cluster 4
1921 0.657 Cluster 2
1922 0.536 Cluster 3
1923 0.414 Cluster 2
1924 0.825 Cluster 2
1925 0.976 Cluster 5
1926 0.772 Cluster 1
1927 0.463 Cluster 3
1928 0.591 Cluster 2
1929 0.964 Cluster 2
1930 0.513 Cluster 2
1931 0.971 Cluster 4
1932 0.693 Cluster 1
1933 0.825 Cluster 4
1934 0.709 Cluster 4
1935 0.638 Cluster 2
1936 0.588 Cluster 2
1937 0.800 Cluster 4
1938 0.971 Cluster 2
1939 0.599 Cluster 2
1940 0.912 Cluster 4
1941 0.831 Cluster 3
1942 0.894 Cluster 1
1943 0.494 Cluster 4
1944 0.801 Cluster 3
1945 0.833 Cluster 2
1946 0.363 Cluster 4
1947 0.652 Cluster 2
1948 0.819 Cluster 2
1949 0.492 Cluster 1
1950 0.814 Cluster 4
1951 0.541 Cluster 1
1952 0.621 Cluster 4
1953 0.406 Cluster 5
1954 0.694 Cluster 4
1955 0.612 Cluster 3
1956 0.810 Cluster 4
1957 0.831 Cluster 1
1958 0.901 Cluster 2
1959 0.756 Cluster 4
1960 0.938 Cluster 5
1961 0.738 Cluster 4
1962 0.570 Cluster 3
1963 0.423 Cluster 2
1964 0.912 Cluster 3
1965 0.791 Cluster 4
1966 0.638 Cluster 5
1967 0.360 Cluster 3
1968 0.785 Cluster 4
1969 0.960 Cluster 4
1970 0.594 Cluster 5
1971 0.685 Cluster 2
1972 0.826 Cluster 2
1973 0.974 Cluster 5
1974 0.569 Cluster 2
1975 0.823 Cluster 2
1976 0.517 Cluster 5
1977 0.813 Cluster 1
1978 0.808 Cluster 2
1979 0.867 Cluster 5
1980 0.916 Cluster 4
1981 0.436 Cluster 3
1982 0.690 Cluster 2
1983 0.406 Cluster 1
1984 0.637 Cluster 3
1985 0.750 Cluster 2
1986 0.807 Cluster 4
1987 0.697 Cluster 1
1988 0.954 Cluster 5
1989 0.964 Cluster 4
1990 0.461 Cluster 1
1991 0.583 Cluster 5
1992 0.928 Cluster 5
1993 0.733 Cluster 1
1994 0.700 Cluster 2
1995 0.845 Cluster 4
1996 0.525 Cluster 3
1997 0.480 Cluster 2
1998 0.922 Cluster 1
1999 0.662 Cluster 5
2000 0.819 Cluster 1
2001 0.896 Cluster 5
2002 0.381 Cluster 3
2003 0.868 Cluster 2
2004 0.614 Cluster 1
2005 0.924 Cluster 4
2006 0.817 Cluster 2
2007 0.348 Cluster 3
2008 0.382 Cluster 3
2009 0.991 Cluster 5
2010 0.478 Cluster 4
2011 0.648 Cluster 5
2012 0.932 Cluster 4
2013 0.556 Cluster 4
2014 0.782 Cluster 1
2015 0.719 Cluster 5
2016 0.717 Cluster 5
2017 0.551 Cluster 3
2018 0.630 Cluster 4
2019 0.557 Cluster 4
2020 0.540 Cluster 1
2021 0.392 Cluster 4
2022 0.721 Cluster 4
2023 0.966 Cluster 4
2024 0.421 Cluster 3
2025 0.701 Cluster 2
2026 0.645 Cluster 2
2027 0.698 Cluster 2
2028 0.454 Cluster 4
2029 0.817 Cluster 2
2030 0.737 Cluster 2
2031 0.972 Cluster 4
2032 0.551 Cluster 4
2033 0.502 Cluster 2
2034 0.822 Cluster 4
2035 0.457 Cluster 4
2036 0.812 Cluster 2
2037 0.545 Cluster 3
2038 0.774 Cluster 4
2039 0.870 Cluster 2
2040 0.673 Cluster 1
2041 0.796 Cluster 3
2042 0.756 Cluster 5
2043 0.741 Cluster 4
2044 0.774 Cluster 1
2045 0.712 Cluster 2
2046 0.969 Cluster 4
2047 0.444 Cluster 2
2048 0.827 Cluster 3
2049 0.505 Cluster 4
2050 0.480 Cluster 2
2051 0.365 Cluster 2
2052 0.526 Cluster 4
2053 0.798 Cluster 1
2054 0.547 Cluster 4
2055 0.900 Cluster 5
2056 0.570 Cluster 2
2057 0.866 Cluster 1
2058 0.613 Cluster 2
2059 0.528 Cluster 2
2060 0.920 Cluster 4
2061 0.774 Cluster 5
2062 0.586 Cluster 4
2063 0.686 Cluster 2
2064 0.974 Cluster 4
2065 0.470 Cluster 1
2066 0.544 Cluster 5
2067 0.755 Cluster 3
2068 0.838 Cluster 4
2069 0.389 Cluster 2
2070 0.792 Cluster 1
2071 0.817 Cluster 2
2072 0.433 Cluster 5
2073 0.809 Cluster 2
2074 0.590 Cluster 5
2075 0.760 Cluster 4
2076 0.589 Cluster 1
2077 0.571 Cluster 1
2078 0.730 Cluster 2
2079 0.622 Cluster 1
2080 0.777 Cluster 2
2081 0.831 Cluster 2
2082 0.531 Cluster 2
2083 0.469 Cluster 5
2084 0.966 Cluster 4
2085 0.914 Cluster 1
2086 0.819 Cluster 4
2087 0.564 Cluster 2
2088 0.775 Cluster 2
2089 0.354 Cluster 1
2090 0.396 Cluster 5
2091 0.577 Cluster 4
2092 0.907 Cluster 3
2093 0.796 Cluster 2
2094 0.909 Cluster 1
2095 0.882 Cluster 4
2096 0.497 Cluster 5
2097 0.601 Cluster 4
2098 0.668 Cluster 1
2099 0.710 Cluster 4
2100 0.703 Cluster 2
2101 0.532 Cluster 1
2102 0.491 Cluster 3
2103 0.866 Cluster 5
2104 0.386 Cluster 3
2105 0.755 Cluster 4
2106 0.502 Cluster 4
2107 0.711 Cluster 1
2108 0.763 Cluster 2
2109 0.496 Cluster 5
2110 0.683 Cluster 4
2111 0.647 Cluster 5
2112 0.408 Cluster 5
2113 0.720 Cluster 2
2114 0.971 Cluster 4
2115 0.625 Cluster 1
2116 0.578 Cluster 4
2117 0.819 Cluster 2
2118 0.683 Cluster 2
2119 0.679 Cluster 2
2120 0.812 Cluster 2
2121 0.611 Cluster 2
2122 0.709 Cluster 2
2123 0.899 Cluster 2
2124 0.978 Cluster 4
2125 0.591 Cluster 3
2126 0.548 Cluster 2
2127 0.841 Cluster 5
2128 0.519 Cluster 2
2129 0.527 Cluster 5
2130 0.816 Cluster 2
2131 0.903 Cluster 2
2132 0.909 Cluster 4
2133 0.678 Cluster 2
2134 0.721 Cluster 5
2135 0.744 Cluster 5
2136 0.812 Cluster 2
2137 0.541 Cluster 3
2138 0.583 Cluster 2
2139 0.642 Cluster 1
2140 0.604 Cluster 1
2141 0.495 Cluster 4
2142 0.692 Cluster 5
2143 0.931 Cluster 5
2144 0.560 Cluster 2
2145 0.990 Cluster 5
2146 0.985 Cluster 5
2147 0.742 Cluster 2
2148 0.575 Cluster 1
2149 0.561 Cluster 5
2150 0.610 Cluster 2
2151 0.576 Cluster 2
2152 0.868 Cluster 1
2153 0.729 Cluster 4
2154 0.916 Cluster 4
2155 0.998 Cluster 5
2156 0.663 Cluster 4
2157 0.439 Cluster 4
2158 0.488 Cluster 1
2159 0.598 Cluster 4
2160 0.578 Cluster 3
2161 0.796 Cluster 3
2162 0.553 Cluster 2
2163 0.673 Cluster 2
2164 0.906 Cluster 4
2165 0.884 Cluster 4
2166 0.338 Cluster 1
2167 0.970 Cluster 4
2168 0.739 Cluster 1
2169 0.806 Cluster 3
2170 0.643 Cluster 1
2171 0.612 Cluster 3
2172 0.930 Cluster 5
2173 0.450 Cluster 1
2174 0.795 Cluster 4
2175 0.747 Cluster 2
2176 0.967 Cluster 5
2177 0.964 Cluster 5
2178 0.630 Cluster 3
2179 0.711 Cluster 2
2180 0.440 Cluster 2
2181 0.635 Cluster 4
2182 0.879 Cluster 2
2183 0.945 Cluster 2
2184 0.612 Cluster 3
2185 0.896 Cluster 4
2186 0.530 Cluster 2
2187 0.966 Cluster 4
2188 0.786 Cluster 1
2189 0.762 Cluster 4
2190 0.944 Cluster 2
2191 0.589 Cluster 1
2192 0.476 Cluster 2
2193 0.544 Cluster 1
2194 0.485 Cluster 2
2195 0.560 Cluster 3
2196 0.827 Cluster 2
2197 0.824 Cluster 5
2198 0.766 Cluster 5
2199 0.573 Cluster 2
2200 0.631 Cluster 2
2201 0.917 Cluster 1
2202 0.686 Cluster 3
2203 0.944 Cluster 4
2204 0.498 Cluster 4
2205 0.794 Cluster 2
2206 0.872 Cluster 4
2207 0.585 Cluster 2
2208 0.955 Cluster 4
2209 0.963 Cluster 5
2210 0.570 Cluster 5
2211 0.728 Cluster 1
2212 0.613 Cluster 4
2213 0.633 Cluster 4
2214 0.597 Cluster 1
2215 0.948 Cluster 2
2216 0.880 Cluster 2
2217 0.649 Cluster 1
2218 0.466 Cluster 2
2219 0.949 Cluster 4
2220 0.882 Cluster 2
2221 0.664 Cluster 3
2222 0.841 Cluster 4
2223 0.454 Cluster 2
2224 0.575 Cluster 1
2225 0.542 Cluster 3
2226 0.360 Cluster 1
2227 0.892 Cluster 4
2228 0.884 Cluster 1
2229 0.811 Cluster 3
2230 0.728 Cluster 4
2231 0.680 Cluster 4
2232 0.942 Cluster 5
2233 0.833 Cluster 3
2234 0.619 Cluster 1
2235 0.344 Cluster 5
2236 0.745 Cluster 2
2237 0.868 Cluster 1
2238 0.309 Cluster 1
2239 0.970 Cluster 1
2240 0.575 Cluster 2
2241 0.461 Cluster 3
2242 0.836 Cluster 1
2243 0.739 Cluster 1
2244 0.413 Cluster 5
2245 0.664 Cluster 1
2246 0.963 Cluster 4
2247 0.808 Cluster 4
2248 0.494 Cluster 3
2249 0.533 Cluster 3
2250 0.864 Cluster 4
2251 0.492 Cluster 5
2252 0.904 Cluster 5
2253 0.782 Cluster 3
2254 0.364 Cluster 4
2255 0.849 Cluster 1
2256 0.384 Cluster 2
2257 0.522 Cluster 2
2258 0.618 Cluster 5
2259 0.537 Cluster 2
2260 0.594 Cluster 1
2261 0.467 Cluster 1
2262 0.891 Cluster 4
2263 0.671 Cluster 2
2264 0.510 Cluster 1
2265 0.523 Cluster 1
2266 0.696 Cluster 2
2267 0.888 Cluster 4
2268 0.855 Cluster 4
2269 0.891 Cluster 2
2270 0.379 Cluster 2
2271 0.636 Cluster 5
2272 0.887 Cluster 4
2273 0.588 Cluster 2
2274 0.652 Cluster 4
2275 0.929 Cluster 5
2276 0.682 Cluster 2
2277 0.854 Cluster 4
2278 0.974 Cluster 5
2279 0.678 Cluster 2
2280 0.549 Cluster 1
2281 0.741 Cluster 4
2282 0.424 Cluster 2
2283 0.659 Cluster 2
2284 0.738 Cluster 1
2285 0.885 Cluster 4
2286 0.817 Cluster 5
2287 0.968 Cluster 4
2288 0.897 Cluster 4
2289 0.886 Cluster 3
2290 0.639 Cluster 5
2291 0.833 Cluster 1
2292 0.902 Cluster 2
2293 0.851 Cluster 1
2294 0.707 Cluster 3
2295 0.678 Cluster 1
2296 0.574 Cluster 4
2297 0.961 Cluster 4
2298 0.536 Cluster 4
2299 0.689 Cluster 2
2300 0.541 Cluster 2
2301 0.538 Cluster 2
2302 0.472 Cluster 2
2303 0.851 Cluster 2
2304 0.372 Cluster 3
2305 0.588 Cluster 2
2306 0.823 Cluster 1
2307 0.914 Cluster 1
2308 0.691 Cluster 3
2309 0.905 Cluster 2
2310 0.548 Cluster 2
2311 0.869 Cluster 1
2312 0.533 Cluster 4
2313 0.504 Cluster 2
2314 0.822 Cluster 2
2315 0.719 Cluster 4
2316 0.698 Cluster 2
2317 0.334 Cluster 2
2318 0.481 Cluster 2
2319 0.821 Cluster 2
2320 0.552 Cluster 4
2321 0.467 Cluster 4
2322 0.824 Cluster 4
2323 0.560 Cluster 1
2324 0.457 Cluster 2
2325 0.742 Cluster 3
2326 0.763 Cluster 4
2327 0.961 Cluster 4
2328 0.733 Cluster 2
2329 0.598 Cluster 4
2330 0.780 Cluster 2
2331 0.743 Cluster 4
2332 0.768 Cluster 1
2333 0.518 Cluster 1
2334 0.545 Cluster 2
2335 0.750 Cluster 4
2336 0.587 Cluster 1
2337 0.973 Cluster 2
2338 0.869 Cluster 4
2339 0.958 Cluster 4
2340 0.884 Cluster 2
2341 0.500 Cluster 2
2342 0.863 Cluster 4
2343 0.438 Cluster 4
2344 0.397 Cluster 2
2345 0.937 Cluster 4
2346 0.645 Cluster 2
2347 0.631 Cluster 3
2348 0.626 Cluster 2
2349 0.743 Cluster 4
2350 0.713 Cluster 2
2351 0.515 Cluster 2
2352 0.412 Cluster 3
2353 0.575 Cluster 2
2354 0.461 Cluster 1
2355 0.702 Cluster 2
2356 0.500 Cluster 2
2357 0.391 Cluster 2
2358 0.538 Cluster 4
2359 0.696 Cluster 2
2360 0.908 Cluster 2
2361 0.790 Cluster 2
2362 0.601 Cluster 2
2363 0.335 Cluster 3
2364 0.550 Cluster 1
2365 0.842 Cluster 2
2366 0.401 Cluster 1
2367 0.539 Cluster 4
2368 0.943 Cluster 4
2369 0.757 Cluster 1
2370 0.923 Cluster 4
2371 0.820 Cluster 4
2372 0.814 Cluster 2
2373 0.561 Cluster 1
2374 0.778 Cluster 4
2375 0.791 Cluster 5
2376 0.915 Cluster 4
2377 0.578 Cluster 2
2378 0.590 Cluster 1
2379 0.745 Cluster 2
2380 0.579 Cluster 3
2381 0.389 Cluster 2
2382 0.532 Cluster 2
2383 0.713 Cluster 4
2384 0.397 Cluster 3
2385 0.816 Cluster 2
2386 0.595 Cluster 1
2387 0.901 Cluster 4
2388 0.881 Cluster 4
2389 0.741 Cluster 2
2390 0.581 Cluster 1
2391 0.774 Cluster 1
2392 0.558 Cluster 4
2393 0.472 Cluster 2
2394 0.751 Cluster 2
2395 0.433 Cluster 1
2396 0.642 Cluster 5
2397 0.426 Cluster 5
2398 0.707 Cluster 2
2399 0.490 Cluster 2
2400 0.831 Cluster 5
2401 0.550 Cluster 1
2402 0.930 Cluster 2
2403 0.602 Cluster 1
2404 0.983 Cluster 5
2405 0.527 Cluster 2
2406 0.942 Cluster 4
2407 0.849 Cluster 5
2408 0.624 Cluster 1
2409 0.639 Cluster 4
2410 0.462 Cluster 2
2411 0.806 Cluster 2
2412 0.851 Cluster 4
2413 0.512 Cluster 1
2414 0.567 Cluster 4
2415 0.401 Cluster 1
2416 0.716 Cluster 2
2417 0.692 Cluster 4
2418 0.852 Cluster 3
2419 0.809 Cluster 5
2420 0.882 Cluster 2
2421 0.513 Cluster 1
2422 0.544 Cluster 2
2423 0.497 Cluster 2
2424 0.825 Cluster 2
2425 0.562 Cluster 2
2426 0.817 Cluster 2
2427 0.819 Cluster 2
2428 0.757 Cluster 2
2429 0.363 Cluster 2
2430 0.514 Cluster 3
2431 0.525 Cluster 2
2432 0.665 Cluster 2
2433 0.518 Cluster 1
2434 0.397 Cluster 3
2435 0.835 Cluster 2
2436 0.546 Cluster 1
2437 0.419 Cluster 3
2438 0.582 Cluster 1
2439 0.920 Cluster 5
2440 0.602 Cluster 1
2441 0.869 Cluster 4
2442 0.959 Cluster 5
2443 0.949 Cluster 4
2444 0.450 Cluster 1
2445 0.478 Cluster 2
2446 0.738 Cluster 1
2447 0.928 Cluster 4
2448 0.843 Cluster 1
2449 0.849 Cluster 3
2450 0.677 Cluster 1
2451 0.594 Cluster 1
2452 0.710 Cluster 4
2453 0.718 Cluster 1
2454 0.381 Cluster 1
2455 0.839 Cluster 4
2456 0.678 Cluster 2
2457 0.897 Cluster 4
2458 0.729 Cluster 2
2459 0.890 Cluster 3
2460 0.683 Cluster 3
2461 0.834 Cluster 2
2462 0.932 Cluster 5
2463 0.941 Cluster 5
2464 0.309 Cluster 5
2465 0.437 Cluster 3
2466 0.778 Cluster 2
2467 0.705 Cluster 4
2468 0.830 Cluster 2
2469 0.557 Cluster 2
2470 0.736 Cluster 2
2471 0.889 Cluster 5
2472 0.583 Cluster 4
2473 0.883 Cluster 4
2474 0.840 Cluster 2
2475 0.515 Cluster 2
2476 0.665 Cluster 4
2477 0.828 Cluster 2
2478 0.967 Cluster 4
2479 0.540 Cluster 4
2480 0.438 Cluster 3
2481 0.501 Cluster 1
2482 0.846 Cluster 2
2483 0.798 Cluster 1
2484 0.698 Cluster 2
2485 0.603 Cluster 3
2486 0.696 Cluster 2
2487 0.793 Cluster 4
2488 0.947 Cluster 4
2489 0.491 Cluster 3
2490 0.890 Cluster 4
2491 0.370 Cluster 1
2492 0.825 Cluster 2
2493 0.394 Cluster 2
2494 0.921 Cluster 4
2495 0.942 Cluster 5
2496 0.703 Cluster 3
2497 0.757 Cluster 3
2498 0.942 Cluster 4
2499 0.616 Cluster 4
2500 0.652 Cluster 4
2501 0.897 Cluster 5
2502 0.590 Cluster 1
2503 0.835 Cluster 1
2504 0.763 Cluster 4
2505 0.864 Cluster 4
2506 0.642 Cluster 1
2507 0.919 Cluster 4
2508 0.753 Cluster 1
2509 0.780 Cluster 1
2510 0.700 Cluster 2
2511 0.622 Cluster 1
2512 0.478 Cluster 1
2513 0.436 Cluster 4
2514 0.646 Cluster 4
2515 0.894 Cluster 2
2516 0.831 Cluster 4
2517 0.521 Cluster 2
2518 0.413 Cluster 3
2519 0.637 Cluster 4
2520 0.569 Cluster 1
2521 0.496 Cluster 5
2522 0.734 Cluster 3
2523 0.509 Cluster 1
2524 0.530 Cluster 3
2525 0.812 Cluster 1
2526 0.802 Cluster 3
2527 0.801 Cluster 4
2528 0.862 Cluster 3
2529 0.885 Cluster 4
2530 0.938 Cluster 2
2531 0.941 Cluster 4
2532 0.432 Cluster 5
2533 0.953 Cluster 2
2534 0.922 Cluster 4
2535 0.769 Cluster 3
2536 0.919 Cluster 5
2537 0.628 Cluster 4
2538 0.873 Cluster 4
2539 0.712 Cluster 2
2540 0.719 Cluster 2
2541 0.923 Cluster 5
2542 0.684 Cluster 3
2543 0.839 Cluster 1
2544 0.514 Cluster 5
2545 0.815 Cluster 5
2546 0.809 Cluster 4
2547 0.506 Cluster 5
2548 0.695 Cluster 5
2549 0.421 Cluster 2
2550 0.570 Cluster 4
2551 0.824 Cluster 2
2552 0.715 Cluster 2
2553 0.651 Cluster 3
2554 0.446 Cluster 2
2555 0.340 Cluster 4
2556 0.598 Cluster 2
2557 0.736 Cluster 1
2558 0.455 Cluster 2
2559 0.922 Cluster 4
2560 0.762 Cluster 4
2561 0.808 Cluster 2
2562 0.795 Cluster 2
2563 0.620 Cluster 2
2564 0.508 Cluster 4
2565 0.420 Cluster 2
2566 0.872 Cluster 4
2567 0.750 Cluster 1
2568 0.924 Cluster 1
2569 0.943 Cluster 1
2570 0.845 Cluster 1
2571 0.822 Cluster 4
2572 0.967 Cluster 4
2573 0.386 Cluster 2
2574 0.907 Cluster 4
2575 0.836 Cluster 2
2576 0.574 Cluster 4
2577 0.831 Cluster 3
2578 0.955 Cluster 4
2579 0.918 Cluster 1
2580 0.557 Cluster 2
2581 0.941 Cluster 2
2582 0.569 Cluster 2
2583 0.362 Cluster 2
2584 0.468 Cluster 1
2585 0.868 Cluster 1
2586 0.782 Cluster 5
2587 0.566 Cluster 1
2588 0.598 Cluster 4
2589 0.962 Cluster 5
2590 0.771 Cluster 2
2591 0.436 Cluster 5
2592 0.877 Cluster 4
2593 0.741 Cluster 1
2594 0.955 Cluster 5
2595 0.353 Cluster 5
2596 0.814 Cluster 4
2597 0.680 Cluster 2
2598 0.547 Cluster 4
2599 0.552 Cluster 2
2600 0.429 Cluster 3
2601 0.314 Cluster 1
2602 0.930 Cluster 5
2603 0.806 Cluster 4
2604 0.742 Cluster 4
2605 0.928 Cluster 5
2606 0.838 Cluster 2
2607 0.629 Cluster 2
2608 0.565 Cluster 3
2609 0.915 Cluster 4
2610 0.569 Cluster 3
2611 0.790 Cluster 5
2612 0.310 Cluster 2
2613 0.433 Cluster 5
2614 0.540 Cluster 3
2615 0.904 Cluster 4
2616 0.619 Cluster 3
2617 0.529 Cluster 4
2618 0.528 Cluster 2
2619 0.470 Cluster 1
2620 0.849 Cluster 4
2621 0.651 Cluster 1
2622 0.588 Cluster 4
2623 0.946 Cluster 3
2624 0.579 Cluster 2
2625 0.430 Cluster 2
2626 0.432 Cluster 2
2627 0.984 Cluster 5
2628 0.427 Cluster 1
2629 0.543 Cluster 2
2630 0.428 Cluster 4
2631 0.980 Cluster 4
2632 0.597 Cluster 2
2633 0.523 Cluster 3
2634 0.890 Cluster 2
2635 0.688 Cluster 2
2636 0.556 Cluster 5
2637 0.451 Cluster 1
2638 0.533 Cluster 2
2639 0.729 Cluster 2
2640 0.538 Cluster 2
2641 0.515 Cluster 1
2642 0.436 Cluster 1
2643 0.790 Cluster 2
2644 0.573 Cluster 1
2645 0.415 Cluster 4
2646 0.743 Cluster 2
2647 0.659 Cluster 2
2648 0.425 Cluster 2
2649 0.945 Cluster 4
2650 0.637 Cluster 5
2651 0.312 Cluster 1
2652 0.385 Cluster 3
2653 0.900 Cluster 2
2654 0.723 Cluster 2
2655 0.373 Cluster 4
2656 0.553 Cluster 2
2657 0.956 Cluster 4
2658 0.532 Cluster 3
2659 0.648 Cluster 3
2660 0.850 Cluster 1
2661 0.800 Cluster 5
2662 0.697 Cluster 5
2663 0.806 Cluster 4
2664 0.654 Cluster 2
2665 0.729 Cluster 2
2666 0.977 Cluster 4
2667 0.874 Cluster 4
2668 0.569 Cluster 2
2669 0.477 Cluster 4
2670 0.343 Cluster 2
2671 0.614 Cluster 1
2672 0.833 Cluster 3
2673 0.348 Cluster 1
2674 0.769 Cluster 2
2675 0.841 Cluster 1
2676 0.317 Cluster 4
2677 0.612 Cluster 4
2678 0.630 Cluster 1
2679 0.571 Cluster 5
2680 0.473 Cluster 5
2681 0.659 Cluster 4
2682 0.550 Cluster 3
2683 0.877 Cluster 5
2684 0.934 Cluster 4
2685 0.692 Cluster 3
2686 0.420 Cluster 3
2687 0.826 Cluster 4
2688 0.854 Cluster 5
2689 0.388 Cluster 2
2690 0.461 Cluster 3
2691 0.560 Cluster 1
2692 0.670 Cluster 2
2693 0.425 Cluster 2
2694 0.381 Cluster 4
2695 0.858 Cluster 4
2696 0.736 Cluster 3
2697 0.796 Cluster 2
2698 0.947 Cluster 2
2699 0.844 Cluster 3
2700 0.494 Cluster 5
2701 0.916 Cluster 4
2702 0.970 Cluster 4
2703 0.473 Cluster 4
2704 0.766 Cluster 4
2705 0.910 Cluster 2
2706 0.785 Cluster 3
2707 0.944 Cluster 5
2708 0.581 Cluster 1
2709 0.428 Cluster 3
2710 0.448 Cluster 1
2711 0.904 Cluster 2
2712 0.554 Cluster 2
2713 0.823 Cluster 1
2714 0.613 Cluster 1
2715 0.343 Cluster 2
2716 0.521 Cluster 5
2717 0.282 Cluster 3
2718 0.641 Cluster 5
2719 0.663 Cluster 2
2720 0.469 Cluster 4
2721 0.588 Cluster 4
2722 0.807 Cluster 2
2723 0.609 Cluster 1
2724 0.477 Cluster 2
2725 0.573 Cluster 1
2726 0.763 Cluster 2
2727 0.340 Cluster 1
2728 0.885 Cluster 2
2729 0.603 Cluster 1
2730 0.418 Cluster 3
2731 0.693 Cluster 2
2732 0.802 Cluster 5
2733 0.479 Cluster 3
2734 0.823 Cluster 4
2735 0.648 Cluster 2
2736 0.549 Cluster 3
2737 0.337 Cluster 2
2738 0.345 Cluster 3
2739 0.880 Cluster 4
2740 0.703 Cluster 4
2741 0.599 Cluster 1
2742 0.709 Cluster 5
2743 0.921 Cluster 5
2744 0.429 Cluster 3
2745 0.639 Cluster 3
2746 0.922 Cluster 5
2747 0.831 Cluster 4
2748 0.735 Cluster 1
2749 0.450 Cluster 2
2750 0.534 Cluster 4
2751 0.902 Cluster 1
2752 0.802 Cluster 2
2753 0.834 Cluster 1
2754 0.554 Cluster 4
2755 0.565 Cluster 2
2756 0.729 Cluster 2
2757 0.695 Cluster 2
2758 0.822 Cluster 1
2759 0.781 Cluster 4
2760 0.814 Cluster 2
2761 0.477 Cluster 2
2762 0.464 Cluster 3
2763 0.793 Cluster 2
2764 0.479 Cluster 2
2765 0.339 Cluster 2
2766 0.793 Cluster 2
2767 0.928 Cluster 4
2768 0.819 Cluster 4
2769 0.440 Cluster 3
2770 0.640 Cluster 2
2771 0.878 Cluster 4
2772 0.365 Cluster 5
2773 0.706 Cluster 2
2774 0.804 Cluster 4
2775 0.831 Cluster 4
2776 0.907 Cluster 2
2777 0.479 Cluster 4
2778 0.461 Cluster 4
2779 0.459 Cluster 2
2780 0.813 Cluster 4
2781 0.901 Cluster 4
2782 0.832 Cluster 4
2783 0.829 Cluster 4
2784 0.916 Cluster 3
2785 0.517 Cluster 1
2786 0.400 Cluster 4
2787 0.721 Cluster 2
2788 0.751 Cluster 1
2789 0.614 Cluster 2
2790 0.924 Cluster 4
2791 0.860 Cluster 3
2792 0.917 Cluster 3
2793 0.960 Cluster 2
2794 0.835 Cluster 1
2795 0.675 Cluster 5
2796 0.480 Cluster 2
2797 0.789 Cluster 2
2798 0.898 Cluster 5
2799 0.522 Cluster 5
2800 0.302 Cluster 1
2801 0.393 Cluster 3
2802 0.892 Cluster 4
2803 0.835 Cluster 4
2804 0.710 Cluster 5
2805 0.668 Cluster 3
2806 0.967 Cluster 4
2807 0.454 Cluster 3
2808 0.902 Cluster 2
2809 0.710 Cluster 2
2810 0.906 Cluster 5
2811 0.756 Cluster 4
2812 0.837 Cluster 1
2813 0.958 Cluster 4
2814 0.270 Cluster 3
2815 0.555 Cluster 2
2816 0.460 Cluster 1
2817 0.395 Cluster 3
2818 0.540 Cluster 2
2819 0.654 Cluster 5
2820 0.522 Cluster 1
2821 0.592 Cluster 2
2822 0.852 Cluster 4
2823 0.679 Cluster 2
2824 0.559 Cluster 1
2825 0.753 Cluster 5
2826 0.927 Cluster 4
2827 0.650 Cluster 1
2828 0.758 Cluster 1
2829 0.449 Cluster 1
2830 0.952 Cluster 5
2831 0.399 Cluster 3
2832 0.848 Cluster 4
2833 0.535 Cluster 3
2834 0.587 Cluster 3
2835 0.555 Cluster 2
2836 0.893 Cluster 2
2837 0.519 Cluster 3
2838 0.860 Cluster 1
2839 0.648 Cluster 2
2840 0.676 Cluster 4
2841 0.505 Cluster 1
2842 0.437 Cluster 3
2843 0.358 Cluster 3
2844 0.393 Cluster 5
2845 0.662 Cluster 4
2846 0.524 Cluster 1
2847 0.973 Cluster 2
2848 0.728 Cluster 2
2849 0.899 Cluster 4
2850 0.915 Cluster 2
2851 0.484 Cluster 1
2852 0.964 Cluster 4
2853 0.910 Cluster 3
2854 0.801 Cluster 4
2855 0.640 Cluster 1
2856 0.529 Cluster 1
2857 0.893 Cluster 5
2858 0.899 Cluster 4
2859 0.725 Cluster 2
2860 0.863 Cluster 2
2861 0.572 Cluster 1
2862 0.831 Cluster 2
2863 0.573 Cluster 2
2864 0.899 Cluster 4
2865 0.788 Cluster 5
2866 0.558 Cluster 1
2867 0.561 Cluster 5
2868 0.821 Cluster 2
2869 0.927 Cluster 3
2870 0.585 Cluster 1
2871 0.635 Cluster 3
2872 0.353 Cluster 2
2873 0.730 Cluster 2
2874 0.586 Cluster 1
2875 0.518 Cluster 3
2876 0.645 Cluster 4
2877 0.941 Cluster 1
2878 0.671 Cluster 4
2879 0.685 Cluster 2
2880 0.888 Cluster 4
2881 0.869 Cluster 2
2882 0.443 Cluster 2
2883 0.908 Cluster 2
2884 0.444 Cluster 3
2885 0.630 Cluster 2
2886 0.420 Cluster 1
2887 0.966 Cluster 4
2888 0.406 Cluster 3
2889 0.679 Cluster 2
2890 0.673 Cluster 2
2891 0.444 Cluster 3
2892 0.609 Cluster 3
2893 0.960 Cluster 4
2894 0.457 Cluster 3
2895 0.479 Cluster 2
2896 0.603 Cluster 1
2897 0.660 Cluster 2
2898 0.547 Cluster 2
2899 0.669 Cluster 1
2900 0.718 Cluster 1
2901 0.545 Cluster 3
2902 0.711 Cluster 2
2903 0.680 Cluster 3
2904 0.778 Cluster 1
2905 0.793 Cluster 4
2906 0.632 Cluster 4
2907 0.644 Cluster 1
2908 0.612 Cluster 1
2909 0.607 Cluster 2
2910 0.855 Cluster 4
2911 0.740 Cluster 2
2912 0.568 Cluster 1
2913 0.403 Cluster 2
2914 0.518 Cluster 2
2915 0.773 Cluster 1
2916 0.946 Cluster 4
2917 0.945 Cluster 3
2918 0.647 Cluster 2
2919 0.896 Cluster 1
2920 0.763 Cluster 5
2921 0.608 Cluster 2
2922 0.948 Cluster 5
2923 0.684 Cluster 4
2924 0.897 Cluster 2
2925 0.829 Cluster 2
2926 0.534 Cluster 2
2927 0.763 Cluster 4
2928 0.880 Cluster 4
2929 0.916 Cluster 3
2930 0.790 Cluster 1
2931 0.936 Cluster 4
2932 0.912 Cluster 5
2933 0.776 Cluster 1
2934 0.546 Cluster 5
2935 0.565 Cluster 2
2936 0.792 Cluster 4
2937 0.688 Cluster 4
2938 0.736 Cluster 5
2939 0.540 Cluster 4
2940 0.275 Cluster 1
2941 0.950 Cluster 5
2942 0.435 Cluster 5
2943 0.309 Cluster 1
2944 0.855 Cluster 4
2945 0.430 Cluster 4
2946 0.469 Cluster 3
2947 0.455 Cluster 1
2948 0.663 Cluster 1
2949 0.431 Cluster 5
2950 0.850 Cluster 4
2951 0.606 Cluster 2
2952 0.764 Cluster 3
2953 0.501 Cluster 3
2954 0.613 Cluster 2
2955 0.777 Cluster 3
2956 0.756 Cluster 5
2957 0.860 Cluster 4
2958 0.924 Cluster 4
2959 0.579 Cluster 4
2960 0.606 Cluster 1
2961 0.466 Cluster 5
2962 0.723 Cluster 2
2963 0.494 Cluster 2
2964 0.827 Cluster 3
2965 0.699 Cluster 2
2966 0.817 Cluster 2
2967 0.625 Cluster 3
2968 0.451 Cluster 3
2969 0.920 Cluster 1
2970 0.573 Cluster 4
2971 0.644 Cluster 1
2972 0.892 Cluster 4
2973 0.448 Cluster 2
2974 0.539 Cluster 2
2975 0.800 Cluster 4
2976 0.795 Cluster 2
2977 0.713 Cluster 4
2978 0.574 Cluster 2
2979 0.571 Cluster 2
2980 0.925 Cluster 4
2981 0.868 Cluster 3
2982 0.809 Cluster 2
2983 0.553 Cluster 1
2984 0.587 Cluster 2
2985 0.531 Cluster 2
2986 0.548 Cluster 5
2987 0.945 Cluster 2
2988 0.625 Cluster 3
2989 0.394 Cluster 3
2990 0.986 Cluster 4
2991 0.725 Cluster 4
2992 0.717 Cluster 2
2993 0.251 Cluster 4
2994 0.508 Cluster 1
2995 0.521 Cluster 3
2996 0.677 Cluster 4
2997 0.666 Cluster 5
2998 0.942 Cluster 1
2999 0.766 Cluster 4
3000 0.937 Cluster 4
3001 0.613 Cluster 4
3002 0.575 Cluster 1
3003 0.608 Cluster 1
3004 0.836 Cluster 1
3005 0.588 Cluster 1
3006 0.848 Cluster 2
3007 0.901 Cluster 4
3008 0.518 Cluster 4
3009 0.846 Cluster 4
3010 0.731 Cluster 1
3011 0.815 Cluster 5
3012 0.910 Cluster 4
3013 0.758 Cluster 2
3014 0.892 Cluster 1
3015 0.863 Cluster 2
3016 0.711 Cluster 5
3017 0.666 Cluster 4
3018 0.700 Cluster 2
3019 0.869 Cluster 4
3020 0.924 Cluster 2
3021 0.937 Cluster 4
3022 0.956 Cluster 4
3023 0.849 Cluster 1
3024 0.720 Cluster 2
3025 0.639 Cluster 3
3026 0.910 Cluster 2
3027 0.904 Cluster 4
3028 0.655 Cluster 4
3029 0.784 Cluster 1
3030 0.865 Cluster 4
3031 0.916 Cluster 2
3032 0.603 Cluster 2
3033 0.854 Cluster 3
3034 0.678 Cluster 2
3035 0.606 Cluster 5
3036 0.586 Cluster 5
3037 0.714 Cluster 2
3038 0.458 Cluster 3
3039 0.406 Cluster 4
3040 0.411 Cluster 2
3041 0.846 Cluster 5
3042 0.957 Cluster 4
3043 0.812 Cluster 5
3044 0.948 Cluster 1
3045 0.651 Cluster 1
3046 0.527 Cluster 4
3047 0.812 Cluster 4
3048 0.801 Cluster 2
3049 0.376 Cluster 5
3050 0.750 Cluster 2
3051 0.623 Cluster 2
3052 0.824 Cluster 2
3053 0.520 Cluster 2
3054 0.782 Cluster 2
3055 0.727 Cluster 4
3056 0.659 Cluster 3
3057 0.550 Cluster 4
3058 0.834 Cluster 4
3059 0.450 Cluster 2
3060 0.618 Cluster 1
3061 0.528 Cluster 1
3062 0.369 Cluster 4
3063 0.754 Cluster 4
3064 0.388 Cluster 5
3065 0.828 Cluster 2
3066 0.533 Cluster 5
3067 0.546 Cluster 2
3068 0.314 Cluster 5
3069 0.618 Cluster 1
3070 0.571 Cluster 2
3071 0.636 Cluster 1
3072 0.979 Cluster 4
3073 0.588 Cluster 5
3074 0.286 Cluster 4
3075 0.943 Cluster 4
3076 0.648 Cluster 2
3077 0.548 Cluster 2
3078 0.911 Cluster 4
3079 0.731 Cluster 4
3080 0.523 Cluster 5
3081 0.380 Cluster 3
3082 0.480 Cluster 1
3083 0.527 Cluster 2
3084 0.827 Cluster 5
3085 0.808 Cluster 5
3086 0.744 Cluster 4
3087 0.503 Cluster 3
3088 0.700 Cluster 2
3089 0.587 Cluster 2
3090 0.551 Cluster 2
3091 0.733 Cluster 2
3092 0.466 Cluster 2
3093 0.486 Cluster 4
3094 0.586 Cluster 3
3095 0.753 Cluster 3
3096 0.874 Cluster 2
3097 0.805 Cluster 4
3098 0.620 Cluster 4
3099 0.840 Cluster 2
3100 0.935 Cluster 4
3101 0.566 Cluster 4
3102 0.895 Cluster 4
3103 0.962 Cluster 2
3104 0.809 Cluster 4
3105 0.815 Cluster 3
3106 0.710 Cluster 2
3107 0.828 Cluster 1
3108 0.608 Cluster 3
3109 0.779 Cluster 3
3110 0.781 Cluster 1
3111 0.649 Cluster 2
3112 0.929 Cluster 2
3113 0.590 Cluster 4
3114 0.968 Cluster 4
3115 0.891 Cluster 2
3116 0.960 Cluster 5
3117 0.770 Cluster 3
3118 0.591 Cluster 2
3119 0.719 Cluster 1
3120 0.418 Cluster 2
3121 0.645 Cluster 2
3122 0.720 Cluster 5
3123 0.308 Cluster 1
3124 0.805 Cluster 2
3125 0.756 Cluster 3
3126 0.446 Cluster 4
3127 0.863 Cluster 5
3128 0.930 Cluster 5
3129 0.525 Cluster 2
3130 0.929 Cluster 4
3131 0.713 Cluster 4
3132 0.730 Cluster 4
3133 0.469 Cluster 3
3134 0.551 Cluster 5
3135 0.601 Cluster 2
3136 0.912 Cluster 1
3137 0.715 Cluster 2
3138 0.823 Cluster 4
3139 0.762 Cluster 1
3140 0.709 Cluster 2
3141 0.896 Cluster 2
3142 0.860 Cluster 4
3143 0.447 Cluster 3
3144 0.957 Cluster 4
3145 0.488 Cluster 2
3146 0.684 Cluster 5
3147 0.831 Cluster 2
3148 0.601 Cluster 4
3149 0.439 Cluster 3
3150 0.933 Cluster 5
3151 0.517 Cluster 4
3152 0.297 Cluster 3
3153 0.872 Cluster 2
3154 0.871 Cluster 4
3155 0.656 Cluster 2
3156 0.741 Cluster 1
3157 0.595 Cluster 1
3158 0.457 Cluster 2
3159 0.827 Cluster 5
3160 0.821 Cluster 4
3161 0.787 Cluster 5
3162 0.577 Cluster 1
3163 0.807 Cluster 2
3164 0.252 Cluster 3
3165 0.618 Cluster 2
3166 0.676 Cluster 4
3167 0.808 Cluster 2
3168 0.895 Cluster 5
3169 0.574 Cluster 1
3170 0.488 Cluster 3
3171 0.857 Cluster 1
3172 0.526 Cluster 2
3173 0.645 Cluster 4
3174 0.794 Cluster 5
3175 0.374 Cluster 2
3176 0.630 Cluster 4
3177 0.964 Cluster 2
3178 0.832 Cluster 2
3179 0.373 Cluster 4
3180 0.726 Cluster 3
3181 0.792 Cluster 1
3182 0.709 Cluster 4
3183 0.932 Cluster 1
3184 0.977 Cluster 2
3185 0.527 Cluster 4
3186 0.768 Cluster 4
3187 0.639 Cluster 2
3188 0.809 Cluster 3
3189 0.939 Cluster 2
3190 0.930 Cluster 4
3191 0.754 Cluster 1
3192 0.487 Cluster 1
3193 0.809 Cluster 1
3194 0.405 Cluster 1
3195 0.751 Cluster 1
3196 0.968 Cluster 2
3197 0.431 Cluster 4
3198 0.754 Cluster 4
3199 0.518 Cluster 2
3200 0.476 Cluster 1
3201 0.472 Cluster 5
3202 0.840 Cluster 4
3203 0.839 Cluster 2
3204 0.553 Cluster 2
3205 0.666 Cluster 5
3206 0.596 Cluster 1
3207 0.775 Cluster 1
3208 0.670 Cluster 2
3209 0.481 Cluster 4
3210 0.609 Cluster 5
3211 0.288 Cluster 3
3212 0.624 Cluster 3
3213 0.589 Cluster 5
3214 0.837 Cluster 3
3215 0.730 Cluster 4
3216 0.697 Cluster 3
3217 0.507 Cluster 5
3218 0.639 Cluster 1
3219 0.583 Cluster 3
3220 0.931 Cluster 4
3221 0.356 Cluster 2
3222 0.551 Cluster 2
3223 0.759 Cluster 2
3224 0.714 Cluster 2
3225 0.809 Cluster 2
3226 0.833 Cluster 1
3227 0.614 Cluster 2
3228 0.715 Cluster 2
3229 0.458 Cluster 4
3230 0.645 Cluster 1
3231 0.430 Cluster 3
3232 0.716 Cluster 2
3233 0.449 Cluster 1
3234 0.895 Cluster 4
3235 0.934 Cluster 4
3236 0.803 Cluster 1
3237 0.558 Cluster 4
3238 0.732 Cluster 5
3239 0.953 Cluster 4
3240 0.722 Cluster 2
3241 0.734 Cluster 4
3242 0.621 Cluster 3
3243 0.868 Cluster 1
3244 0.405 Cluster 3
3245 0.561 Cluster 2
3246 0.868 Cluster 1
3247 0.443 Cluster 3
3248 0.768 Cluster 5
3249 0.896 Cluster 5
3250 0.371 Cluster 1
3251 0.821 Cluster 1
3252 0.527 Cluster 2
3253 0.835 Cluster 1
3254 0.950 Cluster 4
3255 0.874 Cluster 2
3256 0.849 Cluster 4
3257 0.515 Cluster 2
3258 0.465 Cluster 1
3259 0.941 Cluster 4
3260 0.838 Cluster 3
3261 0.383 Cluster 1
3262 0.980 Cluster 5
3263 0.497 Cluster 4
3264 0.916 Cluster 4
3265 0.984 Cluster 5
3266 0.840 Cluster 2
3267 0.772 Cluster 2
3268 0.641 Cluster 4
3269 0.901 Cluster 3
3270 0.830 Cluster 5
3271 0.575 Cluster 1
3272 0.454 Cluster 3
3273 0.707 Cluster 2
3274 0.556 Cluster 2
3275 0.916 Cluster 3
3276 0.336 Cluster 3
3277 0.392 Cluster 2
3278 0.883 Cluster 2
3279 0.576 Cluster 2
3280 0.492 Cluster 2
3281 0.897 Cluster 2
3282 0.852 Cluster 1
3283 0.765 Cluster 2
3284 0.436 Cluster 3
3285 0.836 Cluster 2
3286 0.553 Cluster 5
3287 0.637 Cluster 1
3288 0.500 Cluster 3
3289 0.561 Cluster 4
3290 0.860 Cluster 3
3291 0.685 Cluster 4
3292 0.659 Cluster 3
3293 0.824 Cluster 2
3294 0.652 Cluster 5
3295 0.658 Cluster 1
3296 0.460 Cluster 2
3297 0.632 Cluster 2
3298 0.644 Cluster 4
3299 0.899 Cluster 1
3300 0.416 Cluster 2
3301 0.658 Cluster 1
3302 0.437 Cluster 4
3303 0.872 Cluster 4
3304 0.331 Cluster 2
3305 0.499 Cluster 1
3306 0.694 Cluster 2
3307 0.963 Cluster 4
3308 0.947 Cluster 2
3309 0.571 Cluster 5
3310 0.934 Cluster 3
3311 0.739 Cluster 2
3312 0.668 Cluster 3
3313 0.504 Cluster 3
3314 0.621 Cluster 5
3315 0.317 Cluster 2
3316 0.843 Cluster 4
3317 0.887 Cluster 2
3318 0.581 Cluster 2
3319 0.883 Cluster 4
3320 0.496 Cluster 1
3321 0.589 Cluster 3
3322 0.748 Cluster 4
3323 0.530 Cluster 1
3324 0.629 Cluster 4
3325 0.692 Cluster 2
3326 0.881 Cluster 5
3327 0.569 Cluster 1
3328 0.637 Cluster 3
3329 0.785 Cluster 4
3330 0.482 Cluster 1
3331 0.853 Cluster 4
3332 0.554 Cluster 2
3333 0.801 Cluster 2
3334 0.422 Cluster 5
3335 0.698 Cluster 2
3336 0.356 Cluster 2
3337 0.486 Cluster 5
3338 0.618 Cluster 3
3339 0.450 Cluster 4
3340 0.849 Cluster 2
3341 0.543 Cluster 2
3342 0.744 Cluster 2
3343 0.806 Cluster 4
3344 0.325 Cluster 2
3345 0.688 Cluster 2
3346 0.965 Cluster 5
3347 0.488 Cluster 2
3348 0.551 Cluster 1
3349 0.948 Cluster 2
3350 0.475 Cluster 2
3351 0.950 Cluster 4
3352 0.423 Cluster 2
3353 0.481 Cluster 5
3354 0.837 Cluster 4
3355 0.550 Cluster 1
3356 0.926 Cluster 4
3357 0.715 Cluster 2
3358 0.553 Cluster 1
3359 0.945 Cluster 3
3360 0.801 Cluster 2
3361 0.482 Cluster 4
3362 0.895 Cluster 2
3363 0.318 Cluster 2
3364 0.444 Cluster 1
3365 0.711 Cluster 2
3366 0.863 Cluster 1
3367 0.826 Cluster 2
3368 0.837 Cluster 2
3369 0.381 Cluster 1
3370 0.599 Cluster 4
3371 0.935 Cluster 4
3372 0.619 Cluster 2
3373 0.846 Cluster 1
3374 0.849 Cluster 1
3375 0.396 Cluster 4
3376 0.940 Cluster 2
3377 0.963 Cluster 1
3378 0.778 Cluster 3
3379 0.611 Cluster 2
3380 0.937 Cluster 2
3381 0.713 Cluster 1
3382 0.950 Cluster 3
3383 0.588 Cluster 5
3384 0.943 Cluster 5
3385 0.944 Cluster 5
3386 0.498 Cluster 1
3387 0.785 Cluster 2
3388 0.965 Cluster 4
3389 0.734 Cluster 4
3390 0.702 Cluster 3
3391 0.702 Cluster 2
3392 0.815 Cluster 3
3393 0.491 Cluster 3
3394 0.783 Cluster 4
3395 0.972 Cluster 2
3396 0.531 Cluster 1
3397 0.883 Cluster 5
3398 0.445 Cluster 4
3399 0.746 Cluster 4
3400 0.812 Cluster 4
3401 0.548 Cluster 1
3402 0.694 Cluster 4
3403 0.935 Cluster 2
3404 0.431 Cluster 2
3405 0.687 Cluster 2
3406 0.561 Cluster 3
3407 0.498 Cluster 4
3408 0.495 Cluster 1
3409 0.540 Cluster 2
3410 0.681 Cluster 5
3411 0.669 Cluster 5
3412 0.722 Cluster 5
3413 0.687 Cluster 3
3414 0.645 Cluster 2
3415 0.697 Cluster 2
3416 0.542 Cluster 2
3417 0.664 Cluster 3
3418 0.891 Cluster 2
3419 0.661 Cluster 3
3420 0.732 Cluster 4
3421 0.749 Cluster 5
3422 0.319 Cluster 5
3423 0.566 Cluster 1
3424 0.742 Cluster 4
3425 0.509 Cluster 2
3426 0.884 Cluster 3
3427 0.825 Cluster 4
3428 0.927 Cluster 4
3429 0.656 Cluster 3
3430 0.904 Cluster 4
3431 0.652 Cluster 3
3432 0.681 Cluster 1
3433 0.473 Cluster 2
3434 0.940 Cluster 2
3435 0.531 Cluster 5
3436 0.892 Cluster 1
3437 0.652 Cluster 3
3438 0.337 Cluster 3
3439 0.814 Cluster 2
3440 0.659 Cluster 1
3441 0.437 Cluster 2
3442 0.384 Cluster 1
3443 0.743 Cluster 1
3444 0.761 Cluster 2
3445 0.719 Cluster 2
3446 0.730 Cluster 2
3447 0.834 Cluster 5
3448 0.879 Cluster 1
3449 0.941 Cluster 4
3450 0.964 Cluster 2
3451 0.691 Cluster 4
3452 0.459 Cluster 3
3453 0.675 Cluster 3
3454 0.567 Cluster 4
3455 0.929 Cluster 4
3456 0.891 Cluster 4
3457 0.823 Cluster 2
3458 0.893 Cluster 2
3459 0.974 Cluster 5
3460 0.820 Cluster 5
3461 0.932 Cluster 4
3462 0.576 Cluster 5
3463 0.578 Cluster 5
3464 0.818 Cluster 2
3465 0.534 Cluster 2
3466 0.779 Cluster 3
3467 0.862 Cluster 2
3468 0.418 Cluster 4
3469 0.633 Cluster 4
3470 0.577 Cluster 1
3471 0.484 Cluster 4
3472 0.743 Cluster 4
3473 0.831 Cluster 3
3474 0.760 Cluster 2
3475 0.881 Cluster 4
3476 0.905 Cluster 4
3477 0.793 Cluster 3
3478 0.608 Cluster 4
3479 0.953 Cluster 5
3480 0.787 Cluster 5
3481 0.731 Cluster 5
3482 0.484 Cluster 3
3483 0.946 Cluster 4
3484 0.367 Cluster 5
3485 0.867 Cluster 4
3486 0.571 Cluster 1
3487 0.722 Cluster 3
3488 0.968 Cluster 5
3489 0.499 Cluster 4
3490 0.383 Cluster 3
3491 0.727 Cluster 1
3492 0.315 Cluster 3
3493 0.563 Cluster 2
3494 0.727 Cluster 2
3495 0.510 Cluster 2
3496 0.529 Cluster 1
3497 0.452 Cluster 3
3498 0.645 Cluster 2
3499 0.724 Cluster 4
3500 0.844 Cluster 2
3501 0.587 Cluster 1
3502 0.508 Cluster 4
3503 0.667 Cluster 1
3504 0.734 Cluster 1
3505 0.590 Cluster 2
3506 0.698 Cluster 1
3507 0.874 Cluster 4
3508 0.823 Cluster 5
3509 0.480 Cluster 3
3510 0.547 Cluster 1
3511 0.806 Cluster 4
3512 0.384 Cluster 1
3513 0.543 Cluster 1
3514 0.967 Cluster 5
3515 0.961 Cluster 4
3516 0.299 Cluster 3
3517 0.787 Cluster 5
3518 0.348 Cluster 3
3519 0.551 Cluster 5
3520 0.792 Cluster 2
3521 0.393 Cluster 3
3522 0.577 Cluster 2
3523 0.903 Cluster 2
3524 0.850 Cluster 1
3525 0.689 Cluster 4
3526 0.283 Cluster 3
3527 0.684 Cluster 2
3528 0.647 Cluster 1
3529 0.609 Cluster 2
3530 0.432 Cluster 4
3531 0.628 Cluster 1
3532 0.422 Cluster 4
3533 0.754 Cluster 3
3534 0.782 Cluster 1
3535 0.909 Cluster 5
3536 0.657 Cluster 2
3537 0.690 Cluster 3
3538 0.371 Cluster 1
3539 0.580 Cluster 1
3540 0.830 Cluster 4
3541 0.917 Cluster 4
3542 0.524 Cluster 4
3543 0.472 Cluster 5
3544 0.506 Cluster 5
3545 0.398 Cluster 5
3546 0.519 Cluster 2
3547 0.808 Cluster 1
3548 0.652 Cluster 3
3549 0.595 Cluster 1
3550 0.662 Cluster 4
3551 0.852 Cluster 3
3552 0.500 Cluster 1
3553 0.747 Cluster 2
3554 0.696 Cluster 3
3555 0.794 Cluster 4
3556 0.863 Cluster 3
3557 0.686 Cluster 2
3558 0.621 Cluster 1
3559 0.360 Cluster 3
3560 0.812 Cluster 5
3561 0.744 Cluster 5
3562 0.681 Cluster 2
3563 0.716 Cluster 1
3564 0.724 Cluster 1
3565 0.565 Cluster 2
3566 0.398 Cluster 4
3567 0.535 Cluster 4
3568 0.929 Cluster 4
3569 0.815 Cluster 4
3570 0.558 Cluster 1
3571 0.419 Cluster 5
3572 0.568 Cluster 1
3573 0.932 Cluster 3
3574 0.401 Cluster 1
3575 0.341 Cluster 1
3576 0.508 Cluster 5
3577 0.767 Cluster 2
3578 0.808 Cluster 3
3579 0.626 Cluster 1
3580 0.867 Cluster 5
3581 0.399 Cluster 2
3582 0.713 Cluster 5
3583 0.604 Cluster 4
3584 0.926 Cluster 4
3585 0.950 Cluster 4
3586 0.500 Cluster 2
3587 0.976 Cluster 5
3588 0.498 Cluster 5
3589 0.938 Cluster 5
3590 0.569 Cluster 3
3591 0.847 Cluster 4
3592 0.569 Cluster 2
3593 0.449 Cluster 1
3594 0.766 Cluster 4
3595 0.574 Cluster 5
3596 0.496 Cluster 3
3597 0.905 Cluster 5
3598 0.709 Cluster 1
3599 0.839 Cluster 2
3600 0.492 Cluster 3
3601 0.732 Cluster 2
3602 0.304 Cluster 3
3603 0.684 Cluster 2
3604 0.509 Cluster 1
3605 0.699 Cluster 1
3606 0.699 Cluster 2
3607 0.909 Cluster 3
3608 0.391 Cluster 5
3609 0.605 Cluster 4
3610 0.447 Cluster 1
3611 0.604 Cluster 3
3612 0.887 Cluster 1
3613 0.519 Cluster 4
3614 0.517 Cluster 4
3615 0.904 Cluster 4
3616 0.549 Cluster 3
3617 0.353 Cluster 3
3618 0.682 Cluster 1
3619 0.646 Cluster 4
3620 0.918 Cluster 3
3621 0.676 Cluster 3
3622 0.734 Cluster 4
3623 0.761 Cluster 4
3624 0.758 Cluster 4
3625 0.706 Cluster 1
3626 0.857 Cluster 4
3627 0.487 Cluster 1
3628 0.774 Cluster 5
3629 0.587 Cluster 2
3630 0.813 Cluster 3
3631 0.643 Cluster 5
3632 0.735 Cluster 3
3633 0.856 Cluster 4
3634 0.698 Cluster 5
3635 0.707 Cluster 2
3636 0.555 Cluster 1
3637 0.471 Cluster 2
3638 0.988 Cluster 5
3639 0.611 Cluster 5
3640 0.545 Cluster 1
3641 0.969 Cluster 5
3642 0.651 Cluster 3
3643 0.886 Cluster 4
3644 0.541 Cluster 3
3645 0.541 Cluster 1
3646 0.556 Cluster 1
3647 0.810 Cluster 2
3648 0.938 Cluster 3
3649 0.413 Cluster 5
3650 0.368 Cluster 1
3651 0.661 Cluster 1
3652 0.592 Cluster 2
3653 0.711 Cluster 2
3654 0.880 Cluster 4
3655 0.610 Cluster 1
3656 0.424 Cluster 2
3657 0.744 Cluster 1
3658 0.867 Cluster 2
3659 0.483 Cluster 2
3660 0.803 Cluster 2
3661 0.627 Cluster 2
3662 0.696 Cluster 3
3663 0.892 Cluster 4
3664 0.655 Cluster 4
3665 0.493 Cluster 2
3666 0.562 Cluster 3
3667 0.523 Cluster 3
3668 0.788 Cluster 1
3669 0.582 Cluster 4
3670 0.801 Cluster 4
3671 0.482 Cluster 3
3672 0.556 Cluster 1
3673 0.554 Cluster 1
3674 0.681 Cluster 3
3675 0.336 Cluster 1
3676 0.819 Cluster 5
3677 0.765 Cluster 1
3678 0.798 Cluster 4
3679 0.816 Cluster 5
3680 0.737 Cluster 2
3681 0.763 Cluster 3
3682 0.715 Cluster 2
3683 0.926 Cluster 4
3684 0.455 Cluster 2
3685 0.692 Cluster 2
3686 0.704 Cluster 2
3687 0.833 Cluster 2
3688 0.904 Cluster 2
3689 0.698 Cluster 4
3690 0.974 Cluster 2
3691 0.818 Cluster 2
3692 0.770 Cluster 5
3693 0.436 Cluster 1
3694 0.815 Cluster 5
3695 0.910 Cluster 2
3696 0.812 Cluster 1
3697 0.846 Cluster 3
3698 0.872 Cluster 4
3699 0.728 Cluster 5
3700 0.588 Cluster 4
3701 0.679 Cluster 5
3702 0.542 Cluster 3
3703 0.339 Cluster 1
3704 0.807 Cluster 4
3705 0.880 Cluster 3
3706 0.369 Cluster 1
3707 0.535 Cluster 2
3708 0.447 Cluster 4
3709 0.436 Cluster 1
3710 0.556 Cluster 4
3711 0.545 Cluster 4
3712 0.828 Cluster 2
3713 0.383 Cluster 2
3714 0.595 Cluster 3
3715 0.536 Cluster 4
3716 0.933 Cluster 2
3717 0.814 Cluster 3
3718 0.597 Cluster 2
3719 0.903 Cluster 5
3720 0.756 Cluster 2
3721 0.680 Cluster 2
3722 0.827 Cluster 2
3723 0.631 Cluster 2
3724 0.487 Cluster 5
3725 0.891 Cluster 2
3726 0.945 Cluster 2
3727 0.545 Cluster 3
3728 0.539 Cluster 5
3729 0.667 Cluster 1
3730 0.478 Cluster 1
3731 0.445 Cluster 2
3732 0.942 Cluster 2
3733 0.750 Cluster 2
3734 0.505 Cluster 1
3735 0.739 Cluster 1
3736 0.558 Cluster 1
3737 0.642 Cluster 2
3738 0.460 Cluster 5
3739 0.532 Cluster 2
3740 0.683 Cluster 2
3741 0.427 Cluster 3
3742 0.636 Cluster 3
3743 0.853 Cluster 4
3744 0.702 Cluster 1
3745 0.907 Cluster 2
3746 0.485 Cluster 3
3747 0.601 Cluster 1
3748 0.875 Cluster 5
3749 0.634 Cluster 3
3750 0.619 Cluster 1
3751 0.502 Cluster 1
3752 0.843 Cluster 2
3753 0.643 Cluster 3
3754 0.803 Cluster 2
3755 0.768 Cluster 1
3756 0.786 Cluster 4
3757 0.705 Cluster 2
3758 0.480 Cluster 2
3759 0.964 Cluster 3
3760 0.520 Cluster 2
3761 0.946 Cluster 5
3762 0.851 Cluster 3
3763 0.741 Cluster 2
3764 0.746 Cluster 5
3765 0.301 Cluster 3
3766 0.675 Cluster 5
3767 0.971 Cluster 5
3768 0.753 Cluster 2
3769 0.445 Cluster 2
3770 0.333 Cluster 1
3771 0.346 Cluster 1
3772 0.800 Cluster 2
3773 0.725 Cluster 1
3774 0.431 Cluster 5
3775 0.307 Cluster 2
3776 0.548 Cluster 1
3777 0.413 Cluster 5
3778 0.400 Cluster 2
3779 0.594 Cluster 4
3780 0.560 Cluster 2
3781 0.442 Cluster 4
3782 0.533 Cluster 3
3783 0.717 Cluster 1
3784 0.788 Cluster 4
3785 0.639 Cluster 1
3786 0.632 Cluster 5
3787 0.518 Cluster 1
3788 0.576 Cluster 4
3789 0.979 Cluster 4
3790 0.419 Cluster 4
3791 0.857 Cluster 3
3792 0.479 Cluster 2
3793 0.557 Cluster 5
3794 0.628 Cluster 4
3795 0.682 Cluster 4
3796 0.535 Cluster 5
3797 0.524 Cluster 2
3798 0.394 Cluster 1
3799 0.374 Cluster 4
3800 0.565 Cluster 2
3801 0.569 Cluster 2
3802 0.886 Cluster 4
3803 0.804 Cluster 3
3804 0.733 Cluster 4
3805 0.743 Cluster 2
3806 0.502 Cluster 1
3807 0.528 Cluster 1
3808 0.512 Cluster 4
3809 0.400 Cluster 3
3810 0.957 Cluster 4
3811 0.852 Cluster 2
3812 0.975 Cluster 4
3813 0.522 Cluster 2
3814 0.955 Cluster 4
3815 0.517 Cluster 5
3816 0.860 Cluster 3
3817 0.807 Cluster 2
3818 0.968 Cluster 4
3819 0.358 Cluster 2
3820 0.823 Cluster 2
3821 0.814 Cluster 4
3822 0.816 Cluster 2
3823 0.370 Cluster 4
3824 0.703 Cluster 1
3825 0.336 Cluster 1
3826 0.551 Cluster 2
3827 0.947 Cluster 2
3828 0.422 Cluster 4
3829 0.815 Cluster 2
3830 0.887 Cluster 2
3831 0.357 Cluster 3
3832 0.794 Cluster 4
3833 0.922 Cluster 3
3834 0.542 Cluster 2
3835 0.977 Cluster 5
3836 0.891 Cluster 4
3837 0.829 Cluster 2
3838 0.380 Cluster 3
3839 0.392 Cluster 1
3840 0.905 Cluster 4
3841 0.895 Cluster 2
3842 0.913 Cluster 2
3843 0.376 Cluster 2
3844 0.808 Cluster 1
3845 0.890 Cluster 4
3846 0.566 Cluster 2
3847 0.439 Cluster 1
3848 0.868 Cluster 4
3849 0.471 Cluster 3
3850 0.944 Cluster 1
3851 0.595 Cluster 2
3852 0.933 Cluster 2
3853 0.920 Cluster 1
3854 0.649 Cluster 1
3855 0.385 Cluster 1
3856 0.755 Cluster 2
3857 0.692 Cluster 2
3858 0.948 Cluster 5
3859 0.666 Cluster 1
3860 0.565 Cluster 2
3861 0.915 Cluster 4
3862 0.524 Cluster 3
3863 0.643 Cluster 1
3864 0.669 Cluster 3
3865 0.731 Cluster 4
3866 0.948 Cluster 5
3867 0.995 Cluster 4
3868 0.650 Cluster 3
3869 0.775 Cluster 1
3870 0.678 Cluster 5
3871 0.919 Cluster 4
3872 0.974 Cluster 2
3873 0.420 Cluster 3
3874 0.708 Cluster 4
3875 0.722 Cluster 4
3876 0.521 Cluster 2
3877 0.718 Cluster 4
3878 0.575 Cluster 4
3879 0.768 Cluster 3
3880 0.844 Cluster 2
3881 0.493 Cluster 1
3882 0.589 Cluster 2
3883 0.933 Cluster 5
3884 0.588 Cluster 4
3885 0.594 Cluster 4
3886 0.578 Cluster 1
3887 0.772 Cluster 1
3888 0.947 Cluster 1
3889 0.595 Cluster 3
3890 0.863 Cluster 4
3891 0.471 Cluster 1
3892 0.758 Cluster 3
3893 0.673 Cluster 3
3894 0.445 Cluster 4
3895 0.756 Cluster 4
3896 0.792 Cluster 5
3897 0.634 Cluster 1
3898 0.306 Cluster 1
3899 0.883 Cluster 2
3900 0.965 Cluster 5
3901 0.730 Cluster 2
3902 0.650 Cluster 2
3903 0.596 Cluster 1
3904 0.509 Cluster 1
3905 0.547 Cluster 2
3906 0.592 Cluster 3
3907 0.388 Cluster 2
3908 0.606 Cluster 3
3909 0.970 Cluster 5
3910 0.584 Cluster 4
3911 0.786 Cluster 2
3912 0.386 Cluster 1
3913 0.831 Cluster 4
3914 0.699 Cluster 2
3915 0.542 Cluster 3
3916 0.264 Cluster 2
3917 0.567 Cluster 2
3918 0.611 Cluster 1
3919 0.598 Cluster 5
3920 0.591 Cluster 2
3921 0.894 Cluster 5
3922 0.870 Cluster 3
3923 0.568 Cluster 2
3924 0.702 Cluster 2
3925 0.878 Cluster 4
3926 0.340 Cluster 1
3927 0.850 Cluster 2
3928 0.510 Cluster 2
3929 0.827 Cluster 2
3930 0.376 Cluster 4
3931 0.940 Cluster 4
3932 0.533 Cluster 1
3933 0.819 Cluster 4
3934 0.805 Cluster 4
3935 0.837 Cluster 3
3936 0.518 Cluster 3
3937 0.908 Cluster 4
3938 0.929 Cluster 4
3939 0.428 Cluster 3
3940 0.522 Cluster 4
3941 0.528 Cluster 1
3942 0.966 Cluster 1
3943 0.989 Cluster 5
3944 0.542 Cluster 3
3945 0.718 Cluster 2
3946 0.640 Cluster 1
3947 0.450 Cluster 1
3948 0.537 Cluster 1
3949 0.469 Cluster 3
3950 0.799 Cluster 2
3951 0.403 Cluster 4
3952 0.576 Cluster 1
3953 0.878 Cluster 5
3954 0.395 Cluster 2
3955 0.851 Cluster 1
3956 0.532 Cluster 5
3957 0.521 Cluster 1
3958 0.545 Cluster 2
3959 0.828 Cluster 4
3960 0.605 Cluster 4
3961 0.336 Cluster 2
3962 0.557 Cluster 2
3963 0.752 Cluster 2
3964 0.614 Cluster 4
3965 0.544 Cluster 1
3966 0.552 Cluster 2
3967 0.841 Cluster 5
3968 0.795 Cluster 4
3969 0.568 Cluster 2
3970 0.648 Cluster 2
3971 0.972 Cluster 5
3972 0.847 Cluster 4
3973 0.672 Cluster 1
3974 0.533 Cluster 5
3975 0.856 Cluster 5
3976 0.416 Cluster 5
3977 0.449 Cluster 2
3978 0.960 Cluster 1
3979 0.713 Cluster 2
3980 0.712 Cluster 2
3981 0.695 Cluster 3
3982 0.475 Cluster 5
3983 0.645 Cluster 5
3984 0.447 Cluster 1
3985 0.526 Cluster 4
3986 0.704 Cluster 2
3987 0.891 Cluster 2
3988 0.627 Cluster 1
3989 0.733 Cluster 3
3990 0.498 Cluster 1
3991 0.804 Cluster 4
3992 0.742 Cluster 3
3993 0.884 Cluster 2
3994 0.512 Cluster 2
3995 0.820 Cluster 4
3996 0.639 Cluster 2
3997 0.530 Cluster 4
3998 0.545 Cluster 2
3999 0.912 Cluster 4
4000 0.844 Cluster 2
4001 0.323 Cluster 1
4002 0.861 Cluster 4
4003 0.434 Cluster 4
4004 0.385 Cluster 1
4005 0.600 Cluster 2
4006 0.532 Cluster 1
4007 0.825 Cluster 2
4008 0.857 Cluster 4
4009 0.966 Cluster 5
4010 0.749 Cluster 1
4011 0.755 Cluster 1
4012 0.394 Cluster 1
4013 0.788 Cluster 4
4014 0.627 Cluster 3
4015 0.529 Cluster 3
4016 0.924 Cluster 4
4017 0.805 Cluster 1
4018 0.913 Cluster 2
4019 0.926 Cluster 1
4020 0.441 Cluster 4
4021 0.910 Cluster 1
4022 0.728 Cluster 2
4023 0.791 Cluster 2
4024 0.504 Cluster 5
4025 0.576 Cluster 2
4026 0.482 Cluster 2
4027 0.469 Cluster 3
4028 0.304 Cluster 3
4029 0.945 Cluster 5
4030 0.901 Cluster 2
4031 0.603 Cluster 1
4032 0.846 Cluster 4
4033 0.548 Cluster 2
4034 0.648 Cluster 2
4035 0.756 Cluster 3
4036 0.851 Cluster 2
4037 0.694 Cluster 1
4038 0.987 Cluster 5
4039 0.348 Cluster 3
4040 0.926 Cluster 5
4041 0.617 Cluster 4
4042 0.611 Cluster 5
4043 0.590 Cluster 4
4044 0.885 Cluster 2
4045 0.482 Cluster 5
4046 0.644 Cluster 4
4047 0.419 Cluster 1
4048 0.574 Cluster 1
4049 0.706 Cluster 4
4050 0.387 Cluster 4
4051 0.825 Cluster 4
4052 0.587 Cluster 2
4053 0.444 Cluster 2
4054 0.551 Cluster 3
4055 0.604 Cluster 4
4056 0.653 Cluster 2
4057 0.405 Cluster 1
4058 0.822 Cluster 2
4059 0.387 Cluster 1
4060 0.841 Cluster 3
4061 0.634 Cluster 1
4062 0.920 Cluster 4
4063 0.807 Cluster 5
4064 0.661 Cluster 5
4065 0.934 Cluster 4
4066 0.882 Cluster 4
4067 0.708 Cluster 1
4068 0.396 Cluster 1
4069 0.674 Cluster 2
4070 0.607 Cluster 2
4071 0.625 Cluster 4
4072 0.511 Cluster 4
4073 0.631 Cluster 3
4074 0.931 Cluster 4
4075 0.289 Cluster 4
4076 0.585 Cluster 1
4077 0.512 Cluster 3
4078 0.693 Cluster 3
4079 0.503 Cluster 3
4080 0.684 Cluster 4
4081 0.930 Cluster 4
4082 0.985 Cluster 5
4083 0.554 Cluster 3
4084 0.621 Cluster 5
4085 0.558 Cluster 1
4086 0.777 Cluster 4
4087 0.956 Cluster 3
4088 0.494 Cluster 2
4089 0.578 Cluster 1
4090 0.826 Cluster 3
4091 0.825 Cluster 1
4092 0.886 Cluster 4
4093 0.926 Cluster 4
4094 0.401 Cluster 3
4095 0.475 Cluster 4
4096 0.502 Cluster 3
4097 0.572 Cluster 4
4098 0.552 Cluster 2
4099 0.724 Cluster 1
4100 0.628 Cluster 4
4101 0.429 Cluster 2
4102 0.571 Cluster 2
4103 0.804 Cluster 1
4104 0.963 Cluster 4
4105 0.937 Cluster 5
4106 0.913 Cluster 1
4107 0.407 Cluster 1
4108 0.526 Cluster 5
4109 0.532 Cluster 3
4110 0.839 Cluster 1
4111 0.471 Cluster 1
4112 0.527 Cluster 2
4113 0.951 Cluster 4
4114 0.558 Cluster 5
4115 0.810 Cluster 2
4116 0.567 Cluster 2
4117 0.571 Cluster 4
4118 0.406 Cluster 3
4119 0.924 Cluster 4
4120 0.933 Cluster 4
4121 0.716 Cluster 1
4122 0.688 Cluster 2
4123 0.573 Cluster 4
4124 0.831 Cluster 3
4125 0.544 Cluster 2
4126 0.928 Cluster 2
4127 0.883 Cluster 2
4128 0.531 Cluster 3
4129 0.822 Cluster 3
4130 0.567 Cluster 4
4131 0.818 Cluster 2
4132 0.827 Cluster 2
4133 0.924 Cluster 4
4134 0.731 Cluster 3
4135 0.726 Cluster 3
4136 0.780 Cluster 4
4137 0.476 Cluster 5
4138 0.771 Cluster 1
4139 0.521 Cluster 3
4140 0.479 Cluster 5
4141 0.689 Cluster 5
4142 0.569 Cluster 1
4143 0.555 Cluster 5
4144 0.413 Cluster 3
4145 0.614 Cluster 2
4146 0.562 Cluster 2
4147 0.801 Cluster 2
4148 0.489 Cluster 4
4149 0.737 Cluster 4
4150 0.528 Cluster 3
4151 0.860 Cluster 4
4152 0.861 Cluster 1
4153 0.909 Cluster 2
4154 0.782 Cluster 3
4155 0.576 Cluster 2
4156 0.599 Cluster 2
4157 0.741 Cluster 4
4158 0.704 Cluster 1
4159 0.474 Cluster 3
4160 0.766 Cluster 1
4161 0.773 Cluster 3
4162 0.367 Cluster 5
4163 0.619 Cluster 1
4164 0.543 Cluster 1
4165 0.508 Cluster 2
4166 0.975 Cluster 5
4167 0.651 Cluster 3
4168 0.691 Cluster 4
4169 0.583 Cluster 4
4170 0.805 Cluster 4
4171 0.411 Cluster 3
4172 0.636 Cluster 2
4173 0.928 Cluster 4
4174 0.561 Cluster 2
4175 0.509 Cluster 2
4176 0.923 Cluster 4
4177 0.592 Cluster 2
4178 0.645 Cluster 2
4179 0.792 Cluster 1
4180 0.599 Cluster 1
4181 0.510 Cluster 4
4182 0.740 Cluster 2
4183 0.885 Cluster 4
4184 0.666 Cluster 4
4185 0.872 Cluster 4
4186 0.522 Cluster 5
4187 0.827 Cluster 2
4188 0.824 Cluster 2
4189 0.571 Cluster 5
4190 0.789 Cluster 1
4191 0.927 Cluster 1
4192 0.936 Cluster 4
4193 0.937 Cluster 4
4194 0.652 Cluster 1
4195 0.836 Cluster 1
4196 0.931 Cluster 5
4197 0.906 Cluster 4
4198 0.493 Cluster 2
4199 0.676 Cluster 3
4200 0.462 Cluster 2
4201 0.974 Cluster 2
4202 0.772 Cluster 4
4203 0.385 Cluster 4
4204 0.803 Cluster 2
4205 0.796 Cluster 5
4206 0.789 Cluster 2
4207 0.452 Cluster 2
4208 0.511 Cluster 5
4209 0.709 Cluster 2
4210 0.901 Cluster 5
4211 0.492 Cluster 5
4212 0.471 Cluster 1
4213 0.655 Cluster 2
4214 0.606 Cluster 1
4215 0.860 Cluster 4
4216 0.848 Cluster 1
4217 0.420 Cluster 2
4218 0.471 Cluster 5
4219 0.904 Cluster 4
4220 0.743 Cluster 4
4221 0.590 Cluster 2
4222 0.938 Cluster 2
4223 0.798 Cluster 4
4224 0.430 Cluster 4
4225 0.790 Cluster 2
4226 0.710 Cluster 4
4227 0.730 Cluster 1
4228 0.851 Cluster 4
4229 0.438 Cluster 5
4230 0.563 Cluster 2
4231 0.713 Cluster 4
4232 0.915 Cluster 3
4233 0.518 Cluster 3
4234 0.933 Cluster 3
4235 0.821 Cluster 4
4236 0.802 Cluster 5
4237 0.847 Cluster 5
4238 0.632 Cluster 1
4239 0.695 Cluster 5
4240 0.950 Cluster 5
4241 0.435 Cluster 4
4242 0.537 Cluster 4
4243 0.755 Cluster 5
4244 0.544 Cluster 3
4245 0.807 Cluster 4
4246 0.883 Cluster 2
4247 0.459 Cluster 3
4248 0.724 Cluster 1
4249 0.748 Cluster 2
4250 0.464 Cluster 1
4251 0.852 Cluster 3
4252 0.361 Cluster 3
4253 0.420 Cluster 3
4254 0.496 Cluster 2
4255 0.878 Cluster 2
4256 0.467 Cluster 4
4257 0.601 Cluster 2
4258 0.274 Cluster 3
4259 0.417 Cluster 5
4260 0.649 Cluster 3
4261 0.951 Cluster 4
4262 0.550 Cluster 2
4263 0.651 Cluster 4
4264 0.474 Cluster 4
4265 0.947 Cluster 4
4266 0.839 Cluster 3
4267 0.788 Cluster 3
4268 0.757 Cluster 3
4269 0.651 Cluster 4
4270 0.551 Cluster 2
4271 0.878 Cluster 4
4272 0.815 Cluster 2
4273 0.400 Cluster 2
4274 0.785 Cluster 1
4275 0.538 Cluster 4
4276 0.717 Cluster 2
4277 0.498 Cluster 5
4278 0.840 Cluster 5
4279 0.802 Cluster 1
4280 0.726 Cluster 1
4281 0.963 Cluster 4
4282 0.556 Cluster 1
4283 0.665 Cluster 5
4284 0.875 Cluster 2
4285 0.584 Cluster 1
4286 0.761 Cluster 4
4287 0.687 Cluster 2
4288 0.708 Cluster 1
4289 0.402 Cluster 1
4290 0.770 Cluster 4
4291 0.439 Cluster 3
4292 0.798 Cluster 2
4293 0.422 Cluster 2
4294 0.834 Cluster 4
4295 0.963 Cluster 4
4296 0.327 Cluster 4
4297 0.751 Cluster 1
4298 0.563 Cluster 2
4299 0.882 Cluster 4
4300 0.629 Cluster 2
4301 0.851 Cluster 1
4302 0.477 Cluster 2
4303 0.462 Cluster 1
4304 0.457 Cluster 3
4305 0.883 Cluster 2
4306 0.441 Cluster 3
4307 0.726 Cluster 2
4308 0.461 Cluster 3
4309 0.812 Cluster 4
4310 0.394 Cluster 1
4311 0.509 Cluster 3
4312 0.572 Cluster 2
4313 0.921 Cluster 4
4314 0.406 Cluster 2
4315 0.972 Cluster 4
4316 0.543 Cluster 1
4317 0.913 Cluster 4
4318 0.426 Cluster 1
4319 0.563 Cluster 2
4320 0.420 Cluster 2
4321 0.389 Cluster 4
4322 0.711 Cluster 1
4323 0.879 Cluster 3
4324 0.564 Cluster 1
4325 0.888 Cluster 4
4326 0.742 Cluster 2
4327 0.726 Cluster 1
4328 0.617 Cluster 3
4329 0.717 Cluster 3
4330 0.670 Cluster 4
4331 0.940 Cluster 2
4332 0.821 Cluster 3
4333 0.923 Cluster 4
4334 0.543 Cluster 2
4335 0.494 Cluster 4
4336 0.902 Cluster 2
4337 0.436 Cluster 1
4338 0.616 Cluster 1
4339 0.622 Cluster 4
4340 0.773 Cluster 1
4341 0.530 Cluster 2
4342 0.388 Cluster 2
4343 0.966 Cluster 5
4344 0.535 Cluster 4
4345 0.780 Cluster 5
4346 0.929 Cluster 2
4347 0.938 Cluster 4
4348 0.486 Cluster 4
4349 0.873 Cluster 5
4350 0.939 Cluster 4
4351 0.677 Cluster 2
4352 0.985 Cluster 5
4353 0.838 Cluster 3
4354 0.292 Cluster 4
4355 0.605 Cluster 2
4356 0.823 Cluster 2
4357 0.378 Cluster 3
4358 0.708 Cluster 2
4359 0.867 Cluster 3
4360 0.535 Cluster 1
4361 0.382 Cluster 2
4362 0.919 Cluster 5
4363 0.751 Cluster 2
4364 0.884 Cluster 4
4365 0.830 Cluster 5
4366 0.470 Cluster 2
4367 0.531 Cluster 5
4368 0.524 Cluster 4
4369 0.469 Cluster 2
4370 0.779 Cluster 4
4371 0.892 Cluster 5
4372 0.673 Cluster 2
4373 0.947 Cluster 5
4374 0.877 Cluster 1
4375 0.908 Cluster 3
4376 0.611 Cluster 2
4377 0.726 Cluster 1
4378 0.838 Cluster 4
4379 0.956 Cluster 4
4380 0.424 Cluster 3
4381 0.720 Cluster 1
4382 0.915 Cluster 3
4383 0.894 Cluster 2
4384 0.564 Cluster 2
4385 0.935 Cluster 4
4386 0.585 Cluster 3
4387 0.830 Cluster 2
4388 0.489 Cluster 1
4389 0.714 Cluster 3
4390 0.740 Cluster 5
4391 0.898 Cluster 4
4392 0.606 Cluster 1
4393 0.282 Cluster 5
4394 0.493 Cluster 3
4395 0.925 Cluster 4
4396 0.494 Cluster 5
4397 0.670 Cluster 3
4398 0.483 Cluster 2
4399 0.907 Cluster 2
4400 0.525 Cluster 4
4401 0.870 Cluster 3
4402 0.892 Cluster 4
4403 0.395 Cluster 1
4404 0.560 Cluster 5
4405 0.841 Cluster 4
4406 0.772 Cluster 1
4407 0.881 Cluster 2
4408 0.356 Cluster 1
4409 0.858 Cluster 1
4410 0.958 Cluster 4
4411 0.498 Cluster 1
4412 0.495 Cluster 1
4413 0.475 Cluster 2
4414 0.502 Cluster 3
4415 0.944 Cluster 5
4416 0.950 Cluster 2
4417 0.354 Cluster 2
4418 0.789 Cluster 4
4419 0.522 Cluster 4
4420 0.884 Cluster 4
4421 0.727 Cluster 1
4422 0.938 Cluster 2
4423 0.468 Cluster 1
4424 0.960 Cluster 4
4425 0.966 Cluster 4
4426 0.590 Cluster 1
4427 0.947 Cluster 3
4428 0.781 Cluster 3
4429 0.537 Cluster 2
4430 0.625 Cluster 4
4431 0.556 Cluster 2
4432 0.646 Cluster 4
4433 0.357 Cluster 3
4434 0.729 Cluster 2
4435 0.389 Cluster 3
4436 0.533 Cluster 2
4437 0.542 Cluster 2
4438 0.358 Cluster 4
4439 0.528 Cluster 4
4440 0.749 Cluster 5
4441 0.485 Cluster 2
4442 0.943 Cluster 4
4443 0.948 Cluster 3
4444 0.359 Cluster 5
4445 0.505 Cluster 1
4446 0.915 Cluster 2
4447 0.501 Cluster 5
4448 0.580 Cluster 3
4449 0.728 Cluster 5
4450 0.791 Cluster 4
4451 0.722 Cluster 3
4452 0.963 Cluster 1
4453 0.584 Cluster 1
4454 0.697 Cluster 1
4455 0.440 Cluster 4
4456 0.668 Cluster 4
4457 0.909 Cluster 2
4458 0.874 Cluster 1
4459 0.684 Cluster 1
4460 0.447 Cluster 5
4461 0.769 Cluster 4
4462 0.827 Cluster 2
4463 0.593 Cluster 1
4464 0.651 Cluster 5
4465 0.578 Cluster 4
4466 0.814 Cluster 4
4467 0.899 Cluster 4
4468 0.791 Cluster 4
4469 0.612 Cluster 2
4470 0.506 Cluster 4
4471 0.935 Cluster 3
4472 0.603 Cluster 3
4473 0.815 Cluster 2
4474 0.869 Cluster 1
4475 0.913 Cluster 4
4476 0.653 Cluster 4
4477 0.935 Cluster 2
4478 0.627 Cluster 5
4479 0.378 Cluster 4
4480 0.939 Cluster 4
4481 0.593 Cluster 3
4482 0.717 Cluster 1
4483 0.721 Cluster 4
4484 0.843 Cluster 2
4485 0.832 Cluster 2
4486 0.742 Cluster 1
4487 0.641 Cluster 4
4488 0.603 Cluster 1
4489 0.546 Cluster 1
4490 0.580 Cluster 4
4491 0.758 Cluster 2
4492 0.671 Cluster 2
4493 0.837 Cluster 1
4494 0.810 Cluster 2
4495 0.831 Cluster 4
4496 0.675 Cluster 4
4497 0.758 Cluster 2
4498 0.876 Cluster 4
4499 0.379 Cluster 2
4500 0.722 Cluster 2
4501 0.471 Cluster 1
4502 0.923 Cluster 4
4503 0.811 Cluster 3
4504 0.941 Cluster 2
4505 0.648 Cluster 3
4506 0.441 Cluster 3
4507 0.830 Cluster 4
4508 0.466 Cluster 5
4509 0.402 Cluster 4
4510 0.595 Cluster 2
4511 0.804 Cluster 2
4512 0.452 Cluster 2
4513 0.884 Cluster 4
4514 0.393 Cluster 1
4515 0.674 Cluster 4
4516 0.744 Cluster 2
4517 0.494 Cluster 3
4518 0.828 Cluster 2
4519 0.793 Cluster 2
4520 0.845 Cluster 2
4521 0.897 Cluster 5
4522 0.507 Cluster 2
4523 0.484 Cluster 2
4524 0.480 Cluster 5
4525 0.601 Cluster 2
4526 0.560 Cluster 2
4527 0.598 Cluster 2
4528 0.975 Cluster 5
4529 0.820 Cluster 2
4530 0.942 Cluster 5
4531 0.603 Cluster 1
4532 0.615 Cluster 3
4533 0.699 Cluster 4
4534 0.873 Cluster 2
4535 0.819 Cluster 3
4536 0.859 Cluster 2
4537 0.539 Cluster 4
4538 0.978 Cluster 5
4539 0.811 Cluster 4
4540 0.419 Cluster 3
4541 0.738 Cluster 5
4542 0.604 Cluster 4
4543 0.633 Cluster 3
4544 0.434 Cluster 2
4545 0.946 Cluster 2
4546 0.608 Cluster 1
4547 0.553 Cluster 2
4548 0.546 Cluster 1
4549 0.967 Cluster 4
4550 0.974 Cluster 5
4551 0.487 Cluster 1
4552 0.790 Cluster 5
4553 0.858 Cluster 2
4554 0.845 Cluster 3
4555 0.591 Cluster 1
4556 0.564 Cluster 2
4557 0.803 Cluster 4
4558 0.477 Cluster 1
4559 0.842 Cluster 2
4560 0.798 Cluster 2
4561 0.514 Cluster 2
4562 0.912 Cluster 4
4563 0.507 Cluster 2
4564 0.690 Cluster 2
4565 0.487 Cluster 4
4566 0.842 Cluster 3
4567 0.456 Cluster 3
4568 0.434 Cluster 4
4569 0.836 Cluster 2
4570 0.444 Cluster 3
4571 0.583 Cluster 2
4572 0.562 Cluster 2
4573 0.857 Cluster 4
4574 0.504 Cluster 4
4575 0.587 Cluster 1
4576 0.988 Cluster 5
4577 0.799 Cluster 3
4578 0.603 Cluster 1
4579 0.836 Cluster 2
4580 0.850 Cluster 4
4581 0.914 Cluster 3
4582 0.637 Cluster 1
4583 0.596 Cluster 2
4584 0.912 Cluster 4
4585 0.725 Cluster 1
4586 0.395 Cluster 2
4587 0.650 Cluster 2
4588 0.550 Cluster 2
4589 0.545 Cluster 4
4590 0.473 Cluster 3
4591 0.974 Cluster 2
4592 0.763 Cluster 4
4593 0.801 Cluster 5
4594 0.877 Cluster 2
4595 0.502 Cluster 4
4596 0.603 Cluster 2
4597 0.421 Cluster 1
4598 0.966 Cluster 1
4599 0.791 Cluster 4
4600 0.419 Cluster 4
4601 0.752 Cluster 1
4602 0.872 Cluster 4
4603 0.518 Cluster 2
4604 0.383 Cluster 1
4605 0.508 Cluster 4
4606 0.568 Cluster 3
4607 0.633 Cluster 1
4608 0.938 Cluster 5
4609 0.608 Cluster 2
4610 0.821 Cluster 5
4611 0.639 Cluster 1
4612 0.851 Cluster 2
4613 0.419 Cluster 4
4614 0.506 Cluster 4
4615 0.950 Cluster 4
4616 0.944 Cluster 5
4617 0.540 Cluster 4
4618 0.435 Cluster 5
4619 0.809 Cluster 2
4620 0.642 Cluster 4
4621 0.675 Cluster 2
4622 0.930 Cluster 5
4623 0.619 Cluster 1
4624 0.506 Cluster 2
4625 0.754 Cluster 4
4626 0.352 Cluster 3
4627 0.445 Cluster 1
4628 0.581 Cluster 2
4629 0.776 Cluster 3
4630 0.684 Cluster 2
4631 0.841 Cluster 4
4632 0.497 Cluster 2
4633 0.916 Cluster 4
4634 0.633 Cluster 1
4635 0.677 Cluster 3
4636 0.828 Cluster 2
4637 0.349 Cluster 1
4638 0.561 Cluster 2
4639 0.739 Cluster 4
4640 0.881 Cluster 2
4641 0.830 Cluster 2
4642 0.563 Cluster 2
4643 0.989 Cluster 4
4644 0.955 Cluster 4
4645 0.493 Cluster 4
4646 0.553 Cluster 2
4647 0.843 Cluster 4
4648 0.688 Cluster 2
4649 0.433 Cluster 2
4650 0.339 Cluster 1
4651 0.495 Cluster 1
4652 0.353 Cluster 3
4653 0.899 Cluster 5
4654 0.565 Cluster 2
4655 0.932 Cluster 5
4656 0.286 Cluster 4
4657 0.676 Cluster 2
4658 0.832 Cluster 2
4659 0.554 Cluster 2
4660 0.603 Cluster 4
4661 0.575 Cluster 4
4662 0.746 Cluster 4
4663 0.801 Cluster 4
4664 0.776 Cluster 4
4665 0.532 Cluster 3
4666 0.963 Cluster 4
4667 0.685 Cluster 2
4668 0.388 Cluster 4
4669 0.857 Cluster 3
4670 0.844 Cluster 5
4671 0.514 Cluster 2
4672 0.939 Cluster 2
4673 0.831 Cluster 2
4674 0.648 Cluster 3
4675 0.948 Cluster 2
4676 0.898 Cluster 2
4677 0.553 Cluster 4
4678 0.690 Cluster 4
4679 0.760 Cluster 3
4680 0.701 Cluster 3
4681 0.643 Cluster 5
4682 0.624 Cluster 3
4683 0.642 Cluster 4
4684 0.452 Cluster 1
4685 0.902 Cluster 2
4686 0.767 Cluster 1
4687 0.761 Cluster 3
4688 0.618 Cluster 5
4689 0.850 Cluster 4
4690 0.861 Cluster 4
4691 0.921 Cluster 4
4692 0.557 Cluster 2
4693 0.634 Cluster 3
4694 0.584 Cluster 2
4695 0.536 Cluster 4
4696 0.616 Cluster 2
4697 0.529 Cluster 2
4698 0.407 Cluster 3
4699 0.428 Cluster 2
4700 0.409 Cluster 5
4701 0.759 Cluster 1
4702 0.871 Cluster 5
4703 0.834 Cluster 4
4704 0.457 Cluster 2
4705 0.633 Cluster 5
4706 0.588 Cluster 5
4707 0.940 Cluster 4
4708 0.719 Cluster 4
4709 0.559 Cluster 3
4710 0.991 Cluster 5
4711 0.542 Cluster 2
4712 0.842 Cluster 1
4713 0.459 Cluster 5
4714 0.957 Cluster 5
4715 0.530 Cluster 1
4716 0.319 Cluster 4
4717 0.478 Cluster 3
4718 0.409 Cluster 5
4719 0.972 Cluster 5
4720 0.495 Cluster 5
4721 0.763 Cluster 2
4722 0.599 Cluster 4
4723 0.549 Cluster 2
4724 0.508 Cluster 4
4725 0.584 Cluster 4
4726 0.486 Cluster 3
4727 0.422 Cluster 3
4728 0.702 Cluster 5
4729 0.823 Cluster 2
4730 0.953 Cluster 5
4731 0.339 Cluster 1
4732 0.397 Cluster 2
4733 0.848 Cluster 1
4734 0.604 Cluster 1
4735 0.718 Cluster 2
4736 0.365 Cluster 1
4737 0.832 Cluster 2
4738 0.975 Cluster 4
4739 0.796 Cluster 2
4740 0.614 Cluster 1
4741 0.851 Cluster 3
4742 0.800 Cluster 2
4743 0.645 Cluster 2
4744 0.351 Cluster 2
4745 0.925 Cluster 2
4746 0.790 Cluster 5
4747 0.438 Cluster 2
4748 0.830 Cluster 2
4749 0.851 Cluster 2
4750 0.540 Cluster 2
4751 0.386 Cluster 4
4752 0.878 Cluster 3
4753 0.765 Cluster 3
4754 0.352 Cluster 4
4755 0.558 Cluster 1
4756 0.426 Cluster 1
4757 0.926 Cluster 4
4758 0.676 Cluster 1
4759 0.465 Cluster 2
4760 0.677 Cluster 1
4761 0.452 Cluster 1
4762 0.798 Cluster 4
4763 0.519 Cluster 1
4764 0.689 Cluster 2
4765 0.947 Cluster 2
4766 0.401 Cluster 2
4767 0.624 Cluster 1
4768 0.423 Cluster 3
4769 0.796 Cluster 2
4770 0.455 Cluster 2
4771 0.464 Cluster 2
4772 0.683 Cluster 2
4773 0.696 Cluster 2
4774 0.462 Cluster 5
4775 0.722 Cluster 1
4776 0.661 Cluster 3
4777 0.912 Cluster 5
4778 0.693 Cluster 3
4779 0.662 Cluster 2
4780 0.642 Cluster 5
4781 0.829 Cluster 2
4782 0.694 Cluster 4
4783 0.778 Cluster 3
4784 0.722 Cluster 2
4785 0.960 Cluster 1
4786 0.756 Cluster 2
4787 0.792 Cluster 2
4788 0.951 Cluster 4
4789 0.818 Cluster 4
4790 0.717 Cluster 1
4791 0.783 Cluster 2
4792 0.477 Cluster 1
4793 0.683 Cluster 2
4794 0.712 Cluster 2
4795 0.544 Cluster 2
4796 0.372 Cluster 1
4797 0.803 Cluster 1
4798 0.543 Cluster 5
4799 0.653 Cluster 2
4800 0.731 Cluster 2
4801 0.475 Cluster 5
4802 0.811 Cluster 3
4803 0.868 Cluster 4
4804 0.770 Cluster 4
4805 0.957 Cluster 4
4806 0.681 Cluster 4
4807 0.406 Cluster 1
4808 0.702 Cluster 2
4809 0.862 Cluster 1
4810 0.404 Cluster 3
4811 0.791 Cluster 4
4812 0.384 Cluster 3
4813 0.812 Cluster 3
4814 0.929 Cluster 3
4815 0.822 Cluster 2
4816 0.484 Cluster 5
4817 0.957 Cluster 4
4818 0.874 Cluster 5
4819 0.425 Cluster 4
4820 0.515 Cluster 2
4821 0.912 Cluster 4
4822 0.494 Cluster 3
4823 0.740 Cluster 3
4824 0.886 Cluster 2
4825 0.710 Cluster 2
4826 0.531 Cluster 1
4827 0.570 Cluster 4
4828 0.975 Cluster 5
4829 0.595 Cluster 2
4830 0.436 Cluster 3
4831 0.520 Cluster 5
4832 0.556 Cluster 2
4833 0.949 Cluster 4
4834 0.690 Cluster 2
4835 0.693 Cluster 2
4836 0.719 Cluster 2
4837 0.406 Cluster 3
4838 0.638 Cluster 1
4839 0.416 Cluster 1
4840 0.915 Cluster 4
4841 0.950 Cluster 3
4842 0.916 Cluster 4
4843 0.954 Cluster 4
4844 0.538 Cluster 5
4845 0.846 Cluster 4
4846 0.716 Cluster 4
4847 0.528 Cluster 2
4848 0.629 Cluster 2
4849 0.878 Cluster 2
4850 0.531 Cluster 2
4851 0.470 Cluster 4
4852 0.558 Cluster 1
4853 0.820 Cluster 2
4854 0.918 Cluster 5
4855 0.722 Cluster 2
4856 0.889 Cluster 4
4857 0.933 Cluster 4
4858 0.868 Cluster 1
4859 0.907 Cluster 3
4860 0.669 Cluster 2
4861 0.779 Cluster 5
4862 0.651 Cluster 3
4863 0.951 Cluster 4
4864 0.695 Cluster 5
4865 0.527 Cluster 2
4866 0.609 Cluster 2
4867 0.524 Cluster 2
4868 0.683 Cluster 1
4869 0.888 Cluster 4
4870 0.956 Cluster 5
4871 0.931 Cluster 4
4872 0.816 Cluster 1
4873 0.736 Cluster 2
4874 0.280 Cluster 4
4875 0.333 Cluster 5
4876 0.607 Cluster 1
4877 0.417 Cluster 2
4878 0.872 Cluster 3
4879 0.939 Cluster 4
4880 0.744 Cluster 3
4881 0.730 Cluster 3
4882 0.842 Cluster 2
4883 0.701 Cluster 2
4884 0.639 Cluster 3
4885 0.928 Cluster 5
4886 0.682 Cluster 4
4887 0.416 Cluster 4
4888 0.341 Cluster 3
4889 0.467 Cluster 4
4890 0.471 Cluster 4
4891 0.576 Cluster 3
4892 0.969 Cluster 5
4893 0.551 Cluster 2
4894 0.412 Cluster 4
4895 0.473 Cluster 5
4896 0.622 Cluster 1
4897 0.440 Cluster 4
4898 0.837 Cluster 3
4899 0.571 Cluster 1
4900 0.562 Cluster 3
4901 0.448 Cluster 3
4902 0.849 Cluster 5
4903 0.749 Cluster 4
4904 0.935 Cluster 1
4905 0.596 Cluster 1
4906 0.343 Cluster 3
4907 0.530 Cluster 2
4908 0.928 Cluster 2
4909 0.444 Cluster 5
4910 0.678 Cluster 2
4911 0.811 Cluster 3
4912 0.582 Cluster 5
4913 0.549 Cluster 3
4914 0.913 Cluster 1
4915 0.561 Cluster 1
4916 0.954 Cluster 4
4917 0.364 Cluster 5
4918 0.327 Cluster 3
4919 0.812 Cluster 1
4920 0.407 Cluster 3
4921 0.693 Cluster 5
4922 0.584 Cluster 2
4923 0.468 Cluster 3
4924 0.641 Cluster 1
4925 0.472 Cluster 5
4926 0.535 Cluster 2
4927 0.760 Cluster 1
4928 0.701 Cluster 2
4929 0.858 Cluster 3
4930 0.497 Cluster 5
4931 0.675 Cluster 4
4932 0.961 Cluster 2
4933 0.835 Cluster 4
4934 0.563 Cluster 1
4935 0.552 Cluster 2
4936 0.831 Cluster 5
4937 0.906 Cluster 4
4938 0.580 Cluster 1
4939 0.537 Cluster 3
4940 0.532 Cluster 4
4941 0.588 Cluster 2
4942 0.468 Cluster 2
4943 0.852 Cluster 5
4944 0.803 Cluster 2
4945 0.983 Cluster 4
4946 0.893 Cluster 4
4947 0.551 Cluster 1
4948 0.736 Cluster 1
4949 0.712 Cluster 2
4950 0.620 Cluster 1
4951 0.710 Cluster 2
4952 0.715 Cluster 2
4953 0.421 Cluster 2
4954 0.926 Cluster 4
4955 0.802 Cluster 2
4956 0.802 Cluster 1
4957 0.895 Cluster 2
4958 0.561 Cluster 1
4959 0.454 Cluster 2
4960 0.511 Cluster 2
4961 0.624 Cluster 5
4962 0.948 Cluster 2
4963 0.782 Cluster 3
4964 0.539 Cluster 2
4965 0.626 Cluster 4
4966 0.412 Cluster 1
4967 0.738 Cluster 2
4968 0.949 Cluster 4
4969 0.865 Cluster 5
4970 0.820 Cluster 5
4971 0.815 Cluster 2
4972 0.894 Cluster 4
4973 0.571 Cluster 2
4974 0.717 Cluster 1
4975 0.867 Cluster 2
4976 0.908 Cluster 1
4977 0.379 Cluster 2
4978 0.748 Cluster 3
4979 0.714 Cluster 2
4980 0.548 Cluster 5
4981 0.875 Cluster 5
4982 0.714 Cluster 4
4983 0.792 Cluster 2
4984 0.860 Cluster 4
4985 0.950 Cluster 3
4986 0.888 Cluster 2
4987 0.977 Cluster 4
4988 0.736 Cluster 1
4989 0.668 Cluster 4
4990 0.834 Cluster 4
4991 0.812 Cluster 2
4992 0.866 Cluster 1
4993 0.575 Cluster 5
4994 0.801 Cluster 5
4995 0.712 Cluster 5
4996 0.715 Cluster 2
4997 0.541 Cluster 4
4998 0.750 Cluster 2
4999 0.940 Cluster 4
5000 0.371 Cluster 5

References

Asfaw, D., V. Vitelli, O. Sorensen, E. Arjas, and A. Frigessi. 2016. “Time‐varying Rankings with the Bayesian Mallows Model.” Stat 6 (1): 14–30. https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.132.

Crispino, M., E. Arjas, V. Vitelli, N. Barrett, and A. Frigessi. 2018. “A Bayesian Mallows approach to non-transitive pair comparison data: how human are sounds?” Accepted for Publication in Annals of Applied Statistics.

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. 2004. Bayesian Data Analysis. 2nd ed. Chapman; Hall/CRC.

Kamishima, T. 2003. “Nantonac Collaborative Filtering: Recommendation Based on Order Responses.” In Proceedings of the Ninth Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 583–88. New York, NY, USA: ACM.

Liu, Q., M. Crispino, I. Scheel, V. Vitelli, and A. Frigessi. 2018. “Model-based learning from preference data.” Manuscript.

Mallows, C. L. 1957. “Non-Null Ranking Models. I.” Biometrika 44 (1/2): 114–30.

Vitelli, V., O. Sorensen, M. Crispino, E. Arjas, and A. Frigessi. 2018. “Probabilistic Preference Learning with the Mallows Rank Model.” Journal of Machine Learning Research 18 (1): 1–49. http://jmlr.org/papers/v18/15-481.html.

Wickham, Hadley. 2014. “Tidy Data.” Journal of Statistical Software, Articles 59 (10): 1–23. doi:10.18637/jss.v059.i10.