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Abstract

Causal mediation analysis is widely used across many disciplines to investigate possible

causal mechanisms. Such an analysis allows researchers to explore various causal pathways,

going beyond the estimation of simple causal effects. Recently, [[mai, Keele, and Yamamoto|

(2010¢)) and [[mai, Keele, and Tingley| (2010b)) developed general algorithms to estimate causal

mediation effects with the variety of data types that are often encountered in practice. The new
algorithms can estimate causal mediation effects for linear and nonlinear relationships, with
parametric and nonparametric models, with continuous and discrete mediators, and various
types of outcome variables. In this paper, we show how to implement these algorithms in the
statistical computing language R. Our easy-to-use software, mediation, takes advantage of
the object-oriented programming nature of the R language and allows researchers to estimate
causal mediation effects in a straightforward manner. Finally, mediation also implements
sensitivity analyses which can be used to formally assess the robustness of findings to the
potential violations of the key identifying assumption. After describing the basic structure of

the software, we illustrate its use with several empirical examples.
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1 Introduction

Causal mediation analysis is important for quantitative social science research because it allows
researchers to identify possible causal mechanisms, thereby going beyond the simple estimation
of causal effects. As social scientists, we are often interested in empirically testing a theoretical
explanation of a particular causal phenomenon. This is the primary goal of causal mediation
analysis. Thus, causal mediation analysis has a potential to overcome the common criticism of
quantitative social science research that it only provides a black-box view of causality.

Recently, [Imai, Keele, and Yamamoto| (2010c) and [Imai, Keele, and Tingley| (2010b)) developed

general algorithms for the estimation of causal mediation effects with a wide variety of data that

are often encountered in practice. The new algorithms can estimate causal mediation effects for

linear and nonlinear relationships, with parametric and nonparametric models, with continuous

and discrete mediators, and various types of outcome variables. [Imai et al/ (]20100@ also develop

sensitivity analyses which can be used to formally assess the robustness of findings to the potential
violations of the key identifying assumption. In this paper, we describe the easy-to-use software,
mediation, which allows researchers to conduct causal mediation analysis within the statistical
computing language R (R Development Core Team| 2009). We illustrate the use of the software

with some of the empirical examples presented in [lmai et al.|(2010b)).

Installation and Updating. Before we begin, we explain how to install and update the software.
First, researchers need to install R which is available freely at the Comprehensive R Archive

Network (http://cran.r-project.org). Next, open R and then type the following at the prompt,
R> install.packages("mediation")

Once mediation is installed, the following command will load the package,

R> library("mediation")

Finally, to update mediation to its latest version, try the following command,

R> update.packages("mediation")

2 New Features in Versions 3.x

This section describes the new features implemented since the release of mediation version 3.0.
Although the rest of this document has also been updated to incorporate those additional features,
we discuss them separately here for those readers who are already familiar with previous versions
of the package and only want specific information about the recent updates. Those who are new to
this package can safely skip this section and obtain the same information elsewhere in this vignette

or in the help documents.
2.1 Features Added in Version 3.0

We implemented many new features in version 3.0, along with numerous small changes to the

internal code for efficiency improvement. The user-level changes from the previous version include:


http://cran.r-project.org

More model types have been added to the main mediation analysis function mediate. In
addition to the models already implemented in the previous version, the mediate function
can now be used for ordered response models fitted via the polr function, quantile regressions
for mediators fitted via the qr function in package quantreg, and the tobit model for censored
outcome variables fitted via the vglm function in package VGAM. These models have not been

made available for sensitivity analysis via medsens, however.

Continuous treatment variables can now be used with the mediate function via the treat.value
and control.value arguments. The estimated average causal mediation effects (ACME)
and average direct effects (ADE) will be equal to the effects of changing treatment from
control.value to treat.value while holding the appropriate treatment status constant at
either of these two values. This functionality, however, has not been implemented for the

medsens function yet.

The sensitivity analysis via medsens can now be conducted with respect to the average direct
effects. Users can choose from "indirect", "direct" or "both" using the effect.type

argument. The summary and plot methods are also added for these cases.

A plot method function for mediate objects is now included, so that the results of mediation
analysis using mediate can be easily graphically summarized. When the input includes
treatment-mediator interaction and the effect estimates therefore differ between the treatment
and control conditions, the user can choose which set of estimates to plot by setting the

treatment argument to "treated", "control", or "both".

The summary output for mediate objects has been updated to include additional information
and not to include unnecessary information (e.g. separate estimates for 5(0) and 6(1) when

they are equal).

The output of the mediate function now by default includes the entire sets of simulation draws
(d0.sims, z0.sims, etc.) in addition to their means and quantiles. This can be disabled by

setting the long argument to FALSE.

The mediate function can now run even when different data frames are used for the mediator
model (model.m) and outcome model (model.y). This is done by internally refitting both
models using a combined data frame created via merge. As a result, observations which
contain missing values for either model will be automatically listwise discarded. This feature
is by default disabled and can be enabled by setting the dropobs option to TRUE.

Confidence intervals can now be calculated using heteroskedasticity-consistent standard errors
for some parametric models (e.g. 1m, glm). This feature is controled by the new robustSE
argument of the mediate function. The standard errors are obtained via the vcovHC function
in package sandwich and users may also pass options for vcovHC to use different types of

robust standard errors. However, these standard errors are currently not carried through



for sensitivity analysis; the output of medsens will not be based on robust standard errors

regardless of the robustSE argument.

e Users no longer need to manually indicate whether their models include a treatment-mediator

interaction. The old INT argument is therefore deprecated (but still accepted with a warning).

e Sampling weights can now be used for the mediate and medsens functions via the weights
arguments in the input mediator and outcome models. The estimated quantities will thus
be weighted averages when the mediator and outcome models are fitted with a non-NULL

weights argument. This will be useful if, for example, data come from a complex survey.

e We have added a new function mediations to easily conduct multiple causal mediation
analyses for different treatment-mediator-outcome combinations. Both summary and plot
methods have also been added for this function. The function is intended for exploratory
analyses only and users are cautioned against its potential abuse. See Section [p| for more

discussion.

2.2 Features Added in Version 3.1

We made minor updates to the mediation package upon the release of version 3.1.

e Confidence intervals can now be calculated using one way clustered standard errorsp_-] for some
parametric models (e.g., 1m, glm). This feature is controlled by the new cluster argument of
the mediate function. These standard errors are currently not carried through for sensitivity
analysis. The cluster option is enabled by specifying the variable on which to cluster. The

default is to not cluster and hence is set to NULL.

e Ordered mediator and outcome models can now be fitted via the bayespolr function in the

arm package, along with the polr function.

3 The Software

In this section, we give an overview of the software by describing its design and architecture. To
avoid the duplication, we do not provide the details of the methods that are implemented by
mediation and the assumptions that underline them. Readers are encouraged to read
for more information about the methodology implemented in mediation.

3.1 The Overview

The methods implemented via mediation rely on the following identification result obtained under
the sequential ignorability assumption of [[mai et al] (2010c)),
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!See lhttp://people.su.se/~ma/clustering.pdf for a discussion of the implementation.
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Figure 1: The Diagram Illustrating the Use of the Software mediation. Users first fit the medi-
ator and outcome models. Then, the function mediate conducts causal mediation analysis while
medsens implements sensitivity analysis. The functions summary and plot help users interpret the
results of these analyses.

where §(t) and ((t) are the average causal mediation and average (natural) direct effects, respec-
tively, and (Y;, M;, T;, X;) represents the observed outcome, mediator, treatment, and pre-treatment
covariates. The sequential ignorability assumption states that the observed mediator status is as if
randomly assigned conditional on the randomized treatment variable and the pre-treatment covari-
ates. Causal mediation analysis under this assumption requires two statistical models; one for the
mediator f(M; | T;, X;) and the other for the outcome variable f(Y; | T;, M;, X;). (Note that we
use the empirical distribution of X; to approximate F,.) Once these models are chosen and fitted

by researchers, then mediation will compute the estimated causal mediation and other relevant

estimates using the algorithms proposed in|Ilmai et al|(2010b]). The algorithms also produce uncer-

tainty estimates such as standard errors and confidence intervals, based on either a nonparametric
bootstrap procedure (for parametric or nonparametric models) or a quasi-Bayesian Monte Carlo
approximation (for parametric models).

Figure [1] graphically illustrates the three steps required for a mediation analysis. The first step
is to fit the mediator and outcome models using, for example, regression models with the usual 1m
or glm functions. In the second step, the analysts takes the output objects from these models, which
in Figure[l] we call model.m and model.y, and use them as inputs for the main function, mediate.
This function then estimates the causal mediation effects, direct effects, and total effect along with
their uncertainty estimates. Finally, sensitivity analysis can be conducted via the function medsens
which takes the output of mediate as an input. For these outputs, there are both summary and

plot methods to display numerical and graphical summaries of the analyses, respectively.



3.2 Estimation of the Causal Mediation Effects

Estimation of the causal mediation effects is based on Algorithms 1 and 2 of [Imai et al| (2010b).

These are general algorithms in that they can be applied to any parametric (Algorithm 1 or 2)
or semi/nonparametric models (Algorithm 2) for the mediator and outcome variables. Here, we
briefly describe how these algorithms have been implemented in mediation by taking advantage

of the object-oriented nature of R programming language.

Algorithm 1 for Parametric Models. We begin by explaining how to implement Algorithm 1

of lmai et al| (2010b) for standard parametric models. First, analysts fit parametric models for

the mediator and outcome variables. That is, we model the observed mediator M; given the
treatment T; and pre-treatment covariates X;. Similarly, we model the observed outcome Y; given
the treatment, mediator, and pre-treatment covariates. For example, to implement the Baron-
Kenny procedure in mediation, linear models are fitted for both the mediator and outcome models
using the 1m command.

The model objects from these two parametric models form the inputs for the mediate function.
The user must also supply the names for the mediator and outcome variables along with how
many simulations should be used for inference, and whether the mediator variable interacts with
the treatment variable in the outcome model. Given these model objects, the estimation proceeds
by simulating the model parameters based on their approximate asymptotic distribution (i.e.,
the multivariate normal distribution with the mean equal to the parameter estimates and the
variance equal to the asymptotic variance estimate), and then computing causal mediation effects of
interest for each parameter draw (e.g., using equations and for average causal mediation and
(natural) direct effects, respectively). This method of inference can be viewed as an approximation
to the Bayesian posterior distribution due to the Bernstein-Von Mises Theorem (King ef al] R000).
The advantage of this procedure is that it is relatively computationally efficient (when compared
to Algorithm 2).

We take advantage of the object-oriented nature of R programming language at several steps in

the function mediate. For example, the functions like coef and vcov are useful for extracting the
point and uncertainty estimates from the model objects to form the multivariate normal distribution
from which the parameter draws are sampled. In addition, the computation of the estimated
causal mediation effects of interest requires the prediction of the mediator values under different
treatment regimes as well as the prediction of the outcome values under different treatment and
mediator values. This can be done by using model.frame to set the treatment and/or mediator
values to specific levels while keeping the values of the other variables unchanged. We then use the
model .matrix and matrix multiplication with the distribution of simulated parameters to compute
the mediation and direct effects. The main advantage of this approach is that it is applicable to a
wide range of parametric models and allows us to avoid coding a completely separate function for

different models.

Algorithm 2 for Non/Semiparametric Inference. The disadvantage of Algorithm 1 is that

it cannot be easily applied to non/semiparametric models. For such models, Algorithm 2, which



is based on nonparametric bootstrap, can be used although it is more computationally intensive.

Algorithm 2 may also be used for the usual parametric models which may be useful since mediation

effects are known to have skewed distributions (e.g., [Mackinnon et al} [2004} [Preacher and Hayes|

2008)). Specifically, in Algorithm 2, we resample the observed data with replacement. Then, for
each of bootstrapped samples, we fit both the outcome and mediator models and compute the
quantities of interest. As before, the computation requires the prediction of the mediator values
under different treatment regimes as well as the prediction of the outcome values under different
treatment and mediator values. To take advantage of the object-oriented nature of the R language,
Algorithm 2 relies on the predict function to compute these predictions, while we again manipulate
the treatment and mediator status using the model . frame function. This process is repeated a large
number of times and returns a bootstrap distribution of the mediation, direct, and total effects.
We use the percentiles of the bootstrap distribution for confidence intervals. Thus, Algorithm 2
allows analysts to estimate mediation effects with more flexible model specifications or to estimate

mediation effects for quantiles of the distribution.
3.3 Sensitivity Analysis

Causal mediation analysis relies on the sequential ignorability assumption that cannot be directly
verified with the observed data. The assumption implies that the treatment is ignorable given
the observed pre-treatment confounders and that the mediator is ignorable given the observed
treatment and the observed pre-treatment covariates. In order to probe the plausibility of such
a key identification assumption, analysts must perform a sensitivity analysis (Rosenbaum] [2002)).

Unfortunately, it is difficult to construct a sensitivity analysis that is generally applicable to any

parametric or nonparametric model. Thus, [fmai et al] (2010d[b) develop sensitivity analyses for

commonly used parametric models, which we implement in mediation.

The Baron-Kenny Procedure. [Imai et al|(2010c|) develop a sensitivity analysis for the Baron-

Kenny procedure and [Imai et al| (2010b)) generalize it to the linear structural equation model

(LSEM) with an interaction term. This general model is given by,

M; = a9+ BT; + §2TX¢ + €9, (3)
Vi = az+ BT +yM; 4+ kTiM; + &5 Xi + €3, (4)

where the sensitivity parameter is the correlation between €;5 and ¢;3, which we denote by p. Under
sequential ignorability, p is equal to zero and thus the magnitude of this correlation coefficient
represents the departure from the ignorability assumption (about the mediator). Note that the

treatment is assumed to be ignorable as it would be the case in randomized experiments where the

treatment is randomized but the mediator is not. Theorem 2 of [Imai et al| (2010b)) shows how the

average causal mediation effects change as a function of p.

To obtain the confidence intervals for the sensitivity analysis, we apply the following iterative
algorithm to equations (3)) and (4]) for a fixed value of p. At the tth iteration, given the current values
of the coefficients, i.e., 81) = (ag),ﬂét), ét),agt),ﬂét), ét),’y(t),/i(t)), and a given error correlation

p, we compute the variance-covariance matrix of (;2, €;3), which is denoted by 21, The matrix is



computed by setting o( = ||e H /(n — L;) and Jé? = paé) () , where ég-t) is the residual vector
and L; is the number of coefficients for the mediator model (j = 2) and the outcome model (j = 3)

at the tth iteration. We then update the parameters via generalized least squares, i.e.,

9(t+1) _ {VT(E(t)_l & In)V}_lvT(E(t)_l ®In)W
17T X 0 0 O 0 0

M
W=
00 0 17T MTM X [ Y
and Y = (Y1,...,Y,) " are column vectors of length n, and X = (Xi,...,X,)" are the (n x K)

matrix of observed pre-treatment covariates, and ® represents the Kronecker product. We typi-

where V = T =(T1,...,T,)", M = (My,...,M,)T,

cally use equation-by-equation least squares estimates as the starting values of 6 and iterate these
two steps until convergence. This is essentially an application of the iterative feasible generalized
least square (FGLS) algorithm of the seemingly unrelated regression m m, and thus the
asymptotic variance of 6 is given by Var(f) = {VT (S~ @ I,,)V}~1. Then, for a given value of p,
the asymptotic variance of the estimated average causal mediation effects is found, for example, by

the Delta method and the confidence intervals can be constructed.

The Binary Outcome Case. The sensitivity analysis for binary outcomes parallels the case
when both the mediator and outcome are continuous. Here, we assume that the model for the

outcome is a probit regression. Using a probit regression for the outcome allows us to assume the

error terms are jointly normal with a possibly non-zero correlation p. lmai et al.|(2010b|) derive the

average causal mediation effects as a function of p and a set of parameters that are identifiable due
to randomization of the treatment. This lets us use p as a sensitivity parameter in the same way
as in the Baron-Kenny procedure. For the calculation of confidence intervals, we rely on the quasi-
Bayesian approach of Algorithm 1 by approximating the posterior distribution with the sampling

distribution of the maximum likelihood estimates.

The Binary Mediator Case. Finally, a similar sensitivity analysis can also be conducted in
a situation where the mediator variable is dichotomous and the outcome is continuous. In this
case, we assume that the mediator can be modeled as a probit regression where the error term
is independently and identically distributed as standard normal distribution. A linear normal
regression with error variance equal to o3 is used to model the continuous outcome variable. We
further assume that the two error terms jointly follow a bivariate normal distribution with mean

zero and covariance pos. Then, as in the other two cases, we use the correlation between the two

error terms p as the sensitivity parameter. Imai et al.|(2010b)) show that under this setup, the causal

mediation effects can be expressed as a function of the model parameters that can be consistently
estimated given a fixed value of p. Uncertainty estimates are computed based on the quasi-Bayesian
approach, as in the binary outcome case. The results can be graphically summarized via the plot

function in a manner similar to the other two cases.

Alternative Interpretations Based on R? The main advantage of using p as a sensitivity

parameter is its simplicity. However, applied researchers may find it difficult to interpret the

magnitude of this correlation coefficient. To overcome this limitation, [[mai et al| (2010c)) proposed




alternative interpretations of p based on the coefficients of determination or R? and
extended them to the binary mediator and binary outcome cases. In that formulation,
it is assumed that there exists a common unobserved pre-treament confounder in both mediator
and outcome models. Applied researchers are then required to specify whether the coefficients
of this unobserved confounder in the two models have the same sign or not; i.e., sgn(AaA3) = 1
or —1 where Ao and A3 are the coefficients in the mediator and outcome models, respectively.
Once this information is provided, the average causal mediation effect can be expressed as the
function of “the proportions of original variances explained by the unobserved confounder” where
the original variances refer to the variances of the mediator and the outcome (or the variance of
latent variable in the case of binary dependent variable). This allows researchers to quantify how
large the unobserved confounder must be (relative to the observed pre-treatment covariates in the

model) in order for the original conclusions to be reversed.

Sensitivity Analyses with Respect to the Average Direct Effects. In addition to the above
procedures for the average causal mediation effects, an analogous sensitivity analysis can also be
conducted for the average direct effects using the medsens function. This is possible because it can
be shown that the average direct effects are also expressed as a function of p in any of the above
three cases. First, when both the mediator and outcome variables are continuous and modelled
using linear structural equations, the iterative FGLS algorithm given above can be used to estimate
the model coefficients and both the point and interval estimates of the average direct effects can be
obtained using the formulas given by [Imai et al| (2010c, Section 4.1) and [Imai et al| (2010b} p.314
and Appendix A). Second, when the mediator is binary and modelled using the probit regression,
the average direct effect is given by ((t) = B3+ kE{®(ag + ot + &5 X;)} using the same notation as
[fmai et al] (2010b] footnote 12), where all of the parameters, (a2, 52, &2, 3, k), are identified and
consistently estimated using the same procedure. Finally, for the binary outcome case, the average
direct effect is identified given a value of p and expressed as ((t) = E{®(ay + B1t + & X; + Bs(1 —
t)/\/7203 + 2ypog + 1) — ®(aq + Bt + & X; — Bst/\/7203 + 2ypos + 1)}, which can be estimated
via the same procedure as described in Appendix H of [lmai et al|(2010b)). The medsens function

uses these procedures for sensitivity analyses for the average direct effects.
3.4 Current Limitations

Our software, mediation, is quite flexible and can handle many of the model types that researchers
are likely to use in practice. Table [1| categorizes the types of the mediator and outcome models
and lists whether mediation can produce the point and uncertainty estimates of causal mediation
effects. For example, while mediation can estimate average causal mediation effects for censored
outcomes with the tobit model, it has not yet been extended to cases involving censored mediators.
In addition, mediate can be used with common generalized linear models (GLMs) such as binary
logit and probit, Poisson and gamma regression models, but it cannot be used with binomial
mediator models with multiple trials.

In each situation handled by mediation, it is possible to have an interaction term between

treatment status and the mediator variable, in which case the estimated quantities of interest will



Outcome Model Types

Mediator Model Types Linear GLM Ordered Censored Quantile Semiparametric
Linear (1m) v v v v v v

GLM (probit etc. via glm) v v v v v v
Ordered (polr/bayespolr) v v v v v v
Censored (tobit via vglm) - - - - - -
Quantile (rq) v v v v v v
Semiparametric (gam) v v v v v'r v

Table 1: The Types of Models That Can be Handled by mediate for the Estimation of Causal
Mediation Effects. Stars (*) indicate the model combinations that can only be estimated using the
nonparametric bootstrap (i.e. with boot = TRUE).

Outcome Model Types
Mediator Model Types Linear Binary Probit
Linear v v
Binary Probit v -

Table 2: The Types of Models That Can Be Handled by medsens for Sensitivity Analysis.

be reported separately for the treatment and control groups.

Our software provides a convenient way to probe the sensitivity of results to potential violations
of the ignorability assumption for certain model types. The sensitivity analysis requires the specific
derivations for each combination of models, making it difficult to develop a general sensitivity
analysis method. As summarized in Table 2] mediation can handle several cases that are likely to
be encountered by applied researchers in practice. When the mediator is continuous, then sensitivity
analysis can be conducted with continuous and binary outcome variables. In addition, when the
mediator is binary, sensitivity analysis is available for continuous outcome variables. For sensitivity
analyses that combine binary or continuous mediators and outcomes, analysts must use a probit
regression model with a linear regression model. It should be noted that unlike the estimation of
causal mediation effects, sensitivity analysis with treatment/mediator interactions can only be done
for the continuous outcome/continuous mediator and continuous outcome/binary mediator cases.

In the future, we hope to expand the range of models that are available for sensitivity analysis.

4 Examples

Next, we provide several examples to illustrate the use of mediation for the estimation of causal
mediation effects and sensitivity analysis. The data used is available as part of the package so that
readers can replicate the results reported below. We demonstrate the variety of models that can
be used for the outcome and mediating variables.

Before presenting our examples, we load the mediation library and the example data set
included with the library.

R> library("mediation")



mediation: R Package for Causal Mediation Analysis
Version: 3.0
R> data("jobs")

This dataset is from the Job Search Intervention Study (JOBS II) (Vinokur and Schul, [1997). In

the JOBS II field experiment, 1,801 unemployed workers received a pre-screening questionnaire

and were then randomly assigned to treatment and control groups. Those in the treatment group
participated in job-skills workshops. Those in the control condition received a booklet describing
job-search tips. In follow-up interviews, two key outcome variables were measured; a continu-
ous measure of depressive symptoms based on the Hopkins Symptom Checklist (depress2), and
a binary variable representing whether the respondent had become employed (workl). In the
JOBS II data, a continuous measure of job-search self-efficacy represents a key mediating vari-
able (job_seek). In addition to the outcome and mediators, the JOBS II data also include the
following list of baseline covariates that were measured prior to the administration of the treat-
ment: pre-treatment level of depression (depressi), education (educ), income, race (nonwhite),
marital status (marital), age, sex, previous occupation (occp), and the level of economic hardship

(econ_hard).
4.1 Estimation of Causal Mediation Effects

The Baron-Kenny Procedure. We start with an example when both the mediator and the
outcome are continuous. In this instance, the results from either algorithm will return point
estimates essentially identical to the usual Baron and Kenny procedure though the quasi-Bayesian
or nonparametric bootstrap approximation is used. Using the JOBS II data, we first estimate two

linear regressions for both the mediator and the outcome using the 1m function.

R> model.m <- 1m(job_seek ~ treat + depressl + econ_hard + sex + age

+ occp + marital + nonwhite + educ + income, data = jobs)

R> model.y <- 1lm(depress2 ~ treat + job_seek + depressl + econ_hard + sex + age

+ occp + marital + nonwhite + educ + income, data = jobs)

These two model objects, model.m and model.y, become the arguments for the mediate function.
When different data frames are used for these two models, the mediate function internally refits
them using a merged dataset if the dropobs argument is set to TRUE; otherwise an error message
is returned.

In the first call to mediate below, we specify boot = TRUE to call the nonparametric bootstrap
with 1000 resamples (sims = 1000). When this option is set to FALSE in the second call, infer-
ence proceeds via the quasi-Bayesian Monte Carlo approximation using Algorithm 1 rather than
Algorithm 2. In this case, heteroskedasticity-robust standard errors can be used for the calcula-
tion of confidence intervals for some types of models by setting the robustSE argument to TRUE.
Cluster-robust standard errors can also be used by the cluster 