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THE STANDARD MIT LICENSE APPLIES: 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated 

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the 

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 

permit persons to whom the Software is furnished to do so, subject to the following conditions: 

 

The above copyright notice and this permission notice shall be included in all copies or substantial portions of 

the Software. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE 

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 

SOFTWARE. 

 

This software relies on R packages written by others. For their descriptions and license information, see: 

tidyr    https://cran.r-project.org/web/packages/tidyr/index.html  

magrittr   https://cran.r-project.org/web/packages/magrittr/index.html  

ggplot2   https://cran.r-project.org/web/packages/ggplot2/index.html  

gridExtra  https://cran.r-project.org/web/packages/gridExtra/index.html  

scales   https://cran.r-project.org/web/packages/scales/index.html 

Rmpfr   https://cran.r-project.org/web/packages/Rmpfr/index.html 

data.table  https://cran.r-project.org/web/packages/data.table/ 

broom   https://cran.r-project.org/web/packages/broom/index.html  
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Overview  

This software implements three diagnostics for confounding that can be used in sequence (see Jackson 2016). 

These apply to any study of multivariate exposures e.g. time-varying exposures, direct effects, interaction, and 

censoring. The first two diagnostics pertain to the nature of confounding in the data, while the third is meant to 

examine residual confounding after applying inverse probability weighting. The third diagnostic can also be 

used to examine residual confounding within propensity-score strata (when these are used in place of covariates 

in the parametric g-formula). We recommend that the diagnostics be applied to covariates that investigators will 

use to control for confounding. We provide tools to help focus each diagnostic on the relevant covariate history 

(used to control for confounding). 

• Diagnostic 1 is a generalization of a “Table 1” for multivariate exposures (i.e. multiple exposures that 

are distinct in timing or character). It examines whether the prior covariate means are the same across 

exposure groups, among persons who have followed a particular exposure trajectory up to that point in 

time. Like a “Table 1” it is meant to describe whether exposure groups have different distributions of 

prior covariates.  

 

• Diagnostic 2 is meant to inform whether or not g-methods are necessary to control for confounding. G-

methods are required if any covariate measurement is associated with a prior exposure after adjusting 

for covariates that precede the exposure. Here, the diagnostic describes whether the covariate mean 

differs across prior exposure groups, after adjustment for covariates (that precede exposure) through 

inverse probability weighting or propensity score stratification. 

 

• Diagnostic 3 is meant to be applied after investigators have applied the earlier diagnostics and have 

chosen to use g-methods. The form of Diagnostic 3 is similar to that of Diagnostic 1 in that it is a 

generalized “Table 1.” The difference is that it is applied to an inverse probability weighted population, 

where the weights are typically designed to remove confounding. It can also be applied to evaluate 

residual confounding within levels of time-varying propensity-score strata. 

The R-based functions presented here allow users to construct balance tables and trellised plots. They can be 

used to diagnose multivariate exposures that are binary or categorical. The functions can also accommodate 

right-censoring (including the extension for Diagnostic 2 described in Jackson 2016). While the R-based 

functions could in theory be applied to diagnose continuous exposures, it may be better to use a regression 

model for this (see sample R code at the end of the example). 

The user can request time-specific tables and plots for all times, or a subset of selected times. One can 

alternatively request summary metrics that average over non-referent exposure values, propensity-score strata 

and/or exposure history, time, and segments of distance, in that order (see Jackson 2016). 

To use these functions, users will need a basic understanding of data structures and data manipulation in R. They 

will also need to install a few add-on packages that the functions depend on (magrittr, tidyr, dplyr, ggplot2, 

scales, and gridExtra). These packages will need to be loaded at the beginning the R session, along with the grid 

package that comes with base R (see example at end of document). Note that the software will not run on R 

versions below 3.1.2. 

Users should be aware that applying these functions to dataframes (datasets) with many observations, follow-up 

times, and covariates may require substantial computing memory. The approach we implement here is described 

in Jackson 2016 and could be adapted for other software. In addition, output from other software can be 

imported and used in the plotting function provided here. 
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Format of Input Data 

The software is designed to use data that analysts may readily have on hand in analyses of time-varying 

exposures. This includes time-varying exposures, time-varying covariates, time-varying weights (when 

applicable), and time-varying propensity-score strata (when applicable). Time-varying exposure history strata 

may also be required, and we provide functions to create these from the exposure variables. 

These time-indexed variables should be organized into a “wide” data format where each row uniquely indexes a 

single subject’s data, so that columns index measurement of each variable at each time. The indices should be 

indicated with an underscore suffix followed by the time, e.g. “variable_1”, “variable_2”, “variable_3.” No 

other underscores should appear in the variable name. It is fine if variables were measured at different times 

(e.g. “varA_1”, “varB_2” “varB_4 “varC_3” “varC_5). The widen()function is provided to assist in this task. 

The analysis proceeds as follows: 

In a prelimary step, if person-time data needs to be reformatted into “wide” data format, use the 

widen()function. Similarly, if exposure history is needed, create time-indexed exposure history variables from 

the time-indexed exposure variables via the makehistory_one()or makehistory_two() functions. 

1. Restructure this wide dataframe into a “tidy” long dataframe: lengthen() function 

 

By tidy, we mean that a row is uniquely identified by the pairing of exposure and covariate 

measurement times. This is will typically result in an extremely long dataframe, and could require 

substantial computing memory in R if there are many persons, covariates, and/or follow-up times. See 

Note (ii) for a solution to avoid memory issues with large and rich dataframes. 

 

2. From the long dataframe, create a covariate balance table: balance() function 

 

3. Plot the data in the covariate balance table: makeplot() function 

Note (i) These steps should be followed in order as lengthen()produces the dataframe required by 

balance()which produces the dataframe used by makeplot(). 

Note (ii) When the data have a large number of observations, covariates, and/or measurement times, memory 

issues can be ameliorated by using diagnose()to iteratively apply lengthen() and balance() by 

looping over covariates. 

Note (iii) One can encode assumptions about which covariates are necessary to adjust for confounding. This is 

done by removing covariate history that does not support exchangeability assumptions, through applying the 

omit.history()function to the “tidy” dataframe produced by lengthen(), balance(), or 

diagnose(). 

Note (iv) Jackson 2016 proposes two methods for obtaining summary averages over person-time. The code here 

implements the standardization approach. However, regression models can be applied to the “tidy” dataframe 

produced by lengthen(). See the end of the software manual for sample code. 

Note (v) The code can accept a vector of time-indexed censoring indicators (1=censored, 0=otherwise). This can 

be used regardless of the source of censoring (i.e. an event or some artificial rule defined by the investigator).  

Note (vi) Although the code will still run in the presence of missing data, the results may not be easily 

interpretable (especially when there is missing data in the exposures and their history). 

Function calls 
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lengthen() returns a dataframe where each record is indexed by the observation identifier, exposure 

measurement time, exposure value, covariate name, covariate measurement time, and possibly exposure history 

and/or propensity score strata. Weights will appear as additional columns. 
 

lengthen( 

input     = dataframe in wide format, 

diagnostic    = diagnostic of interest e.g. 1, 2, or 3, 

censoring    = use censoring indicators/weights e.g. "yes" or "no", 

id      = unique observation identifier e.g. "id" 

times.exposure   = a vector of exposure measurement times e.g. c(0,1,2) 

times.covariate     = a vector of covariate measurement times e.g. c(0,1,2) 

exposure    = the root name for exposure measurements e.g. "a", 

temporal. covariate = a vector of root names for covariates whose values change over time  

                      e.g. c("l","m","n","o","p"), 

static.covariate  = a vector of root names for covariates whose values do not change   

                     (covariates listed here should not appear in the temporal.covariate  

                      argument) 

history     = the root name for history measurements e.g. "h", 

weight.exposure  = … for exposure weights e.g. "wa", 

censor      = … for censoring indicators "s", 

weight.censor   = … for censoring weights e.g. "ws", 

strata     = … for propensity-score strata e.g. "e", 

) 

 

This function is designed to minimize user input by creating the covariate names automatically based on 

the covariate and times arguments. In the example above, it would create a lengthened dataframe 

based on the following covariate measurements: 

 
c( "l_0","m_0","n_0","o_0","p_0", 

   "l_1","m_1","n_1","o_1","p_1", 

   "l_2","m_2","n_2","o_2","p_2")  

 

Now, it may be that variable “n” is really a static covariate, like sex. In this case, you would only have 

“n_0” in the dataset, not “n_1” and “n_2”. To specify a covariate like this, omit it from the 

temporal.covariate and instead include it in the static.covariate argument. Note that the software 

assumes that static covariates appear in the data with the lowest possible index specified in times. In this 

example, specifying “n” as a static covariate would create a lengthened dataframe based on the 

following covariate measurements (notice that “n_0” is included but “n_1” and “n_2” are not): 
 

c("n_0", 

"l_0","m_0","o_0","p_0", 

   "l_1","m_1","o_1","p_1", 

   "l_2","m_2","o_2","p_2")  

 

Note that the software will automatically detect and ignore covariate measurements that are not present 

within the input dataframe. For example, suppose variables “l” and “m” were only measured at times 0 

and 2, and that l_1 and m_1 were not present in the dataframe. The software would, after detecting their 

absence, would create automatically lengthened dataframe based on the following covariate 

measurements i.e. “l_1”,“m_1” are excluded: 

 
c( "l_0","m_0","n_0","o_0","p_0", 

               "n_1","o_1","p_1",  

   "l_2","m_2","n_2","o_2","p_2")  

 

 

 

 

 

 

 

 

balance() takes the restructured dataframe output by lengthen() and returns a covariate balance table 

(possibly stratified by exposure history and/or propensity-score strata). 
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balance ( 

input     = restructured dataframe 

diagnostic   = diagnostic of interest e.g. 1, 2, or 3, 

approach   = adjustment method e.g. "none" or "weight" or "stratify",  

censoring   = use censoring indicators/weights e.g. "yes" or "no", 

scope    = report the entire trellis e.g. "all", the diagonal e.g. "recent", or    

    a summary e.g. "average", 

times.exposure = vector of exposure measurement times e.g. c(0,1,2), 

times.covariate = vector of covariate measurement times e.g. c(0,1,2), 

sort.order       = vector of root names for all covariates listed in the order in which  

                   they should appear in the table (and also plot) e.g.   

                   c("n","m","o","l","p"). To display covariates in alphabetical order  

                   (the default), leave blank or type "alphabetical" 

exposure   = root name of exposure e.g. "a", 

history    = …exposure history e.g. "h", 

weight.exposure = …IP exposure weights e.g. "wa", 

weight.censor  = …IP censoring weights e.g. "ws", 

strata    = …of propensity score strata e.g. "e", 

recency    = an integer for the relative distance between exposures and covariate  

  measurements to focus on (e.g. 0 would represent the same timing). 

  the default is 0 for Diagnostics 1 and 3, and 1 for Diagnostic 2, 

average.over   = summary level for average metrics e.g. standardize over  

  "values" or "history" or "time" or "distance", 

periods    = a list of contiguous segments of relative distance to pool over  

  e.g. list(0,1:4,5:10) would yield summaries for three segments, 

list.distance   = a vector of distances to retain after averaging over time e.g. c(0,2), 

ignore.missing.metric = "yes" or "no" depending on whether the user wishes to estimate  

averages over person-time when there are missing values of the mean 

difference or standardized mean difference. Missing values for the 

standardized mean difference can occur when, for example, there is no 

covariate variation within levels of exposure-history and measurement times. 

If this argument is set to "no" and there are missing values, the average 

will also be missing. If set to "yes" an average will be produced that 

ignores missing values. 

metric     = the metric for which the user wishes to ignore missing values as  

specified in the ‘ignore_missing_metric’ argument. 

sd.ref     = “yes” or “no” depending on whether the user wishes to use the standard  

deviation of the reference group when calculating the SMD. 

 

        loop = a housekeeping argument the user can ignore. It is automatically set    

                          when the balance function is called by the diagnose() function     

described later. The default is set to "no". 

) 

 

 

 

 

makeplot() takes the covariate balance table produced by balance() and returns a trellised plot 

described in Jackson 2016. 
 

makeplot ( 

input     = output from balance() 

diagnostic   = the diagnostic of interest e.g. 1, 2, or 3, 

approach   = the adjustment method e.g. "none" or "weight" or "stratify,  

metric     = scale e.g. "D" for mean difference, "SMD" for standardized mean  

     difference 

censoring   = use censoring indicators/weights e.g. "yes" or "no", 

scope    = report the entire trellis e.g. "all", the diagonal e.g. "recent", or    

    a summary e.g. "average", 

stratum    = the propensity-score stratum to plot 

average.over   = level of summary for average e.g. "values" or "history" or "time"  

  or "distance" 

… additional arguments to control plot formatting parameters, see  

  Example, 

        groupvar        = the type of grouping variable "shape" or "colour", 

        shape           = the variable name to assign a shape scale, 

        colour          = the variable name to assign a colour scale 

) 

 

widen()will transform raw data from “long” format (e.g., person-time format) to a “wide” format suitable for 

lengthen(). 
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widen( 

input       = dataset in long format e.g., a person-time format, 

output       = name for output dataset, 

id              = unique identifier at the unit (person) level e.g. "id", 

time        = unique index for each observation within each unit e.g. "time", 

exposure      = the exposure of interest at time t e.g. "a", 

covariate       = a vector of covariates at time t e.g. c("l","m","n","o","p"),   

history                 = variable describing exposure history through time t e.g. "h", 

weight_exposure = inverse probability weight for exposure, at or through time t e.g. "wa", 

weight_censor   = cumulative inverse probability weight for censoring through time t e.g. "ws", 

censor          = censoring indicators at time t e.g. "s", 

strata          = propensity score strata at time t e.g. "e" 

 

) 

 

makehistory.one()will create  a set of exposure history variables for a time-varying exposure. 

makehistory.two() will create a set of joint exposure history variables for each of the two time-varying 

exposures, properly accounting for their temporal ordering (i.e. exposure “a” precedes exposure “b” at any time 

𝑡). The new history variables will use the time-indices in the exposure vectors you supply. See additional notes 

at end of software manual for more details.  
 

makehistory.one( 

id            = unique observation identifier e.g. "id", 

input   = dataset in wide format, 

times    = a vector of measurement times e.g. c(0,1,2) 

exposure  = the root name for exposure "a", 

name.history = desired root name for time-indexed history variables e.g. "h", 

group         = an optional baseline variable upon which to segregate the exposure  

history. This argument provides a way to adjust the metrics for a baseline 

covariate. For example, in the context of a trial, the grouping variable could 

be treatment assignment. In the context of a cohort study, this could be site 

e.g. "v". 

) 

 

makehistory.two( 

id            = unique observation identifier e.g. "id", 

input   = dataframe in wide format, 

times    = a vector of measurement times e.g. c(0,1,2) 

exposure.a  = the root name for the first exposure e.g. "a", 

exposure.b  = the root name for the second exposure e.g."z", 

name.history.a =desired root name for the first time-indexed history variables e.g. "ha",  

name.history.b = … root name for the second time-indexed history variables e.g. "hb", 

group         = an optional baseline variable upon which to segregate the exposure  

history. This argument provides a way to adjust the metrics for a baseline 

covariate. For example, in the context of a trial, the grouping variable could 

be treatment assignment. In the context of a cohort study, this could be site 

e.g. "v". 

       ) 

 

 

 

omit.history() will take the dataframe produced by lengthen() and remove covariate measurements 

based on their fixed measurement time or relative distance from exposure measurements (at time 𝑡) i.e. ones that 

do not support exchangeability assumptions at time 𝑡. The covariate.name argument is used to name the 

covariate whose history you wish to modify. To process the same manipulation for a set of covariates, simply 

supply a vector of covariate names to covariate.name. The omission argument determines whether the 

covariate history is (i) set to missing for certain covariate measurement times (omission =“fixed” with times=a 

vector of integers) or (ii) set to missing only for covariate measurement times at or before a certain distance 𝑘 

from exposure measurement times (omission =“relative” with distance=some integer) or (iii) set to missing 

only for covariate measurements that share the same timing as exposure measurements (omission 

=“same.time”). The removed values are set to missing. For example, using the “fixed” omission option for 

covariate “l” at time 2 will set all data on “l” at time 2 to missing, regardless of the exposure measurement time. 

In contrast, using the “relative” omission option for covariate “l” with distance 2 will only set to missing data on 
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“l” that is measured two units or more before the exposure measurement time (i.e. 𝑡 − 2, 𝑡 − 3, 𝑡 − 4 and so 

on). Last, using the “same.time” omission option for covariate “l” will set to missing all data on “l” that is 

measured at the same time as the exposure.  Missing data will be ignored when this dataframe is supplied to the 

balance() function. They will not contribute to the resulting covariate balance table, nor to plots produced by 

makeplot(),  nor will they contribute to any summary metrics are estimated by averaging over person-time. 

omit.history( 

     input    = restructured dataframe from lengthen() , 

     omission    = type of omission e.g. "fixed" or "relative" or "same.time" 

     covariate.name = root name of the covariate e.g. "m", 

     distance   = the distance between exposure and covariate measurements e.g. 2 

     times    = a vector of measurement times for the covariate e.g. c(1,2,3) 

     ) 

 

diagnose() is a wrapper function that calls the lengthen() and balance() functions in sequence, 

either in one step or iteratively across subsets of covariates and measurement times. In both cases it outputs a 

dataset that is suitable for plotting via the makeplot() function. When the user opts to not iterate over 

covariates and measurement times, there is no difference between calling the lengthen() and 

balance()functions one after the other. However, opting to iterate can be a useful way to process large and 

rich dataframes without otherwise requesting as much memory. 

diagnose( 

input    = dataframe in wide format, 

diagnostic   = diagnostic of interest e.g. 1, 2, or 3, 

censoring   = use censoring indicators/weights e.g. "yes" or "no", 

approach   = adjustment method e.g. "none" or "weight" or "stratify",  

scope    = report the entire trellis e.g. "all", the diagonal e.g. "recent", or    

            a summary e.g. "average", 

id     = unique observation identifier e.g. "id" 

times.exposure  = a vector of exposure measurement times e.g. c(0,1,2) 

times.covariate    = a vector of covariate measurement times e.g. c(0,1,2) 

exposure   = the root name for exposure measurements e.g. "a", 

temporal. covariate = a vector of root names for covariates whose values change over time  

                     e.g. c("l","m","n","o","p"), 

static.covariate = a vector of root names for covariates whose values do not change   

                     (covariates listed here should not appear in the temporal.covariate  

                      argument) 

sort.order       = vector of root names for all covariates listed in the order in which  

                   they should appear in the table (and also plot) e.g.   

                   c("n","m","o","l","p"). To display covariates in alphabetical order  

                   (the default), leave blank or type "alphabetical" 

history    = the root name for history measurements e.g. "h", 

weight.exposure = … for exposure weights e.g. "wa", 

censor     = … for censoring indicators "s", 

weight.censor  = … for censoring weights e.g. "ws", 

strata    = … for propensity-score strata e.g. "e", 

recency    = an integer for the relative distance between exposures and covariate  

  measurements to focus on (e.g. 0 would represent the same timing). 

  the default is 0 for Diagnostics 1 and 3, and 1 for Diagnostic 2, 

average.over   = summary level for average metrics e.g. standardize over  

  "values" or "history" or "time" or "distance", 

periods    = a list of contiguous segments of relative distance to pool over  

  e.g. list(0,1:4,5:10) would yield summaries for three segments, 

list.distance   =  a vector of distances to retain after averaging over time e.g. c(0,2), 

ignore.missing.metric = "yes" or "no" for whether the user wishes to estimate  

averages over person-time when the balance metric has missing values. For 

example, the standardized mean difference will be missing when there is no 

covariate variation within levels of exposure-history and measurement times. 

When this argument is set to "no" and there are missing values, the average 

will also be missing. If set to "yes" an average will be produced that 

ignores missing values. 

metric     = the metric for which the user wishes to ignore missing values as  

specified in the ‘ignore.missing.metric’ argument. 

        loop = "yes" to iteratively apply balance() and lengthen() or "no" to process  

all covariates and measurement times at once. 

) 
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There is an important change in workflow when users wish to use the diagnose() function and also remove 

irrelevant covariate history from the balance table calculations and plot. Users who wish to do so will need to 

apply the omit.history() function to the dataframe output by diagnose(). If the user wants to remove 

covariate history while averaging metrics over time or distance, the user will first have to call the diagnose() 

function with the scope argument set to “all”. The user would then apply the omit.history() function as 

many times as desired, and then use the apply.scope() function described next to average the metrics over 

person-time. This workflow change allows users to ensure that the summary metrics ignore covariate history the 

user deems irrelevant to confounding. 

 

apply.scope() is a helper function that will take a dataframe output by balance() or diagnose(), 

where the scope argument in those functions was set to “all”, and subset the table to covariate balance metrics 

at a certain distance (e.g. a certain recency) or produce estimates that average over person-time. This function is 

only useful when a user wishes to focus on proximal covariate balance metrics or produce summary estimates 

via diagnose(), but also needs to remove covariate history that is irrelevant to confounding. In this situation, 

the user first applies the diagnose() function with the scope argument set to “all”, then applies the 

omit.history() function, followed by the apply.scope() function. 
 

apply.scope(input = dataframe output by diagnose() or balance() function, 

  diagnostic = diagnostic of interest e.g. 1, 2, or 3, 

  approach    = adjustment method e.g. "none" or "weight" or "stratify",  

scope       = report the entire trellis e.g. "all", the diagonal e.g. "recent", or    

            a summary e.g. "average", 

recency  = an integer for the relative distance between exposures and covariate  

  measurements to focus on (e.g. 0 would represent the same timing). 

  the default is 0 for Diagnostics 1 and 3, and 1 for Diagnostic 2, 

  average.over = summary level for average metrics e.g. standardize over  

  "values" or "history" or "time" or "distance", 

  periods      = a list of contiguous segments of relative distance to pool over  

  e.g. list(0,1:4,5:10) would yield summaries for three segments, 

list.distance =  a vector of distances to retain after averaging over time e.g.  

                 c(0,2), 

sort.order = vector of root names for all covariates listed in the order in which  

                   they should appear in the table (and also plot) e.g.   

                   c("n","m","o","l","p"). To display covariates in alphabetical order  

                   (the default), leave blank or type "alphabetical" 

ignore.missing.metric = "yes" or "no" depending on whether the user wishes to 

estimate averages over person-time when there are missing values of the mean 

difference or standardized mean difference. Missing values for the 

standardized mean difference can occur when, for example, there is no 

covariate variation within levels of exposure-history and measurement times. 

If this argument is set to "no" and there are missing values, the average 

will also be missing. If set to "yes" an average will be produced that 

ignores missing values. 

metric   = the metric for which the user wishes to ignore missing values as  

  specified in the ‘ignore.missing.metric’ argument. 

) 
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Required Arguments for Function Calls 

 

For all functions users must specify the diagnostic, approach, scope, and censoring arguments. Depending 

on how these are specified, other arguments may be required: 

  
Required arguments for lengthen() by diagnostic, approach, and censoring arguments 

Diagnostic Approach Censoring  
Additional Required Arguments (in addition to Scope) 

1 “none” “no” id, exposure, temporal.covariate or static.covariate, times.exposure, 
times.covariate , history 

  “yes” (previous) + censor 

2 “weight” “no” id, exposure, temporal.covariate or static.covariate, times.exposure, 
times.covariate, history, weight.exposure 

  “yes” (previous) + censor 

 “stratify” “no” id, exposure, temporal.covariate or static.covariate, times.exposure, 
times.covariate, strata 

  “yes” (previous) + censor 

3 “weight” “no” id, exposure, temporal.covariate or static.covariate, times.exposure, 
times.covariate, history, weight.exposure 

  “yes” (previous) + censor 

 “stratify” “no” id, exposure, temporal.covariate or static.covariate, times.exposure, 
times.covariate, history, strata 

  “yes” (previous) + censor 

 

Required arguments for balance() by diagnostic, approach, and censoring arguments 

Diagnostic Approach Censoring Additional Required Arguments (in addition to Scope) 

1 “none” “no” exposure, history, times.exposure, times.covariate 

  “yes” (previous) 

2 “none” “no” times.exposure, times.covariate 

  “yes” (previous) + censor 

2 “weight” “no” exposure, history, times.exposure, times.covariate, weight.exposure 

  “yes” (previous) + censor 

 “stratify” “no” exposure, times.exposure, times.covariate, strata, 

  “yes” (previous) + censor 

3 “weight” “no” exposure, history, times.exposure, times.covariate, weight.exposure 

  “yes” (previous) + censor 

 “stratify” “no” exposure, history, times.exposure, times.covariate, strata 

  “yes” (previous) + censor 

 

Required arguments for makeplot() by diagnostic and approach arguments 

Diagnostic Approach Additional Required Arguments (in addition to Scope and Metric) 

1 “none” --- 

2 “weight” --- 

 “stratify” Stratum 

3 “weight” --- 

 “stratify” Stratum 

 
Note (i) The makeplot()function also requires the metric argument.  

Note (ii) For the balance() and makeplot() functions, specifying scope=“average”, will require you to 

specify an option for the  average.over  argument. If you chose average.over=“strata” then you do not need 

to choose a value for the stratum argument.  

Note (iii) Specifying scope=“recent” will allows you to specify an option for the recency argument in 

balance()i.e. compute metrics at a specific exposure-covariate distance of your choosing.  

Note (iv) diagnose()has the combined requirements of lengthen() and balance(). 
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Additional Notes 

Format of initial dataset 

o As stated earlier, the input dataset should have one record per observation (wide format) with the timing 

of variables indexed by an underscore followed by the time index (underscores should NOT appear 

anywhere else in the variable name). Any indexing scheme can be used (e.g. 

"var_1","var_4","var_9"), but it may be easiest to assign zero as the baseline index and increase it 

by one the unit for each subsequent measurement (e.g. "var_0","var_1","var_2").  

 

o The common referent value—to which all other exposure levels are compared—should be coded as the 

lowest value. 

 

o Censored data should contain a vector of time-indexed censoring indicators (1=censored, 0 otherwise) 

for the lengthen() function. 

Alignment of Censoring weights 

o Generally speaking, the code asks for separate exposure and censoring weights. This is so because the 

lengthen()function will align censoring weights with exposure times, in the case of Diagnostics1 

and 3, or with covariate times in the case of Diagnostic 2.  

 

o The balance()function takes the product of exposure and censoring weights during the estimation 

process.  

Time-indices for multivariate exposures and point exposures 

o The functions provided here were developed for time-varying exposures and treat covariates as if they 

precede exposure when they share the same time index. What follows next is a workaround for 

multivariate exposures that generally applies when, for some times, exposures precede covariates. 

 

For multivariate joint exposures, some covariates 𝐿 may intercede between the exposures, as in the 

example of exposures 𝐴 and 𝑍 in the eAppendix of the Jackson 2016. Specifically, it may be the case 

that (i) at each time 𝑡, exposure 𝐴(𝑡) affects covariates 𝐶(𝑡) which affect exposure 𝑍(𝑡), and 

(ii) covariates 𝐶(𝑡) affect subsequent exposures 𝐴(𝑡 + 𝑘) and 𝑍(𝑡 + 𝑘) and also the outcome 

𝑌. The functions could be used as they are to assess confounding for the second exposure 𝑍 (since both 

covariates 𝐿 and 𝐶 precede 𝑍); a workaround to assess confounding for the first exposure 𝐴 would be to 

increase, by one unit (or some value appropriate for the data’s indexing scheme), the indices for all 

covariates 𝐿 that occur after 𝐴 for any given time 𝑡 (i.e. covariate index → covariate index+1). The 

functions can then be used to examine confounding for exposure 𝐴. Another approach for exposure 𝐴 

would be to remove the history on 𝐿 measured at the same time as the exposure 𝐴 using 

omit.history()on the dataframe produced by lengthen(), but this only works for Diagnostics 

1 and 3. 

 

o The code can also be tricked to handle multivariate point exposures by simply adding a subscript “_0” 

to each exposure and covariate when using lengthen(), and then specifying “0” for exposure and 

covariate times when using balance(). 
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Multivariate time-varying exposures or point exposures 

When the exposure is multivariate, the idea is to diagnose each exposure separately (see eAppendix of Jackson 

2016). From the perspective of using the R-functions, the only difference is to use exposure history based on all 

exposures that comprise the multivariate exposure. It is important that such joint exposure history accurately 

reflect the ordering of each component exposure. The function makehistory.two() creates an appropriate 

joint exposure history for each of two exposures, assuming that exposures in its argument list.exposure.a (e.g. 

𝐴) precede those in list.exposure.b (e.g. 𝑍) at any given index as described in the eAppendix of Jackson 2016. 

In that example, exposure 𝐴(𝑡) always precedes exposure 𝑍(𝑡) such that the joint history of 𝐴(2) is 

𝐴(1), 𝐴(0), 𝑍(0) while the joint history of 𝑍(2) is 𝐴(1), 𝐴(0), 𝑍(1), 𝑍(0). If one exposure does not 

precede the other, investigators will still need to use an appropriate joint exposure history and can specify either 

order as desired. Note that the exposure history produced by the function makehistory.two()will be 

inappropriate if the relative ordering of 𝐴(𝑡) and 𝑍(𝑡) varies over time. 

Averaging over person-time 

When using the balance() , diagnose(), or  apply.scope() functions, specifying 

average.over=“average” and average.over=“time” will return balance metrics for each “distance” value. The 

output can be subset to specific distances of interest e.g. k=0 and k=2 by supplying a vector to list.distance e.g. 

c(0,2) but this is optional. Specifying average.over=“distance”, you can opt to average within segments of 

distance using the periods argument (leaving this blank will average over all distance values). The periods 
argument requires a list of contiguous numeric vectors e.g. list(0,1:4,5:10). For Diagnostic 3 this would report 

metrics at time 𝑡, averages over times 𝑡 − 1 to 𝑡 − 4, and averages over times 𝑡 − 5 to 𝑡 − 10. For Diagnostics 1 

and 3 the entire range should lie between 0 and 𝑡. For Diagnostic 2 the entire range should lie between 1 and 𝑡. 

Residual confounding for parametric g-formula w/ propensity score stratification 

o Jackson 2016 emphasizes Diagnostic 3 to describe residual confounding in a weighted population (for 

marginal structural models). This can be accomplished by specifying diagnostic=3 and 

approach=“weight”. Any weight can be used.  

 

o In the eAppendix of Jackson 2016, there is an alternative version of Diagnostic 3 that describes residual 

confounding within a propensity-score stratified population (for a special case of the parametric g-formula). 

This is done by specifying diagnostic=3 and approach=“stratify”. Note that one can average these metrics 

over propensity score strata, exposure history, time, and distance (i.e. by specifying scope= “average” and 

choosing average.over=“strata” or higher). 

Notes on investigator supplied data 

These functions can diagnose confounding for a single exposure or each distinct exposure (in a multivariate 

exposure) as long as the user provides appropriate history, inverse probability weights, propensity score strata, 

and censoring indicators. See Jackson 2016 for details. Note that those particular specifications may not apply to 

the user’s causal question (e.g. the user has data where covariates are measured after exposure for every time 

point, instead of before exposure). The make.history()functions return nonsense when exposures are 

partially missing. 

A warning on required arguments 

The diagnostic, approach, scope, and censoring arguments for the lengthen(), balance(), 

diagnose(), and makeplot() functions are required and must be identical or else the functions will return 

errors or incorrect results.  
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Example code 

########################## 

##LOAD DATA AND PACKAGES## 

########################## 

 

#NOTE THAT THIS CODE REQUIRES R VERSION 3.1.2 OR HIGHER  

 

install.packages(c("magrittr","tidyr","dplyr","ggplot2","gridExtra","scales","broom"),dependencies=TRUE) 

library(magrittr) #last tested on magrittr v1.5 

library(tidyr)    #last tested on tidyr v0.6.0 

library(dplyr)    #last tested on dplyr v0.5.0 

library(ggplot2)  #last tested on ggplot2 v2.1.0 

library(grid)     #this comes with base R 

library(gridExtra)#last tested on gridExtra v2.0.1 

library(scales)   #last tested on ggplot2 v0.4.0 

library(Rmpfr)    #last tested on Rmpfr v0.6-0  

library(broom)    #last tested on broom v0.4.1 

path   <- "C:\\"  

#for mac use one slash 

indata.small <- read.csv(paste(path,"example_sml.csv",sep="")) 

#indata.large <- read.csv(paste(path,"example_lrg.csv",sep="")) 

source(paste(path,"RFunctions_1_0_8.r",sep="")) 

 

##################################################################### 

##Example: Diagnostic 3 for a time-varying exposure without censoring 

##################################################################### 

 

#PRELIMINARY STEP: MAKE EXPOSURE HISTORY 

mydata <- indata.small 

mydata.history <- makehistory.one(input=mydata,exposure="a",name.history="h",times=c(0,1,2)) 

 

#STEP 1: RESTRUCTURE THE DATA 

mydata.long <- lengthen( 

  input=mydata.history, 

  diagnostic=3, 

  censoring="no", 

  id="id", 

  times.exposure=c(0,1,2), 

  times.covariate=c(0,1,2), 

  exposure="a", 

  temporal.covariate=c("l","m","o"), 

  static.covariate=c("n","p"), 

  history="h", 

  weight.exposure="wax" 

) 

 

#example of how to remove relative covariate history 

mydata.long.omit <- omit.history(input=mydata.long, 

  omission="relative", 

  covariate.name=c("l","m","o"), 

  distance=1 

  ) 

 

#STEP 2: CREATE BALANCE TABLE  

mytable <- balance ( 

input=mydata.long.omit, 

diagnostic =3, 

approach="weight",  

censoring="no", 

scope="all", 

times.exposure=c(0,1,2), 

times.covariate=c(0,1,2), 

exposure="a", 

history="h", 

weight.exposure="wax", 

sort.order= c("l","m","o","n","p") 

) 

 

#STEP 3: PLOT BALANCE METRIC 

myplot <- makeplot ( 

input=mytable,  

diagnostic =3, 

approach="weight",  

censoring="no", 

scope="all", 

metric="SMD" 

) 

#The following formatting arguments for makeplot() are optional (defaults shown). 

 

#label.exposure="A",        #exposure label 

#label.covariate="C",       #covariate label 

#lbound=-1,          #lower bound for x-axis 

#ubound=1,           #upper bound for x-axis 
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#ratio=2,           #plot aspect ratio 

#text.axis.title=8,        #title font size 

#text.axis.y=6.5,         #y-axis (covariate names) font size 

#text.axis.x=6.5,         #x-axis font size  

#text.strip.y=10,         #row panel label font size 

#text.strip.x=10,         #column panel label font size 

#point.size=.75,         #dot size 

#zeroline.size=.1,        #thickness of zero line on x-axis 

#refline.size=.1,         #thickness of reference line on x-axis 

#refline.limit.a=-.25,       #location for reference line 1 on x-axis 

#refline.limit.b=0.25,       #location for reference line 2 on x-axis 

#panel.margin.size=.75,       #space between panels 

#axis.title="Mean Difference",        #or "Standardized Mean Difference" (x-axis title) 

#label.width=15         #width of panel label text (before wrapping text) 

 

#STEP 4: SAVE BALANCE TABLE AND PLOT 

#write.csv(mytable,paste(path,"mytable.csv",sep="")) 

#ggsave(filename=paste(path,"myplot.pdf",sep="")) 

 

################################################# 

##Example of Regression Approach for Diagnostic 1 

################################################# 

 

library(broom) #need for tidy() 

 

#create balance dataset 

mydata.long <- lengthen(input=mydata, 

  diagnostic=1, 

  censoring="no", 

  id="id", 

  times.exposure=c(0,1,2), 

  times.covariate=c(0,1,2), 

  exposure="a", 

  temporal.covariate=c("l","m","n","o","p"), 

  history="h" 

)          

 

##MAKE BALANCE TABLE USING REGRESSION## 

 

#create balance table 

mydata.long.reg <- mutate(mydata.long,time=time.exposure,distance=time.exposure-time.covariate,history=h) 

output <- mydata.long.reg %>%  

  group_by(name.cov) %>% #note, you can include other stratifying variables here or in the model 

    filter(time.exposure>=time.covariate) %>% 

      do(tidy(lm(formula=value.cov~a+time+distance+history,.))) %>% #same model form used for every covariate 

        filter(term=="a1") %>% ungroup() 

 

table.reg <- output %>%  

               select(name.cov,estimate) %>%  

                 rename_("D"="estimate") 

 

print(table.reg) 

#write.csv(table.reg,paste(path,"table_regression.csv")) 

#NOTE: This code applies the same model parameterization for each covariate (relying on a strong assumption). 

 

### COMPARE THAT TO A DIRECT CALCULATION & STANDARDIZATION ### 

 

table.std <- balance(input=mydata.long, 

  diagnostic=1, 

  approach="none", 

  censoring="no", 

  scope="average", 

  average.over="distance", 

  times.exposure=c(0,1,2), 

  times.covariate=c(0,1,2), 

  exposure="a", 

  history="h" 

)  

 

print(table.std) 

#write.csv(table.std,paste(path,"table_standardization.csv")) 


