## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
message = FALSE,
collapse = TRUE,
comment = "#>",
crop = NULL ## Related to https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html
)
tools::R_user_dir("scDesign3", which="cache")
## ----message=FALSE, warning=FALSE, results='hide'-----------------------------
library(scDesign3)
library(SingleCellExperiment)
library(ggplot2)
theme_set(theme_bw())
## -----------------------------------------------------------------------------
#example_sce <- readRDS((url("https://figshare.com/ndownloader/files/40581992")))
#print(example_sce)
#example_sce <- example_sce[1:100, ]
data("example_count", package = "scDesign3")
data("pseudotime", package = "scDesign3")
example_sce <- SingleCellExperiment::SingleCellExperiment(assays = list(counts = example_count, logcounts = log1p(example_count)),
colData = DataFrame(pseudotime = pseudotime))
## ----message=FALSE, warning=FALSE, results='hide'-----------------------------
set.seed(123)
example_simu <- scdesign3(
sce = example_sce,
assay_use = "counts",
celltype = NULL,
pseudotime = "pseudotime",
spatial = NULL,
other_covariates = NULL,
mu_formula = "s(pseudotime, k = 10, bs = 'cr')", # mgcg::gam stype formula input.
sigma_formula = "1", # If you want your dispersion also varies along pseudotime, use "s(pseudotime, k = 5, bs = 'cr')". This will significantly increase the computational cost.
family_use = "nb",
n_cores = 2, # Consider the balance between your ROM and threads.
usebam = FALSE,
corr_formula = "1",
copula = "gaussian",
DT = TRUE,
pseudo_obs = FALSE,
return_model = FALSE,
nonzerovar = FALSE
)
## -----------------------------------------------------------------------------
dim(example_simu$new_count)
## -----------------------------------------------------------------------------
logcounts(example_sce) <- log1p(counts(example_sce))
simu_sce <- SingleCellExperiment(list(counts = example_simu$new_count), colData = example_simu$new_covariate)
logcounts(simu_sce) <- log1p(counts(simu_sce))
## -----------------------------------------------------------------------------
set.seed(123)
compare_figure <- plot_reduceddim(ref_sce = example_sce,
sce_list = list(simu_sce),
name_vec = c("Reference", "scDesign3"),
assay_use = "logcounts",
if_plot = TRUE,
color_by = "pseudotime",
n_pc = 20)
plot(compare_figure$p_umap)
## -----------------------------------------------------------------------------
sessionInfo()