## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ----message=FALSE------------------------------------------------------------
library(SPIAT)
## -----------------------------------------------------------------------------
data("simulated_image")
# define cell types
formatted_image <- define_celltypes(
simulated_image,
categories = c("Tumour_marker","Immune_marker1,Immune_marker2",
"Immune_marker1,Immune_marker3",
"Immune_marker1,Immune_marker2,Immune_marker4", "OTHER"),
category_colname = "Phenotype",
names = c("Tumour", "Immune1", "Immune2", "Immune3", "Others"),
new_colname = "Cell.Type")
## ----fig.height = 2.5---------------------------------------------------------
my_colors <- c("red", "blue", "darkcyan", "darkgreen")
plot_cell_categories(spe_object = formatted_image,
categories_of_interest =
c("Tumour", "Immune1", "Immune2", "Immune3"),
colour_vector = my_colors,
feature_colname = "Cell.Type")
## ----fig.width=3, fig.height = 2.2--------------------------------------------
p_cells <- calculate_cell_proportions(formatted_image,
reference_celltypes = NULL,
feature_colname ="Cell.Type",
celltypes_to_exclude = "Others",
plot.image = TRUE)
p_cells
## ----fig.height=1.2, fig.width = 3.8------------------------------------------
plot_cell_percentages(cell_proportions = p_cells,
cells_to_exclude = "Tumour", cellprop_colname="Proportion_name")
## -----------------------------------------------------------------------------
distances <- calculate_pairwise_distances_between_celltypes(
spe_object = formatted_image,
cell_types_of_interest = c("Tumour", "Immune1", "Immune3"),
feature_colname = "Cell.Type")
## ----fig.height = 4, fig.width=6, out.width="75%"-----------------------------
plot_cell_distances_violin(distances)
## -----------------------------------------------------------------------------
summary_distances <- calculate_summary_distances_between_celltypes(distances)
summary_distances
## ----fig.height = 2.5, out.width = "75%"--------------------------------------
plot_distance_heatmap(phenotype_distances_result = summary_distances, metric = "mean")
## -----------------------------------------------------------------------------
min_dist <- calculate_minimum_distances_between_celltypes(
spe_object = formatted_image,
cell_types_of_interest = c("Tumour", "Immune1", "Immune2","Immune3", "Others"),
feature_colname = "Cell.Type")
## ----fig.height = 5, fig.width=8, out.width="75%"-----------------------------
plot_cell_distances_violin(cell_to_cell_dist = min_dist)
## -----------------------------------------------------------------------------
min_summary_dist <- calculate_summary_distances_between_celltypes(min_dist)
# show the first five rows
min_summary_dist[seq_len(5),]
## ----fig.height = 2.5, out.width = "75%"--------------------------------------
plot_distance_heatmap(phenotype_distances_result = min_summary_dist, metric = "mean")
## -----------------------------------------------------------------------------
sessionInfo()