## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
fig.align = "center",
comment = ">"
)
## ----eval = FALSE-------------------------------------------------------------
# # install.packages("BiocManager")
# BiocManager::install("POMA")
## ----warning = FALSE, message = FALSE-----------------------------------------
library(POMA)
library(ggtext)
library(magrittr)
## ----eval = FALSE-------------------------------------------------------------
# # create an SummarizedExperiment object from two separated data frames
# target <- readr::read_csv("your_target.csv")
# features <- readr::read_csv("your_features.csv")
#
# data <- PomaCreateObject(metadata = target, features = features)
## ----warning = FALSE, message = FALSE-----------------------------------------
# load example data
data("st000336")
## ----warning = FALSE, message = FALSE-----------------------------------------
st000336
## -----------------------------------------------------------------------------
imputed <- st000336 %>%
PomaImpute(method = "knn", zeros_as_na = TRUE, remove_na = TRUE, cutoff = 20)
imputed
## -----------------------------------------------------------------------------
normalized <- imputed %>%
PomaNorm(method = "log_pareto")
normalized
## ----message = FALSE----------------------------------------------------------
PomaBoxplots(imputed, x = "samples") # data before normalization
## ----message = FALSE----------------------------------------------------------
PomaBoxplots(normalized, x = "samples") # data after normalization
## ----message = FALSE----------------------------------------------------------
PomaDensity(imputed, x = "features") # data before normalization
## ----message = FALSE----------------------------------------------------------
PomaDensity(normalized, x = "features") # data after normalization
## -----------------------------------------------------------------------------
PomaOutliers(normalized)$polygon_plot
pre_processed <- PomaOutliers(normalized)$data
pre_processed
## -----------------------------------------------------------------------------
# pre_processed %>%
# PomaUnivariate(method = "ttest") %>%
# magrittr::extract2("result")
## -----------------------------------------------------------------------------
# imputed %>%
# PomaVolcano(pval = "adjusted", labels = TRUE)
## ----warning = FALSE----------------------------------------------------------
# pre_processed %>%
# PomaUnivariate(method = "mann") %>%
# magrittr::extract2("result")
## -----------------------------------------------------------------------------
# PomaLimma(pre_processed, contrast = "Controls-DMD", adjust = "fdr")
## -----------------------------------------------------------------------------
# poma_pca <- PomaMultivariate(pre_processed, method = "pca")
## -----------------------------------------------------------------------------
# poma_pca$scoresplot +
# ggplot2::ggtitle("Scores Plot")
## ----warning = FALSE, message = FALSE, results = 'hide'-----------------------
# poma_plsda <- PomaMultivariate(pre_processed, method = "plsda")
## -----------------------------------------------------------------------------
# poma_plsda$scoresplot +
# ggplot2::ggtitle("Scores Plot")
## -----------------------------------------------------------------------------
# poma_plsda$errors_plsda_plot +
# ggplot2::ggtitle("Error Plot")
## -----------------------------------------------------------------------------
# poma_cor <- PomaCorr(pre_processed, label_size = 8, coeff = 0.6)
# poma_cor$correlations
# poma_cor$corrplot
# poma_cor$graph
## -----------------------------------------------------------------------------
# PomaCorr(pre_processed, corr_type = "glasso", coeff = 0.6)$graph
## -----------------------------------------------------------------------------
# alpha = 1 for Lasso
# PomaLasso(pre_processed, alpha = 1, labels = TRUE)$coefficientPlot
## -----------------------------------------------------------------------------
# poma_rf <- PomaRandForest(pre_processed, ntest = 10, nvar = 10)
# poma_rf$error_tree
## -----------------------------------------------------------------------------
# poma_rf$confusionMatrix$table
## -----------------------------------------------------------------------------
# poma_rf$MeanDecreaseGini_plot
## -----------------------------------------------------------------------------
sessionInfo()