## ----load_packages, include=TRUE, results="hide", message=FALSE, warning=FALSE----
library(MultiAssayExperiment)
library(S4Vectors)
## ----load_miniacc-------------------------------------------------------------
data(miniACC)
miniACC
## ----coldata_access-----------------------------------------------------------
colData(miniACC)[1:4, 1:4]
table(miniACC$race)
## ----experiments_access-------------------------------------------------------
experiments(miniACC)
## ----sample_map_access--------------------------------------------------------
sampleMap(miniACC)
## ----metadata_access----------------------------------------------------------
metadata(miniACC)
## ----subset_by_rownames, results='hide'---------------------------------------
miniACC[c("MAPK14", "IGFBP2"), , ]
## ----subset_by_stage, results='hide'------------------------------------------
stg4 <- miniACC$pathologic_stage == "stage iv"
# remove NA values from vector
miniACC[, stg4 & !is.na(stg4), ]
## ----subset_by_assay_name, results='hide'-------------------------------------
miniACC[, , "RNASeq2GeneNorm"]
## ----double_bracket_subsetting------------------------------------------------
miniACC[[1L]] #or equivalently, miniACC[["RNASeq2GeneNorm"]]
## ----complete_cases_summary---------------------------------------------------
summary(complete.cases(miniACC))
## ----intersect_columns--------------------------------------------------------
accmatched = intersectColumns(miniACC)
## ----accmatched_colnames------------------------------------------------------
colnames(accmatched)
## ----intersect_rows-----------------------------------------------------------
accmatched2 <- intersectRows(miniACC[, , c("RNASeq2GeneNorm",
"gistict",
"Mutations")])
rownames(accmatched2)
## ----assay_singular-----------------------------------------------------------
class(assay(miniACC))
## ----assays_plural------------------------------------------------------------
assays(miniACC)
## ----longform_example---------------------------------------------------------
longForm(
miniACC[c("TP53", "CTNNB1"), , ],
colDataCols = c("vital_status", "days_to_death")
)
## ----wideform_example---------------------------------------------------------
wideFormat(
miniACC[c("TP53", "CTNNB1"), , ],
colDataCols = c("vital_status", "days_to_death")
)
## ----mae_constructor----------------------------------------------------------
MultiAssayExperiment(
experiments=experiments(miniACC),
colData=colData(miniACC),
sampleMap=sampleMap(miniACC),
metadata=metadata(miniACC)
)
## ----concatenate_mae----------------------------------------------------------
miniACC2 <- c(
miniACC,
log2rnaseq = log2(assays(miniACC)$RNASeq2GeneNorm),
mapFrom=1L
)
assays(miniACC2)
## ----upset_samples------------------------------------------------------------
library(UpSetR)
upsetSamples(miniACC)
## ----kaplan_meier_plot_setup,message=FALSE------------------------------------
library(survival)
library(survminer)
coldat <- as.data.frame(colData(miniACC))
coldat$y <- Surv(miniACC$days_to_death, miniACC$vital_status)
colData(miniACC) <- DataFrame(coldat)
## ----remove_missing_survival_data---------------------------------------------
miniACC <- miniACC[, complete.cases(coldat$y), ]
coldat <- as(colData(miniACC), "data.frame")
## ----kaplan_meier_plot--------------------------------------------------------
fit <- survfit(y ~ pathology_N_stage, data = coldat)
ggsurvplot(fit, data = coldat, risk.table = TRUE)
## ----prepare_cox_regression_data----------------------------------------------
wideacc <- wideFormat(
miniACC["EZH2", , ],
colDataCols = c("vital_status", "days_to_death", "pathology_N_stage")
)
wideacc$y <- Surv(wideacc$days_to_death, wideacc$vital_status)
head(wideacc)
## ----cox_regression_model-----------------------------------------------------
coxph(
Surv(days_to_death, vital_status) ~
gistict_EZH2 + log2(RNASeq2GeneNorm_EZH2) + pathology_N_stage,
data = wideacc
)
## ----sessioninfo--------------------------------------------------------------
sessionInfo()