
Package ‘txdbmaker’
November 1, 2025

Title Tools for making TxDb objects from genomic annotations

Description A set of tools for making TxDb objects from genomic annotations
from various sources (e.g. UCSC, Ensembl, and GFF files). These tools
allow the user to download the genomic locations of transcripts,
exons, and CDS, for a given assembly, and to import them in a TxDb
object. TxDb objects are implemented in the GenomicFeatures package,
together with flexible methods for extracting the desired features in
convenient formats.

biocViews Infrastructure, DataImport, Annotation, GenomeAnnotation,
GenomeAssembly, Genetics, Sequencing

URL https://bioconductor.org/packages/txdbmaker

BugReports https://github.com/Bioconductor/txdbmaker/issues

Version 1.7.1

License Artistic-2.0

Encoding UTF-8

Depends BiocGenerics, S4Vectors (>= 0.47.6), Seqinfo, GenomicRanges
(>= 1.61.1), GenomicFeatures (>= 1.61.4)

Imports methods, utils, stats, tools, httr, rjson, DBI, RSQLite (>=
2.0), IRanges, UCSC.utils, GenomeInfoDb, AnnotationDbi,
Biobase, BiocIO, rtracklayer, biomaRt (>= 2.59.1)

Suggests RMariaDB, ensembldb, GenomeInfoDbData, RUnit, BiocStyle,
knitr

VignetteBuilder knitr

Collate utils.R Ensembl-utils.R findCompatibleMarts.R TxDb-schema.R
TxDb-CREATE-TABLE-helpers.R makeTxDb.R makeTxDbFromUCSC.R
makeTxDbFromBiomart.R makeTxDbFromEnsembl.R
makeTxDbFromGRanges.R makeTxDbFromGFF.R makeFeatureDbFromUCSC.R
makeTxDbPackage.R zzz.R

git_url https://git.bioconductor.org/packages/txdbmaker

git_branch devel

git_last_commit 5069001

1

https://bioconductor.org/packages/txdbmaker
https://github.com/Bioconductor/txdbmaker/issues

2 txdbmaker-package

git_last_commit_date 2025-10-30

Repository Bioconductor 3.23

Date/Publication 2025-10-31

Author H. Pagès [aut, cre],
M. Carlson [aut],
P. Aboyoun [aut],
S. Falcon [aut],
M. Morgan [aut],
R. Castelo [ctb],
M. Lawrence [ctb],
J. MacDonald [ctb],
M. Ramos [ctb],
S. Saini [ctb],
L. Shepherd [ctb]

Maintainer H. Pagès <hpages.on.github@gmail.com>

Contents

txdbmaker-package . 2
makeFeatureDbFromUCSC . 3
makeTxDb . 5
makeTxDbFromBiomart . 8
makeTxDbFromEnsembl . 14
makeTxDbFromGFF . 15
makeTxDbFromGRanges . 17
makeTxDbFromUCSC . 19
makeTxDbPackage . 22

Index 27

txdbmaker-package Tools for making TxDb objects from genomic annotations

Description

The txdbmaker package contains a set of tools for making TxDb objects from genomic annotations
from various sources (e.g. UCSC, Ensembl, and GFF files). These tools allow the user to download
the genomic locations of transcripts, exons, and CDS, for a given assembly, and to import them in
a TxDb object.

Note that TxDb objects are implemented in the GenomicFeatures package, together with flexible
methods for extracting the desired features in convenient formats.

makeFeatureDbFromUCSC 3

Details

For a quick overview of the provided tools, please see the "Making TxDb Objects" vignette included
in this package.

To access the vignette from your R session, run browseVignettes(package="txdbmaker"). This
requires the txdbmaker package to be already installed.

Alternatively this vignette should also be available online here: https://bioconductor.org/
packages/release/bioc/vignettes/txdbmaker/inst/doc/txdbmaker.html

makeFeatureDbFromUCSC Making a FeatureDb object from annotations available at the UCSC
Genome Browser

Description

WARNING: The FeatureDb/makeFeatureDbFromUCSC/features code base is no longer actively
maintained and FeatureDb-related functionalities might get deprecated in the near future.

The makeFeatureDbFromUCSC function allows the user to make a FeatureDb object from simple
annotation tracks at UCSC. The tracks in question must (at a minimum) have a start, end and a
chromosome affiliation in order to be made into a FeatureDb. This function requires a precise dec-
laration of its first three arguments to indicate which genome, track and table wish to be imported.
There are discovery functions provided to make this process go smoothly.

Usage

supportedUCSCFeatureDbTracks(genome)

supportedUCSCFeatureDbTables(genome, track)

UCSCFeatureDbTableSchema(genome,
track,
tablename)

makeFeatureDbFromUCSC(
genome,
track,
tablename,
columns = UCSCFeatureDbTableSchema(genome,track,tablename),
url="https://genome.ucsc.edu/cgi-bin/",
goldenPath.url=getOption("UCSC.goldenPath.url"),
chromCol,
chromStartCol,
chromEndCol,
taxonomyId=NA)

https://bioconductor.org/packages/release/bioc/vignettes/txdbmaker/inst/doc/txdbmaker.html
https://bioconductor.org/packages/release/bioc/vignettes/txdbmaker/inst/doc/txdbmaker.html

4 makeFeatureDbFromUCSC

Arguments

genome genome abbreviation used by UCSC and listed in list_UCSC_genomes()[,
"genome"]. For example: "hg18".

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the list
of available tracks for a particular genome

tablename name of the UCSC table containing the annotations to retrieve. Use the supportedUCSCFeatureDbTables
utility function to get the list of supported tables for a track.

columns a named character vector to list out the names and types of the other columns
that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url, goldenPath.url
use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the ’chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol Same thing as chromCol, but for renames of ’chromStart’

chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

taxonomyId By default this value is NA and the organism inferred will be used to look up the
correct value for this. But you can use this argument to override that and supply
your own valid taxId here.

Details

makeFeatureDbFromUCSC is a convenience function that builds a tiny database from one of the
UCSC track tables.

supportedUCSCFeatureDbTracks is a convenience function that returns potential track names that
could be used to make FeatureDb objects.

supportedUCSCFeatureDbTables is a convenience function that returns potential table names for
FeatureDb objects (table names go with a track name).

UCSCFeatureDbTableSchema is a convenience function that creates a named vector of types for all
the fields that can potentially be supported for a given track. By default, this will be called on your
specified tablename to include all of the fields in a track.

Value

A FeatureDb object for makeFeatureDbFromUCSC. Or in the case of supportedUCSCFeatureDbTracks
and UCSCFeatureDbTableSchema a named character vector

Author(s)

M. Carlson

makeTxDb 5

See Also

list_UCSC_genomes in the UCSC.utils package

Examples

Display the list of genomes available at UCSC:
library(UCSC.utils)
list_UCSC_genomes()[, "genome"]

Display the list of Tracks supported by makeFeatureDbFromUCSC():
supportedUCSCFeatureDbTracks("mm10")

Display the list of tables supported by your track:
supportedUCSCFeatureDbTables(genome="mm10",

track="qPCR Primers")

Display fields that could be passed in to colnames:
UCSCFeatureDbTableSchema(genome="mm10",

track="qPCR Primers",
tablename="qPcrPrimers")

Retrieving a full transcript dataset for Mouse from UCSC:
fdb <- makeFeatureDbFromUCSC(genome="mm10",

track="qPCR Primers",
tablename="qPcrPrimers")

fdb

makeTxDb Making a TxDb object from user supplied annotations

Description

makeTxDb is a low-level constructor for making a TxDb object from user supplied transcript anno-
tations.

Note that the end user will rarely need to use makeTxDb directly but will typically use one of the
high-level constructors makeTxDbFromUCSC, makeTxDbFromEnsembl, or makeTxDbFromGFF.

Usage

makeTxDb(transcripts, splicings, genes=NULL,
chrominfo=NULL, metadata=NULL,
reassign.ids=FALSE, on.foreign.transcripts=c("error", "drop"))

Arguments

transcripts Data frame containing the genomic locations of a set of transcripts.

splicings Data frame containing the genomic locations of exons and CDS parts of the
transcripts in transcripts.

6 makeTxDb

genes Data frame containing the genes associated to a set of transcripts.

chrominfo Data frame containing information about the chromosomes hosting the set of
transcripts.

metadata 2-column data frame containing meta information about this set of transcripts
like organism, genome, UCSC table, etc... The names of the columns must be
"name" and "value" and their type must be character.

reassign.ids TRUE or FALSE. Controls how internal ids should be assigned for each type of fea-
ture i.e. for transcripts, exons, and CDS parts. For each type, if reassign.ids
is FALSE (the default) and if the ids are supplied, then they are used as the inter-
nal ids, otherwise the internal ids are assigned in a way that is compatible with
the order defined by ordering the features first by chromosome, then by strand,
then by start, and finally by end.

on.foreign.transcripts

Controls what to do when the input contains foreign transcripts i.e. transcripts
that are on sequences not in chrominfo. If set to "error" (the default)

Details

The transcripts (required), splicings (required) and genes (optional) arguments must be data
frames that describe a set of transcripts and the genomic features related to them (exons, CDS parts,
and genes at the moment). The chrominfo (optional) argument must be a data frame containing
chromosome information like the length of each chromosome.

transcripts must have 1 row per transcript and the following columns:

• tx_id: Transcript ID. Integer vector. No NAs. No duplicates.

• tx_chrom: Transcript chromosome. Character vector (or factor) with no NAs.

• tx_strand: Transcript strand. Character vector (or factor) with no NAs where each element
is either "+" or "-".

• tx_start, tx_end: Transcript start and end. Integer vectors with no NAs.

• tx_name: [optional] Transcript name. Character vector (or factor). NAs and/or duplicates are
ok.

• tx_type: [optional] Transcript type (e.g. mRNA, ncRNA, snoRNA, etc...). Character vector
(or factor). NAs and/or duplicates are ok.

• gene_id: [optional] Associated gene. Character vector (or factor). NAs and/or duplicates are
ok.

Other columns, if any, are ignored (with a warning).

splicings must have N rows per transcript, where N is the nb of exons in the transcript. Each row
describes an exon plus, optionally, the CDS part associated with this exon. Its columns must be:

• tx_id: Foreign key that links each row in the splicings data frame to a unique row in the
transcripts data frame. Note that more than 1 row in splicings can be linked to the same
row in transcripts (many-to-one relationship). Same type as transcripts$tx_id (integer
vector). No NAs. All the values in this column must be present in transcripts$tx_id.

• exon_rank: The rank of the exon in the transcript. Integer vector with no NAs. (tx_id,
exon_rank) pairs must be unique.

makeTxDb 7

• exon_id: [optional] Exon ID. Integer vector with no NAs.

• exon_name: [optional] Exon name. Character vector (or factor). NAs and/or duplicates are
ok.

• exon_chrom: [optional] Exon chromosome. Character vector (or factor) with no NAs. If
missing then transcripts$tx_chrom is used. If present then exon_strand must also be
present.

• exon_strand: [optional] Exon strand. Character vector (or factor) with no NAs. If missing
then transcripts$tx_strand is used and exon_chrom must also be missing.

• exon_start, exon_end: Exon start and end. Integer vectors with no NAs.

• cds_id: [optional] ID of the CDS part associated with the exon. Integer vector. If present
then cds_start and cds_end must also be present. NAs are allowed and must match those in
cds_start and cds_end.

• cds_name: [optional] Name of the CDS part. Character vector (or factor). If present then
cds_start and cds_end must also be present. NAs and/or duplicates are ok. Must contain
NAs at least where cds_start and cds_end contain them.

• cds_start, cds_end: [optional] Start/end of the CDS part. Integer vectors. If one of the 2
columns is missing then all cds_* columns must be missing. NAs are allowed and must occur
at the same positions in cds_start and cds_end.

• cds_phase: [optional] Phase of the CDS part. Integer vector. If present then cds_start and
cds_end must also be present. NAs are allowed and must match those in cds_start and
cds_end.

Other columns, if any, are ignored (with a warning).

genes should not be supplied if transcripts has a gene_id column. If supplied, it must have N
rows per transcript, where N is the nb of genes linked to the transcript (N will be 1 most of the
time). Its columns must be:

• tx_id: [optional] genes must have either a tx_id or a tx_name column but not both. Like
splicings$tx_id, this is a foreign key that links each row in the genes data frame to a unique
row in the transcripts data frame.

• tx_name: [optional] Can be used as an alternative to the genes$tx_id foreign key.

• gene_id: Gene ID. Character vector (or factor). No NAs.

Other columns, if any, are ignored (with a warning).

chrominfo must have 1 row per chromosome and the following columns:

• chrom: Chromosome name. Character vector (or factor) with no NAs and no duplicates.

• length: Chromosome length. Integer vector with either all NAs or no NAs.

• is_circular: [optional] Chromosome circularity flag. Logical vector. NAs are ok.

Other columns, if any, are ignored (with a warning).

Value

A TxDb object.

8 makeTxDbFromBiomart

Author(s)

Hervé Pagès

See Also

• makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

• makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

• TxDb objects implemented in the GenomicFeatures package.

• saveDb and loadDb in the AnnotationDbi package for saving and loading a TxDb object as
an SQLite file.

Examples

transcripts <- data.frame(
tx_id=1:3,
tx_chrom="chr1",
tx_strand=c("-", "+", "+"),
tx_start=c(1, 2001, 2001),
tx_end=c(999, 2199, 2199))

splicings <- data.frame(
tx_id=c(1L, 2L, 2L, 2L, 3L, 3L),
exon_rank=c(1, 1, 2, 3, 1, 2),
exon_start=c(1, 2001, 2101, 2131, 2001, 2131),
exon_end=c(999, 2085, 2144, 2199, 2085, 2199),
cds_start=c(1, 2022, 2101, 2131, NA, NA),
cds_end=c(999, 2085, 2144, 2193, NA, NA),
cds_phase=c(0, 0, 2, 0, NA, NA))

txdb <- makeTxDb(transcripts, splicings)

makeTxDbFromBiomart Make a TxDb object from annotations available on a BioMart
database

Description

The makeTxDbFromBiomart function allows the user to make a TxDb object from transcript anno-
tations available on a BioMart database.

Note that makeTxDbFromBiomart is being phased out in favor of makeTxDbFromEnsembl.

makeTxDbFromBiomart 9

Usage

makeTxDbFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl",
transcript_ids=NULL,
circ_seqs=NULL,
filter=NULL,
id_prefix="ensembl_",
host="https://www.ensembl.org",
taxonomyId=NA)

getChromInfoFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl",
id_prefix="ensembl_",
host="https://www.ensembl.org")

Arguments

biomart which BioMart database to use. Get the list of all available BioMart databases
with the listMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.

dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl", "mmusculus_gene_ensembl",
"dmelanogaster_gene_ensembl", "celegans_gene_ensembl", etc in the en-
sembl database. See the examples section below for how to discover which
datasets are available in a given BioMart database.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the resulting
TxDb object will say ’Full dataset: no’. Otherwise it will say ’Full dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

filter Additional filters to use in the BioMart query. Must be a named list. An example
is filter=list(source="entrez")

id_prefix Specifies the prefix used in BioMart attributes. For example, some BioMarts
may have an attribute specified as "ensembl_transcript_id" whereas others
have the same attribute specified as "transcript_id". Defaults to "ensembl_".

host The host URL of the BioMart. Defaults to www.ensembl.org.

taxonomyId By default this value is NA and the dataset selected will be used to look up the
correct value for this. But you can use this argument to override that and supply
your own taxId here (which will be independently checked to make sure its a
real taxonomy id). Normally you should never need to use this.

Details

makeTxDbFromBiomart is a convenience function that feeds data from a BioMart database to the
lower level makeTxDb function. See ?makeTxDbFromUCSC for a similar function that feeds data from
the UCSC source.

Here is a list of datasets known to be compatible with makeTxDbFromBiomart (list updated on
September 18, 2017):

10 makeTxDbFromBiomart

1. All the datasets in the main Ensembl database. Get the list with:

mart <- biomaRt::useEnsembl(biomart="ENSEMBL_MART_ENSEMBL",
host="https://www.ensembl.org")

biomaRt::listDatasets(mart)

2. All the datasets in the Ensembl Fungi database. Get the list with:

mart <- biomaRt::useEnsemblGenomes(biomart="fungi_mart")
biomaRt::listDatasets(mart)

3. All the datasets in the Ensembl Metazoa database. Get the list with:

mart <- biomaRt::useEnsemblGenomes(biomart="metazoa_mart")
biomaRt::listDatasets(mart)

4. All the datasets in the Ensembl Plants database. Get the list with:

mart <- biomaRt::useEnsemblGenomes(biomart="plants_mart")
biomaRt::listDatasets(mart)

5. All the datasets in the Ensembl Protists database. Get the list with:

mart <- biomaRt::useEnsemblGenomes(biomart="protists_mart")
biomaRt::listDatasets(mart)

6. All the datasets in the Gramene Mart. Get the list with:

mart <- biomaRt::useEnsembl(biomart="ENSEMBL_MART_PLANT",
host="https://ensembl.gramene.org")

biomaRt::listDatasets(mart)

Note that BioMart is not currently available for Ensembl Bacteria.

Also please note that not all these datasets have CDS information.

Value

A TxDb object for makeTxDbFromBiomart.

A data frame with 1 row per chromosome (or scaffold) and with columns chrom and length for
getChromInfoFromBiomart.

Author(s)

M. Carlson and H. Pagès

See Also

• makeTxDbFromUCSC and makeTxDbFromEnsembl for making a TxDb object from other online
resources.

• makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

• The listMarts, useEnsembl, listDatasets, and listFilters functions in the biomaRt
package.

• TxDb objects implemented in the GenomicFeatures package.
• makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb

object returned to the user.

makeTxDbFromBiomart 11

Examples

A. BASIC USAGE

We can use listDatasets() from the biomaRt package to list the
datasets available in the "ENSEMBL_MART_ENSEMBL" BioMart database:
library(biomaRt)
listMarts(host="https://www.ensembl.org")
mart <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL", host="https://www.ensembl.org")
datasets <- listDatasets(mart)
head(datasets)
subset(datasets, grepl("elegans", dataset, ignore.case=TRUE))

Retrieve the full transcript dataset for Worm:
txdb1 <- makeTxDbFromBiomart(dataset="celegans_gene_ensembl")
txdb1

Retrieve an incomplete transcript dataset for Human:
transcript_ids <- c(

"ENST00000013894",
"ENST00000268655",
"ENST00000313243",
"ENST00000435657",
"ENST00000384428",
"ENST00000478783"

)

if (interactive()) {
txdb2 <- makeTxDbFromBiomart(dataset="hsapiens_gene_ensembl",

transcript_ids=transcript_ids)
txdb2 # note that these annotations match the GRCh38 genome assembly

}

B. ACCESSING THE EnsemblGenomes MARTS

library(biomaRt)

Note that BioMart is not currently available for Ensembl Bacteria.

--- Ensembl Fungi ---

mart <- useEnsemblGenomes(biomart="fungi_mart")
datasets <- listDatasets(mart)
datasets$dataset
yeast_txdb <- makeTxDbFromBiomart(biomart="fungi_mart",

dataset="scerevisiae_eg_gene",
host="https://fungi.ensembl.org")

yeast_txdb

12 makeTxDbFromBiomart

--- Ensembl Metazoa ---

The metazoa mart is slow and at the same time it doesn't seem to
support requests that take more than 1 min at the moment. So a call to
biomaRt::getBM() will fail with a "Timeout was reached" error if the
requested data takes more than 1 min to download. This unfortunately
happens with the example below so we don't try to run it for now.

mart <- useEnsemblGenomes(biomart="metazoa_mart")
datasets <- listDatasets(mart)
datasets$dataset
worm_txdb <- makeTxDbFromBiomart(biomart="metazoa_mart",

dataset="celegans_eg_gene",
host="https://metazoa.ensembl.org")

worm_txdb

Note that even if the dataset for Worm on Ensembl Metazoa contains
the same transcript as on the main Ensembl database, the transcript
type might be annotated with slightly different terms (e.g. antisense
vs antisense_RNA):
filter <- list(tx_name="Y71G12B.44")
transcripts(worm_txdb, filter=filter, columns=c("tx_name", "tx_type"))
transcripts(txdb1, filter=filter, columns=c("tx_name", "tx_type"))

--- Ensembl Plants ---

Like the metazoa mart (see above), the plants mart is also slow and
doesn't seem to support requests that take more than 1 min either.
So we don't try to run the example below for now.

mart <- useEnsemblGenomes(biomart="plants_mart")
datasets <- listDatasets(mart)
datasets[, 1:2]
athaliana_txdb <- makeTxDbFromBiomart(biomart="plants_mart",

dataset="athaliana_eg_gene",
host="https://plants.ensembl.org")

athaliana_txdb

--- Ensembl Protists ---

mart <- useEnsemblGenomes(biomart="protists_mart")
datasets <- listDatasets(mart)
datasets$dataset
tgondii_txdb <- makeTxDbFromBiomart(biomart="protists_mart",

dataset="tgondii_eg_gene",
host="https://protists.ensembl.org")

tgondii_txdb

makeTxDbFromBiomart 13

C. USING AN Ensembl MIRROR

You can use the 'host' argument to access the "ENSEMBL_MART_ENSEMBL"
BioMart database at a mirror (e.g. at uswest.ensembl.org). A gotcha
when doing this is that the name of the database on the mirror might
be different! We can check this with listMarts() from the biomaRt
package:
if (interactive()) {

listMarts(host="https://useast.ensembl.org")

txdb3 <- makeTxDbFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl",
transcript_ids=transcript_ids,
host="https://useast.ensembl.org")

txdb3
}
Therefore in addition to setting 'host' to "uswest.ensembl.org", we
might also need to specify the 'biomart' argument.

D. USING FILTERS

We can use listFilters() from the biomaRt package to get valid filter
names:
mart <- useEnsembl(biomart="ENSEMBL_MART_ENSEMBL",

dataset="hsapiens_gene_ensembl",
host="https://www.ensembl.org")

head(listFilters(mart))

Retrieve transcript dataset for Ensembl gene ENSG00000011198:
my_filter <- list(ensembl_gene_id="ENSG00000011198")

if (interactive()) {
txdb4 <- makeTxDbFromBiomart(dataset="hsapiens_gene_ensembl",

filter=my_filter)
txdb4
transcripts(txdb4, columns=c("tx_id", "tx_name", "gene_id"))
transcriptLengths(txdb4)

}

E. RETRIEVING CHROMOSOME INFORMATION ONLY

chrominfo <- getChromInfoFromBiomart(dataset="celegans_gene_ensembl")
chrominfo

14 makeTxDbFromEnsembl

makeTxDbFromEnsembl Make a TxDb object from an Ensembl database

Description

The makeTxDbFromEnsembl function creates a TxDb object for a given organism by importing the
genomic locations of its transcripts, exons, CDS, and genes from an Ensembl database.

Note that it uses the RMariaDB package internally so make sure that this package is installed.

Usage

makeTxDbFromEnsembl(organism="Homo sapiens",
release=NA,
circ_seqs=NULL,
server="ensembldb.ensembl.org",
username="anonymous", password=NULL, port=0L,
tx_attrib=NULL)

Arguments

organism The scientific name (i.e. genus and species, or genus and species and subspecies)
of the organism for which to import the data. Case is not sensitive. Underscores
can be used instead of white spaces e.g. "homo_sapiens" is accepted.

release The Ensembl release to query e.g. 89. If set to NA (the default), the current
release is used.

circ_seqs A character vector to list out which chromosomes should be marked as circular.

server The name of the MySQL server to query. See https://www.ensembl.org/
info/data/mysql.html for the list of Ensembl public MySQL servers. Make
sure to use the server nearest to you. It can make a big difference!

username Login username for the MySQL server.

password Login password for the MySQL server.

port Port of the MySQL server.

tx_attrib If not NULL, only select transcripts with an attribute of the given code, a string,
like "gencode_basic".

Value

A TxDb object.

Note

makeTxDbFromEnsembl tends to be faster and more reliable than makeTxDbFromBiomart.

Author(s)

H. Pagès

https://www.ensembl.org/info/data/mysql.html
https://www.ensembl.org/info/data/mysql.html

makeTxDbFromGFF 15

See Also

• makeTxDbFromUCSC and makeTxDbFromBiomart for making a TxDb object from other online
resources.

• makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

• TxDb objects implemented in the GenomicFeatures package.

• makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb
object returned to the user.

Examples

Note that, right after a new Ensembl release, it can take up to 24 or
48 hours for the MySQL server at useastdb.ensembl.org to get updated
with the new release. During that period, the server will be out-of-sync
with the content at https://ftp.ensembl.org/pub/current_mysql/, which
can cause makeTxDbFromEnsembl() to fail with an error like:
Error: Failed to connect: Unknown database 'some_organism_core_114_4'
To avoid running into this issue in the context of this example, we
first try useastdb.ensembl.org, and, if it fails, we fall back to
ensembldb.ensembl.org.
txdb <- try(makeTxDbFromEnsembl("Saccharomyces cerevisiae",

server="useastdb.ensembl.org"))
if (inherits(txdb, "try-error")) {

txdb <- try(makeTxDbFromEnsembl("Saccharomyces cerevisiae",
server="ensembldb.ensembl.org"))

}
txdb

makeTxDbFromGFF Make a TxDb object from annotations available as a GFF3 or GTF
file

Description

The makeTxDbFromGFF function allows the user to make a TxDb object from transcript annotations
available as a GFF3 or GTF file.

Usage

makeTxDbFromGFF(file,
format=c("auto", "gff3", "gtf"),
dataSource=NA,
organism=NA,
taxonomyId=NA,
circ_seqs=NULL,
chrominfo=NULL,
metadata=NULL,
dbxrefTag)

16 makeTxDbFromGFF

Arguments

file Input GFF3 or GTF file. Can be a path to a file, or an URL, or a connection
object, or a GFF3File or GTFFile object.

format Format of the input file. Accepted values are: "auto" (the default) for auto-
detection of the format, "gff3", or "gtf". Use "gff3" or "gtf" only if auto-
detection failed.

dataSource A single string describing the origin of the data file. Please be as specific as
possible.

organism What is the Genus and species of this organism. Please use proper scientific
nomenclature for example: "Homo sapiens" or "Canis familiaris" and not "hu-
man" or "my fuzzy buddy". If properly written, this information may be used
by the software to help you out later.

taxonomyId By default this value is NA and the organism provided will be used to look up
the correct value for this. But you can use this argument to override that and
supply your own taxonomy id here (which will be separately validated). Since
providing a valid taxonomy id will not require us to look up one based on your
organism: this is one way that you can loosen the restrictions about what is and
isn’t a valid value for the organism.

circ_seqs A character vector to list out which chromosomes should be marked as circular.

chrominfo Data frame containing information about the chromosomes. Will be passed to
the internal call to makeTxDb. See ?makeTxDb for more information. Alterna-
tively, can be a Seqinfo object.

metadata A 2-column data frame containing meta information to be included in the TxDb
object. See ?makeTxDb for more information about the format of metadata.

dbxrefTag If not missing, the values in the Dbxref attribute with the specified tag (like
“GeneID”) are used for the feature names.

Details

makeTxDbFromGFF is a convenience function that feeds data from the parsed file to the makeTxDbFromGRanges
function.

Value

A TxDb object.

Author(s)

H. Pagès and M. Carlson

See Also

• makeTxDbFromGRanges, which makeTxDbFromGFF is based on, for making a TxDb object
from a GRanges object.

• The import function in the rtracklayer package (also used by makeTxDbFromGFF internally).

makeTxDbFromGRanges 17

• makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

• TxDb objects implemented in the GenomicFeatures package.

• makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb
object returned to the user.

Examples

TESTING GFF3
gffFile <- system.file("extdata", "GFF3_files", "a.gff3", package="txdbmaker")
txdb <- makeTxDbFromGFF(gffFile,

dataSource="partial gtf file for Tomatoes for testing",
organism="Solanum lycopersicum")

TESTING GTF, this time specifying some metadata and the chrominfo
gtfFile <- system.file("extdata", "GTF_files",

"GCA_002204515.1_AaegL5.0_genomic.gtf.gz",
package="txdbmaker")

resource_url <- paste0("ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/204/515/",
"GCA_002204515.1_AaegL5.0/")

metadata <- data.frame(name="Resource URL", value=resource_url)
chrominfo <- data.frame(chrom="MF194022.1",

length=16790,
is_circular=TRUE,
genome="AaegL5.0")

txdb2 <- makeTxDbFromGFF(gtfFile,
dataSource="NCBI",
organism="Aedes aegypti",
chrominfo=chrominfo,
metadata=metadata)

makeTxDbFromGRanges Make a TxDb object from a GRanges object

Description

The makeTxDbFromGRanges function allows the user to extract gene, transcript, exon, and CDS
information from a GRanges object structured as GFF3 or GTF, and to return that information in a
TxDb object.

Usage

makeTxDbFromGRanges(gr, drop.stop.codons=FALSE, metadata=NULL, taxonomyId=NA)

Arguments

gr A GRanges object structured as GFF3 or GTF, typically obtained with BiocIO::import().

18 makeTxDbFromGRanges

drop.stop.codons

TRUE or FALSE. If TRUE, then features of type stop_codon are ignored. Oth-
erwise (the default) the stop codons are considered to be part of the CDS and
merged to them.

metadata A 2-column data frame containing meta information to be included in the TxDb
object. This data frame is just passed to makeTxDb, which makeTxDbFromGRanges
calls at the end to make the TxDb object from the information extracted from
gr. See ?makeTxDb for more information about the format of metadata.

taxonomyId By default this value is NA which will result in an NA field since there is no
reliable way to infer this from a GRanges object. But you can use this argument
to supply your own valid taxId here and if you do, then the Organism can be
filled in as well

Value

A TxDb object.

Author(s)

Hervé Pagès

See Also

• makeTxDbFromUCSC, makeTxDbFromBiomart, and makeTxDbFromEnsembl, for making a TxDb
object from online resources.

• makeTxDbFromGFF for making a TxDb object from a GFF or GTF file.

• The import generic function in the BiocIO package.

• The asGFF method for TxDb objects (asGFF,TxDb-method) for the reverse of makeTxDbFromGRanges,
that is, for turning a TxDb object into a GRanges object structured as GFF.

• TxDb objects implemented in the GenomicFeatures package.

• makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb
object returned to the user.

Examples

library(BiocIO) # for the import() function

WITH A GRanges OBJECT STRUCTURED AS GFF3

GFF3_files <- system.file("extdata", "GFF3_files", package="txdbmaker")

path <- file.path(GFF3_files, "a.gff3")
gr <- import(path)
txdb <- makeTxDbFromGRanges(gr)
txdb

Reverse operation:
gr2 <- asGFF(txdb)

makeTxDbFromUCSC 19

Sanity check (asGFF() does not propagate the CDS phase at the moment):
target <- as.list(txdb)
target$splicings$cds_phase <- NULL
stopifnot(identical(target, as.list(makeTxDbFromGRanges(gr2))))

WITH A GRanges OBJECT STRUCTURED AS GTF

GTF_files <- system.file("extdata", "GTF_files", package="txdbmaker")

test1.gtf was grabbed from http://mblab.wustl.edu/GTF22.html (5 exon
gene with 3 translated exons):
path <- file.path(GTF_files, "test1.gtf")
gr <- import(path)
txdb <- makeTxDbFromGRanges(gr)
txdb

path <- file.path(GTF_files, "GCA_002204515.1_AaegL5.0_genomic.gtf.gz")
gr <- import(path)
txdb <- makeTxDbFromGRanges(gr)
txdb

makeTxDbFromUCSC Make a TxDb object from annotations available at the UCSC Genome
Browser

Description

The makeTxDbFromUCSC function allows the user to make a TxDb object from transcript annotations
available at the UCSC Genome Browser.

Note that it uses the RMariaDB package internally so make sure that this package is installed.

Usage

makeTxDbFromUCSC(genome="hg19", tablename="knownGene",
transcript_ids=NULL,
circ_seqs=NULL,
goldenPath.url=getOption("UCSC.goldenPath.url"),
taxonomyId=NA)

supportedUCSCtables(genome="hg19")

browseUCSCtrack(genome="hg19", tablename="knownGene",
url="https://genome.ucsc.edu/cgi-bin/")

20 makeTxDbFromUCSC

Arguments

genome The name of a UCSC genome assembly e.g. "hg19" or "panTro6". Get the list
of UCSC genomes currently available with list_UCSC_genomes()[, "genome"].

tablename The name of the UCSC table containing the transcript genomic locations to re-
trieve. Use the supportedUCSCtables utility function to get the list of tables
known to work with makeTxDbFromUCSC.

transcript_ids Optionally, only retrieve transcript locations for the specified set of transcript
ids. If this is used, then the meta information displayed for the resulting TxDb
object will say ’Full dataset: no’. Otherwise it will say ’Full dataset: yes’.

circ_seqs Like GRanges objects, SummarizedExperiment objects, and many other objects
in Bioconductor, the TxDb object returned by makeTxDbFromUCSC contains a
seqinfo component that can be accessed with seqinfo(). This component con-
tains various sequence-level information like the sequence names, lengths, and
circularity flag for the genome assembly of the TxDb object.
As far as we know the information of which sequences are circular is not avail-
able in the UCSC Genome Browser. However, for the most commonly used
UCSC genome assemblies makeTxDbFromUCSC will get this information from a
knowledge database stored in the GenomeInfoDb package (see ?registered_UCSC_genomes).
For less commonly used UCSC genome assemblies, makeTxDbFromUCSC will
make a guess based on the chromosome names (e.g. chrM or 2micron will be
assumed to be circular). Even though this works most of the time, it is not
guaranteed to work all the time. So in this case a warning is issued. If you think
the guess is incorrect then you can supply your own list of circular sequences
(as a character vector) via the circ_seqs argument.

goldenPath.url A single string specifying the URL to the UCSC goldenPath location where the
chromosome sizes are expected to be found.

url Use to specify the location of an alternate UCSC Genome Browser.

taxonomyId By default this value is NA and the organism inferred will be used to look up the
correct value for this. But you can use this argument to supply your own valid
taxId here.

Details

makeTxDbFromUCSC is a convenience function that feeds data from the UCSC source to the lower
level makeTxDb function. See ?makeTxDbFromEnsembl for a similar function that feeds data from
an Ensembl database.

Value

For makeTxDbFromUCSC: A TxDb object.

For supportedUCSCtables: A data frame with 3 columns (tablename, track, and subtrack) and
1 row per table known to work with makeTxDbFromUCSC. IMPORTANT NOTE: In the returned data
frame, the set of tables associated with a track with subtracks might contain tables that don’t exist
for the specified genome.

makeTxDbFromUCSC 21

Author(s)

M. Carlson and H. Pagès

See Also

• makeTxDbFromEnsembl and makeTxDbFromBiomart for making a TxDb object from other
online resources.

• makeTxDbFromGRanges and makeTxDbFromGFF for making a TxDb object from a GRanges
object, or from a GFF or GTF file.

• list_UCSC_genomes in the UCSC.utils package to get the list of UCSC genomes.

• TxDb objects implemented in the GenomicFeatures package.

• makeTxDb for the low-level function used by the makeTxDbFrom* functions to make the TxDb
object returned to the user.

Examples

Use list_UCSC_genomes() to obtain the list of all UCSC genomes:
library(UCSC.utils)
list_UCSC_genomes()[, "genome"]

To search genomes for a particular organism:
list_UCSC_genomes("human")

Display the list of tables known to work with makeTxDbFromUCSC():
supportedUCSCtables("hg38")
supportedUCSCtables("hg19")

Open the UCSC track page for a given organism/table:
browseUCSCtrack("hg38", tablename="knownGene")
browseUCSCtrack("hg19", tablename="knownGene")

browseUCSCtrack("hg38", tablename="ncbiRefSeqSelect")
browseUCSCtrack("hg19", tablename="ncbiRefSeqSelect")

browseUCSCtrack("hg19", tablename="pseudoYale60")

browseUCSCtrack("sacCer3", tablename="ensGene")

Retrieve a full transcript dataset for Yeast from UCSC:
txdb1 <- makeTxDbFromUCSC("sacCer3", tablename="ensGene")
txdb1

Retrieve an incomplete transcript dataset for Mouse from UCSC (only
transcripts linked to Entrez Gene ID 22290):
transcript_ids <- c(

"uc009uzf.1",
"uc009uzg.1",
"uc009uzh.1",
"uc009uzi.1",
"uc009uzj.1"

22 makeTxDbPackage

)

txdb2 <- makeTxDbFromUCSC("mm10", tablename="knownGene",
transcript_ids=transcript_ids)

txdb2

makeTxDbPackage Making a TxDb package from annotations available at the UCSC
Genome Browser, biomaRt or from another source.

Description

A TxDb package is an annotation package containing a TxDb object.

The makeTxDbPackageFromUCSC function allows the user to make a TxDb package from transcript
annotations available at the UCSC Genome Browser.

The makeTxDbPackageFromBiomart function allows the user to do the same thing as makeTxDbPackageFromUCSC
except that the annotations originate from biomaRt.

Finally, the makeTxDbPackage function allows the user to make a TxDb package directly from a
TxDb object.

Usage

makeTxDbPackageFromUCSC(
version=,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hg19",
tablename="knownGene",
transcript_ids=NULL,
circ_seqs=NULL,
goldenPath.url=getOption("UCSC.goldenPath.url"),
taxonomyId=NA)

makeFDbPackageFromUCSC(
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hg19",
track="tRNAs",
tablename="tRNAs",
columns = UCSCFeatureDbTableSchema(genome, track, tablename),
url="https://genome.ucsc.edu/cgi-bin/",

makeTxDbPackage 23

goldenPath.url=getOption("UCSC.goldenPath.url"),
chromCol=NULL,
chromStartCol=NULL,
chromEndCol=NULL,
taxonomyId=NA)

makeTxDbPackageFromBiomart(
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl",
transcript_ids=NULL,
circ_seqs=NULL,
filter=NULL,
id_prefix="ensembl_",
host="https://www.ensembl.org",
taxonomyId=NA)

makeTxDbPackage(txdb,
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
pkgname=NULL,
provider=NULL,
providerVersion=NULL)

makePackageName(txdb)

Arguments

version What is the version number for this package?

maintainer Who is the package maintainer? (must include email to be valid). Should be a
person object, or something coercible to one, like a string. May be omitted if
the author argument is a person containing someone with the maintainer role.

author Who is the creator of this package? Should be a person object, or something
coercible to one, like a character vector of names. The maintainer argument
will be merged into this list.

destDir A path where the package source should be assembled.

license What is the license (and it’s version)

biomart which BioMart database to use. Get the list of all available BioMart databases
with the listMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.

24 makeTxDbPackage

dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl", "mmusculus_gene_ensembl",
"dmelanogaster_gene_ensembl", "celegans_gene_ensembl", etc in the en-
sembl database. See the examples section below for how to discover which
datasets are available in a given BioMart database.

genome name of a UCSC genome assembly e.g. "hg19" or "panTro6". Get the list of
UCSC genomes currently available with list_UCSC_genomes()[, "genome"].

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the list
of available tracks for a particular genome

tablename name of the UCSC table containing the transcript annotations to retrieve. Use
the supportedUCSCtables utility function to get the list of tables known to
work with makeTxDbFromUCSC.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the resulting
TxDb object will say ’Full dataset: no’. Otherwise it will say ’Full dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

filter Additional filters to use in the BioMart query. Must be a named list. An example
is filter=as.list(c(source="entrez"))

host The host URL of the BioMart. Defaults to https://www.ensembl.org.

id_prefix Specifies the prefix used in BioMart attributes. For example, some BioMarts
may have an attribute specified as "ensembl_transcript_id" whereas others
have the same attribute specified as "transcript_id". Defaults to "ensembl_".

columns a named character vector to list out the names and types of the other columns
that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url, goldenPath.url
use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the ’chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol Same thing as chromCol, but for renames of ’chromStart’

chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

txdb A TxDb object that represents a handle to a transcript database. This object type
is what is returned by makeTxDbFromUCSC, makeTxDbFromUCSC or makeTxDb

taxonomyId By default this value is NA and the organism provided (or inferred) will be used
to look up the correct value for this. But you can use this argument to override
that and supply your own valid taxId here

pkgname By default this value is NULL and does not need to be filled in (a package name
will be generated for you). But if you override this value, then the package and
it’s object will be instead named after this value. Be aware that the standard rules
for package names will apply, (so don’t include spaces, underscores or dashes)

makeTxDbPackage 25

provider If not given, a default is taken from the ’Data source’ field of the metadata table.
providerVersion

If not given, a default is taken from one of ’UCSC table’, ’BioMart version’ or
’Data source’ fields of the metadata table.

Details

makeTxDbPackageFromUCSC is a convenience function that calls both the makeTxDbFromUCSC and
the makeTxDbPackage functions. The makeTxDbPackageFromBiomart follows a similar pattern
and calls the makeTxDbFromBiomart and makeTxDbPackage functions.

Value

A TxDb object.

Author(s)

M. Carlson

See Also

makeTxDbFromUCSC, makeTxDbFromBiomart, makeTxDb, list_UCSC_genomes

Examples

First consider relevant helper/discovery functions:
Get the list of tables known to work with makeTxDbPackageFromUCSC():
supportedUCSCtables(genome="hg19")

Next are examples of actually building a package:

Makes a transcript package for Yeast from the ensGene table at UCSC:
makeTxDbPackageFromUCSC(version="0.01",

maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
genome="sacCer2",
tablename="ensGene")

Makes a transcript package from Human by using biomaRt and limited to a
small subset of the transcripts.
transcript_ids <- c(

"ENST00000400839",
"ENST00000400840",
"ENST00000478783",
"ENST00000435657",
"ENST00000268655",
"ENST00000313243",
"ENST00000341724")

makeTxDbPackageFromBiomart(version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",

26 makeTxDbPackage

transcript_ids=transcript_ids)

Index

∗ package
txdbmaker-package, 2

asGFF,TxDb-method, 18

browseUCSCtrack (makeTxDbFromUCSC), 19

FeatureDb, 3, 4

getChromInfoFromBiomart
(makeTxDbFromBiomart), 8

GFF3File, 16
GRanges, 8, 10, 15–18, 20, 21
GTFFile, 16

import, 16–18

list_UCSC_genomes, 4, 5, 20, 21, 24, 25
listDatasets, 10
listFilters, 10
listMarts, 9, 10, 23
loadDb, 8

makeFDbPackageFromUCSC
(makeTxDbPackage), 22

makeFeatureDbFromUCSC, 3
makePackageName (makeTxDbPackage), 22
makeTxDb, 5, 9, 10, 15–18, 20, 21, 25
makeTxDbFromBiomart, 8, 8, 14, 15, 17, 18,

21, 25
makeTxDbFromEnsembl, 5, 8, 10, 14, 17, 18,

20, 21
makeTxDbFromGFF, 5, 8, 10, 15, 15, 18, 21
makeTxDbFromGRanges, 8, 10, 15, 16, 17, 21
makeTxDbFromUCSC, 5, 8–10, 15, 17, 18, 19, 25
makeTxDbPackage, 22, 25
makeTxDbPackageFromBiomart

(makeTxDbPackage), 22
makeTxDbPackageFromUCSC

(makeTxDbPackage), 22

person, 23

registered_UCSC_genomes, 20

saveDb, 8
Seqinfo, 16
seqinfo, 20
SummarizedExperiment, 20
supportedUCSCFeatureDbTables

(makeFeatureDbFromUCSC), 3
supportedUCSCFeatureDbTracks

(makeFeatureDbFromUCSC), 3
supportedUCSCtables, 24
supportedUCSCtables (makeTxDbFromUCSC),

19

TxDb, 2, 5, 7–10, 14–22, 24, 25
txdbmaker (txdbmaker-package), 2
txdbmaker-package, 2

UCSCFeatureDbTableSchema
(makeFeatureDbFromUCSC), 3

useEnsembl, 10

27

	txdbmaker-package
	makeFeatureDbFromUCSC
	makeTxDb
	makeTxDbFromBiomart
	makeTxDbFromEnsembl
	makeTxDbFromGFF
	makeTxDbFromGRanges
	makeTxDbFromUCSC
	makeTxDbPackage
	Index

