## ----message = FALSE-------------------------------------------------------
library(transcriptogramer)
t <- transcriptogramPreprocess(association = association, ordering = Hs900)
## ----message = FALSE-------------------------------------------------------
## during the preprocessing
## creating the object and setting the radius as 0
t <- transcriptogramPreprocess(association = association, ordering = Hs900)
## creating the object and setting the radius as 50
t <- transcriptogramPreprocess(association = association, ordering = Hs900,
radius = 50)
## ----message = FALSE-------------------------------------------------------
## after the preprocessing
## modifying the radius of an existing Transcriptogram object
radius(object = t) <- 25
## getting the radius of an existing Transcriptogram object
r <- radius(object = t)
## ----message = FALSE-------------------------------------------------------
oPropertiesR25 <- orderingProperties(object = t, nCores = 1)
## slight change of radius
radius(object = t) <- 30
## this output is partially different comparing to oPropertiesR25
oPropertiesR30 <- orderingProperties(object = t, nCores = 1)
## ----message = FALSE-------------------------------------------------------
cProperties <- connectivityProperties(object = t)
## ----message = FALSE-------------------------------------------------------
t <- transcriptogramStep1(object = t, expression = GSE9988,
dictionary = GPL570, nCores = 1)
## ----message = FALSE-------------------------------------------------------
t <- transcriptogramStep2(object = t, nCores = 1)
## ----message = FALSE-------------------------------------------------------
radius(object = t) <- 80
t <- transcriptogramStep2(object = t, nCores = 1)
## ----message = FALSE, fig.show = "hide"------------------------------------
## trend = FALSE for microarray data or voom log2-counts-per-million
## the default value for trend is FALSE
levels <- c(rep(FALSE, 3), rep(TRUE, 3))
t <- differentiallyExpressed(object = t, levels = levels, pValue = 0.01,
trend = FALSE)
## ----eval = FALSE----------------------------------------------------------
# ## translating ENSEMBL Peptide IDs to Symbols using the biomaRt package
# ## Internet connection is required for this command
# t <- differentiallyExpressed(object = t, levels = levels, pValue = 0.01,
# species = "Homo sapiens")
#
# ## translating ENSEMBL Peptide IDs to Symbols using the DEsymbols dataset
# t <- differentiallyExpressed(object = t, levels = levels, pValue = 0.01,
# species = DEsymbols)
## ----message = FALSE-------------------------------------------------------
DE <- DE(object = t)
## ----eval = FALSE----------------------------------------------------------
# rdp <- clusterVisualization(object = t)
## ----message = FALSE-------------------------------------------------------
## using the HsBPTerms dataset to create the gene2GO list
terms <- clusterEnrichment(object = t, species = HsBPTerms,
pValue = 0.005, nCores = 1)
## ----eval = FALSE----------------------------------------------------------
# ## using the biomaRt package to create the gene2GO list
# ## Internet connection is required for this command
# terms <- clusterEnrichment(object = t, species = "Homo sapiens",
# pValue = 0.005, nCores = 1)
## ----echo = FALSE----------------------------------------------------------
load("terms.RData")
## --------------------------------------------------------------------------
head(terms)
## --------------------------------------------------------------------------
sessionInfo()
## --------------------------------------------------------------------------
warnings()