fgsea is an R-package for fast preranked gene set enrichment analysis (GSEA). The performance is achieved by using an algorithm for cumulative GSEA-statistic calculation. This allows to reuse samples between different gene set sizes. See the preprint for algorithmic details.
Loading example pathways and gene-level statistics:
data(examplePathways)
data(exampleRanks)Running fgsea:
fgseaRes <- fgsea(pathways = examplePathways,
stats = exampleRanks,
minSize=15,
maxSize=500,
nperm=10000)The resulting table contains enrichment scores and p-values:
head(fgseaRes[order(pval), ])## pathway pval padj ES
## 1: 5990980_Cell_Cycle 0.0001236552 0.002275657 0.5388497
## 2: 5990979_Cell_Cycle,_Mitotic 0.0001260239 0.002275657 0.5594755
## 3: 5991210_Signaling_by_Rho_GTPases 0.0001320132 0.002275657 0.4238512
## 4: 5991454_M_Phase 0.0001377790 0.002275657 0.5576247
## 5: 5991023_Metabolism_of_carbohydrates 0.0001396648 0.002275657 0.4944766
## 6: 5991209_RHO_GTPase_Effectors 0.0001408649 0.002275657 0.5248796
## NES nMoreExtreme size leadingEdge
## 1: 2.686525 0 369 66336,66977,12442,107995,66442,19361,
## 2: 2.753317 0 317 66336,66977,12442,107995,66442,12571,
## 3: 2.016900 0 231 66336,66977,20430,104215,233406,107995,
## 4: 2.564862 0 173 66336,66977,12442,107995,66442,52276,
## 5: 2.250319 0 160 11676,21991,15366,58250,12505,20527,
## 6: 2.380726 0 157 66336,66977,20430,104215,233406,107995,
It takes about ten seconds to get results with significant hits after FDR correction:
sum(fgseaRes[, padj < 0.01])## [1] 73
One can make an enrichment plot for a pathway:
plotEnrichment(examplePathways[["5991130_Programmed_Cell_Death"]],
exampleRanks) + labs(title="Programmed Cell Death")Or make a table plot for a bunch of selected pathways:
topPathwaysUp <- fgseaRes[ES > 0][head(order(pval), n=10), pathway]
topPathwaysDown <- fgseaRes[ES < 0][head(order(pval), n=10), pathway]
topPathways <- c(topPathwaysUp, rev(topPathwaysDown))
plotGseaTable(examplePathways[topPathways], exampleRanks, fgseaRes,
gseaParam = 0.5)Please, be aware that fgsea function takes about O(nk^{3/2}) time, where n is number of permutations and k is a maximal size of the pathways. That means that setting maxSize parameter with a value of ~500 is strongly recommended.
Also, fgsea is parallelized using BiocParallel package. By default the first registered backend returned by bpparam() is used. To tweak the parallelization one can either specify BPPARAM parameter used for bclapply of set nproc parameter, which is a shorthand for setting BPPARAM=MulticoreParam(workers = nproc).
For convenience there is reactomePathways function that obtains pathways from Reactome for given set of genes. Package reactome.db is required to be installed.
pathways <- reactomePathways(names(exampleRanks))
fgseaRes <- fgsea(pathways, exampleRanks, nperm=1000, maxSize=500)
head(fgseaRes)## pathway
## 1: Meiotic Synapsis
## 2: Rora activates gene expression
## 3: Bmal1:Clock,Npas2 activates circadian gene expression
## 4: Translocation of Glut4 to the Plasma Membrane
## 5: Endocrine-committed (Ngn3+) progenitor cells
## 6: Late stage (branching morphogenesis) pancreatic bud precursor cells
## pval padj ES NES nMoreExtreme size
## 1: 0.5527638 0.7975585 0.2885754 0.9397103 329 27
## 2: 0.8375000 0.9271420 -0.3087414 -0.6713139 401 5
## 3: 0.4351852 0.7344723 0.4209054 1.0459978 234 9
## 4: 0.6928105 0.8771748 0.2387284 0.8444781 423 39
## 5: 0.4949698 0.7687686 0.6477746 1.0155043 245 2
## 6: 0.9623762 0.9839168 -0.3460577 -0.5580225 485 2
## leadingEdge
## 1: 15270,12189,71846,19357
## 2: 20787,328572,12753,11865
## 3: 20893,59027,19883
## 4: 17918,19341,20336,22628,22627,20619,
## 5: 18088,18506
## 6: 15205,11925
One can also start from .rnk and .gmt files as in original GSEA:
rnk.file <- system.file("extdata", "naive.vs.th1.rnk", package="fgsea")
gmt.file <- system.file("extdata", "mouse.reactome.gmt", package="fgsea")Loading ranks:
ranks <- read.table(rnk.file,
header=TRUE, colClasses = c("character", "numeric"))
ranks <- setNames(ranks$t, ranks$ID)
str(ranks)## Named num [1:12000] -63.3 -49.7 -43.6 -41.5 -33.3 ...
## - attr(*, "names")= chr [1:12000] "170942" "109711" "18124" "12775" ...
Loading pathways:
pathways <- gmtPathways(gmt.file)
str(head(pathways))## List of 6
## $ 1221633_Meiotic_Synapsis : chr [1:64] "12189" "13006" "15077" "15078" ...
## $ 1368092_Rora_activates_gene_expression : chr [1:9] "11865" "12753" "12894" "18143" ...
## $ 1368110_Bmal1:Clock,Npas2_activates_circadian_gene_expression : chr [1:16] "11865" "11998" "12753" "12952" ...
## $ 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane : chr [1:55] "11461" "11465" "11651" "11652" ...
## $ 186574_Endocrine-committed_Ngn3+_progenitor_cells : chr [1:4] "18012" "18088" "18506" "53626"
## $ 186589_Late_stage_branching_morphogenesis_pancreatic_bud_precursor_cells: chr [1:4] "11925" "15205" "21410" "246086"
And runnig fgsea:
fgseaRes <- fgsea(pathways, ranks, minSize=15, maxSize=500, nperm=1000)
head(fgseaRes)## pathway
## 1: 1221633_Meiotic_Synapsis
## 2: 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane
## 3: 442533_Transcriptional_Regulation_of_Adipocyte_Differentiation_in_3T3-L1_Pre-adipocytes
## 4: 508751_Circadian_Clock
## 5: 5334727_Mus_musculus_biological_processes
## 6: 573389_NoRC_negatively_regulates_rRNA_expression
## pval padj ES NES nMoreExtreme size
## 1: 0.52810903 0.7033452 0.2885754 0.9468611 309 27
## 2: 0.68561873 0.8294954 0.2387284 0.8436265 409 39
## 3: 0.09133489 0.2267892 -0.3640706 -1.3687852 38 31
## 4: 0.78685613 0.8811827 0.2516324 0.7267117 442 17
## 5: 0.38814815 0.5802419 0.2469065 1.0552212 261 106
## 6: 0.40852575 0.6037390 0.3607407 1.0418153 229 17
## leadingEdge
## 1: 15270,12189,71846,19357
## 2: 17918,19341,20336,22628,22627,20619,
## 3: 20602,327987,59024,67381,70208,12537,
## 4: 20893,59027,19883
## 5: 60406,19361,15270,20893,12189,68240,
## 6: 60406,20018,245688,20017