Introduction to the Codelink package

Diego Diez
October 31, 2025

1 Introduction

This package implements methods to facilitate the preprocessing and analysis of Codelink microarrays.
Codelink is a microarray platform for the analysis of gene expression that uses 30 base long oligonu-
cleotides. Codelink is currently owned by Applied Microarrays, Inc. (previously was GE Healthcare
and before that Amersham). There is a proprietary software for reading scanned images, perform spot
intensity quantification and diagnostics. A Codelink microarray consists of a number of species-specific
probes to measure gene expression, as well as some other control probes (see Table 1). The Codelink
software assigns quality flags to each spot (see Table 2) on the basis of a signal to noise ratio (SNR)
computation (Eq: 1) and other morphological characteristics as irregular shape of the spots, saturation
of the signal or manufacturer spots removed. By default, the software performs background correction
(subtract) followed by median normalization. The results can be exported in several formats as XML,
Excel, plain text, etc.

The codelink package enables loading Codelink data into R, and stores it as a CodelinkSet ob-
ject. The CodelinkSet-class inherits from ExpressionSet all methods, and enables straightforward
interfacing with other Bioconductor structures, and packages.

NOTE: the old Codelink-class infrastructure is maintained for backbard compatibility, and in-
formation about its use can be found in the vignette Codelink_Legacy.pdf.

Probe type | Description Default weight

DISCOVERY | Measure gene expression 1

POSITIVE | Positive control 0

NEGATIVE | Negative control 0

FIDUCIAL | Grid alignment 0

OTHER | Other controls and housekeeping genes 0

Table 1: Probe types for Codelink arrays.
Flag | Description Default value set | Default weight

G | Good signal (SNR > 1) 1
L | Limit signal (SNR < 1) 1
S Saturated signal 1
I Irregular shape 0
M | MSR spot (-9999) NA 0
C Background contaminated 0
X User excluded spots 0

Table 2: Quality Flag description. SNR: Signal to Noise Ratio.

Smean
SNR = 1
(Bmedian + 1.5 x Bstdev) ()

2 Reading data

Only Codelink data exported as plain text from the Codelink software is supported. Unfortunately
the Codelink exported text format can have arbitrary columns and header fields so depending of what
has been exported, reading it into a CodelinkSet object may be more or less complicated. As a rule of
thumb it is recommended to include in the exported files at least Spot_mean and Bkgd_median values
so that background correction and normalization can be performed within R. In addition, Bkgd_stdev
will be needed to compute the SNR. If Raw_intensity or Normalized_intensity columns are present then
it is possible to avoid background correction and/or normalization, and use the ones performed by the
Codelink software. The Feature_id column will be use to assign unique identifiers to each spot, so that
CodelinkSet object can be read appropriately (or else will try to guess those). To read codelink data:

NOT RUN

library(codelink)

to read data as CodelinkSet object:
f = list.files(pattern = "TXT")

codset = readCodelinkSet(filename = f)
NOT RUN

V V V V VvV V

This assumes that the files have the extension " TXT” (uppercase) and are in the working directory.
You can prepare a targets file with each file’s name and additional phenotypic information, then pass
this information to readCodelinkSet() so that it is stored in the CodelinkSet object.

NOT RUN

pdata = read.AnnotatedDataFrame("targets.txt")

codset = readCodelinkSet(filename = pdata$FileName, phenoData = pdata)
NOT RUN

vV V V V

> # sample dataset.
> data(codset)
> codset
CodelinkSet (storageMode: lockedEnvironment)
assayData: 35129 features, 4 samples
element names: background, exprs, flag, snr, weight
protocolData: none
phenoData
sampleNames: Sample-1 Sample-2 Sample-3 Sample-4
varLabels: sample
varMetadata: labelDescription

featureData
featureNames: 1001 1002 ... 328112 (35129 total)
fvarLabels: probeName probeType ... meanSNR (5 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: rwgcod

To convert old Codelink objects into the new CodelinkSet the handy function Codelink2CodelinkSet()
can be used:

> data(codelink.example)
> print(is(codelink.example))

[1] "Codelink" "list" "vector" "AssayData"
[6] "list_OR_List" "vector_OR_factor" "vector_OR_Vector"

> tmp = Codelink2CodelinkSet (codelink.example)

> tmp

CodelinkSet (storageMode: lockedEnvironment)
assayData: 20469 features, 2 samples

element names: background, exprs, flag, snr, weight
protocolData: none
phenoData

rowNames: 1 2

varLabels: sample

varMetadata: labelDescription

featureData
featureNames: 1 2 ... 20469 (20469 total)
fvarLabels: probeName probeType ... meanSNR (5 total)

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: hlOkcod.db

2.1 Flags and weights

Traditionally the codelink package has used flag information to assign NAs to values. This behavior
has been changed since the version released with Bioconductor 2.13 (October, 2013). To reproduce
the old behavior call readCodelinkSet () with argument 01d=TRUE.

In the current implementation, only probes flagged as MSR spots (flag "M’- which have an intensity
value assigned of -9999), will be automatically converted to NA. This value cannot be adjusted since
the value of the probes itself does not represent any measure of signal.

In addition to this, probe weights will be computed by default, based on the conversion table shown
in tables 1 and 2. The weight computation follows this process. First, weights are assigned based on
type, with DISCOVERY probes being assigned weight=1 and other probes weight=0. Then, weights
are adjusted based on flags. The worst weight (type or flag weights when multiple) is assigned to
each probe. The weights assigned can be controled by the type.weights and flag.weights argu-
ment to readCodelinkSet (). It is possible also to reassign weights after reading with the function
createWeights (). Weights can be used during preprocessing (background correction and normaliza-
tion) and linear modeling.

> w = createWeights(codset)
> ## NOTE: a proper replacement function will be provided later:
> assayDataElement (codset, "weight") = w

2.2 Accessing data

Data stored in a CodelinkSet object can be accessed using several accessor functions:

> # get signal intensities. alias: getInt()
> head(exprs(codset))

Sample-1 Sample-2 Sample-3 Sample-4
1001 1645.4359 1175.0750 1191.2703 1127.0000

1002
1004
1005
1006
1007

1001
1002
1004
1005
1006
1007

47.2364

42.7961
1008.0443
118.9067
1612.3613 1122.6693 1122.6522 1074.5339
> # get background intensities.
> head(getBkg(codset))

Sample-1 Sample-2

31
31
31
31
32
31

4

39.7000
39.5862
82.7928
73.3896

31
31
31
30
31
30

> # get SNR values.
> head(getSNR(codset))
Sample-1

1001
1002
1004
1005
1006
1007

37.
1
1.

22.
2

36.

> # get
> head(getFlag(codset))
Sample-2 Sample-3 Sample-4

1001
1002
1004
1005
1006
1007

790711

.100202

007958
495867
576429
999348
flags.

Sample-1

IIGII
IIGII
IIGII
IIGII
IlGlI
IIGII

27.
0.
0.

11
1

25.

IlGlI
IILII
IILII
NGII
IIGII
IlGlI

> # get weights.
> head(getWeight (codset))

1001
1002
1004
1005
1006
1007

Sample-1 Sample-2 Sample-

0

N

0

Sample-2
6104937
9286658
9298767
.4867798
. 7566020
4019705

I|G|l
IILII
IIGII
llGll
llGll
I|GII

0

O P - -

> # get phenoData:
> head(pData(codset))

samp

le

Sample-1 T3-5(3)
Sample-2 TX-1(3)
Sample-3 T3-2(3)
Sample-4 T3-4(1)

41.3415
44,3542
638.2655
82.8421

1

2

31
31
32
31
30
31

Sample-3
28.
0.
.0146951
14.

0621444
9711291

9880533

.0463101
25.

9305364

I|GII
IILII
IILII
llGll
llGIl
I|GII

Samp

Or PP PFEP, OW

35.
36.
482.
7.

Sample-3 Sample-4

31
31
31
32
32
32

S
26.
0
0
10
1
24.

le-

O, P, P~ P O B

9556
5977
1574
1571

ample-4
1873780

.8586443
.8475702
.9125875
.8040827

3570387

3 Background correction

If Spot_mean and Bkgd_median values are available then background correction can be performed
with codCorrect (). Background correction methods are borrowed from the limma package, including
methods none, subtract, half and normezp. The default is set to half, because it is very fast. However,
more sensitive (although slower) methods like normezp are recommended. It is possible to assign an
offset to avoid low intensity probes to have high M variances.

> codset = codCorrect(codset, method = "half", offset = 0)

4 Normalization

Normalization of the background corrected intensities is done by the wrapper function normalize (or
the alias codNormalize()). Here again, normalization is borrowed from the limma package. Methods
median, quantile (the default) and loess are available.

> codset = codNormalize(codset, method = "quantile")

Method loess performs CyclicLoess normalzation and accepts weights. Weights are used in a per-
probe fashion (that is, one weight for one probe, not different weights for each sample). When weights
are used for normalzation the minimum of all the weights for each probe along all the samples will
be used. This is to ensure that for each array there is an equal contribution of each probe in the
normalization process.

> # NOT RUN
> codset = codNormalize(codset, method = "loess", weights = getWeight(codset), loess.method = "fast")
> # NOT RUN

5 Diagnostic plots

There are some plot facilities to help diagnose the effect of background correction and normalization,
as well as identify putative faulty arrays. The most commonly used functions are MA plots, density
plots and array images. All these functions can be accessed through the function codPlot(). The
parameter what specifies the type of plot: ma (default), density, scatter and image are valid choices.
Figures 1 and 2 below show examples of these plotting functions.

> codPlot(codset) # by default MA plot.
> codPlot(codset, what = "density")

When the columns Logical_row and Logical_col are present in the original data files, this information
is used to assign the physical location of each probe in the array to plot a pseudo image. It is possible
to plot the background intensities (default), the spot mean, raw and normalized intensities and the
SNR values. This images are useful to identify spatial artifact that may be affecting the analysis.

> codPlot(codset, what = "image")

-2

-4

Median vs Sample-1

B DISCOVERY 9
* m POSITIVE e
‘B NEGATIVE
O o
> <+
c
(0]
0 n
o
S
o
Q —
[I I I I I [o [I [
0 2 4 6 8 10 12 0 5 10
A Intensity

Figure 1: MA plot (left) and density plot (right).

]

Array: 1 Signal: bg Sample: Sample-1

Figure 2: Pseudo image plot of an array

6 Fitting linear models

A typical analysis include the testing for differentially expressed probes between two populations. This
can be performed using a variety of different R/Bioconductor packages, but the 1imma package is one
of the most popular options. Limma can readily use CodelinkSet objects, and can take advantage
of weights generated during data reading. In this case, weights will be use probe-wise (i.e. different
weights for the same probe in different samples will be considered).

> fit =

1mFit(codset, design = c(1, 1, 2, 2), weights = getWeight(codset))

> fit2 = eBayes(fit)
> topTable(fit2)

probeName probeType logicalRow logicalCol meanSNR logFC AveExpr
255020 GE1262775 DISCOVERY 255 20 224.66663 7.985204 13.33260
311011 GE21204 DISCOVERY 311 11 197.73053 7.967831 13.21738
31103 GE1152142 DISCOVERY 31 103 222.18072 7.863261 13.14444
106027 GE1204034 DISCOVERY 106 27 130.05434 7.468283 12.44730
24019 GE1126416 DISCOVERY 24 19 122.54245 7.312816 12.23010
150024 GE20195 DISCOVERY 150 24 105.40705 7.265655 12.14916
321107 GE1181836 DISCOVERY 321 107 98.68877 7.259977 12.06931
242033 GE1221296 DISCOVERY 242 33 102.22355 7.224388 12.07106
114068 GE22145 DISCOVERY 114 68 102.59456 7.199294 12.06821
312012 GE19692 DISCOVERY 312 12 93.38577 7.192154 11.98362

t P.Value adj.P.Val B

255020 12.73139 8.863450e-37 2.074213e-32 71.77767
311011 12.70555 1.225821e-36 2.074213e-32 71.46363
31103 12.53708 9.994042e-36 1.127395e-31 69.43157
106027 11.90935 1.965818e-32 1.663180e-28 62.08972
24019 11.66107 3.563186e-31 2.411707e-27 59.28627
150024 11.58612 8.446908e-31 4.466440e-27 58.45125
321107 11.57832 9.238545e-31 4.466440e-27 58.36459
242033 11.52059 1.788894e-30 7.567469e-27 57.72537
114068 11.47996 2.843083e-30 1.069062e-26 57.27724
312012 11.46988 3.188422e-30 1.079026e-26 57.16636
7 Citation
> citation(package = "codelink")

To cite codelink in publications use:

Diego Diez, Rebeca Alvarez and Ana Dopazo.
analysis of GE Healthcare Gene Expression Bioarrays. 2007,
Bioinformatics

A BibTeX entry for LaTeX users is

O@Articled,

title =

Expression Bioarrays},

author =

year = {2007},

codelink: An R package for

{{Diego Diez} and {Rebeca Alvarez} and {Ana Dopazol}},

{codelink: an R package for analysis of GE Healthcare Gene

journal = {Bioinformatics},

volume = {23},

number = {9},

pages = {1168-9},

doi = {10.1093/bioinformatics/btm072},

8 Session info

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu

Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[6] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods Dbase

other attached packages:
[1] knitr_1.50 codelink_1.79.0 limma_3.67.0
[4] Biobase_2.71.0 BiocGenerics_0.57.0 generics_0.1.4

loaded via a namespace (and not attached):

[1] crayon_1.5.3 vctrs_0.6.5 httr_1.4.7

[4] c1i_3.6.5 rlang_1.1.6 xfun_0.54

[7] highr_0.11 DBI_1.2.3 png_0.1-8

[10] xtable_1.8-4 bit_4.6.0 S4Vectors_0.49.0
[13] statmod_1.5.1 Biostrings_2.79.1 XML_3.99-0.19
[16] formatR_1.14 stats4_4.6.0 KEGGREST_1.51.0
[19] Seqinfo_1.1.0 evaluate_1.0.5 fastmap_1.2.0
[22] IRanges_2.45.0 memoise_2.0.1 compiler_4.6.0
[25] RSQLite_2.4.3 blob_1.2.4 XVector_0.51.0
[28] R6_2.6.1 AnnotationDbi_1.73.0 annotate_1.89.0
[31] tools_4.6.0 bit64_4.6.0-1 cachem_1.1.0

