Afty array outlier detection via dimension reduction

A Asare, 7 Gao, V Carey
November 4, 2025

Contents

1__Introduction| 1

(2 Illustration with MAQC data| 2

[3 Illustration with arrays from a clinical trial network] 2

[4 Manual work with the MAQC subset)| 4
.1 QA diagnostics| 5
1.2 Outlier detection using diagnostics| 8

[> Intensity contamination in the spikein datal 9

6 Appendix: Sources and text for statically computed sections with eval |

[set to falsel 12

1 Introduction

Clinical trials groups now routinely produce hundreds of microarrays to generate mea-
sures of clinical conditions and treatment responses at the level of mRNA abundance.
Objective, quantitative measures of array quality are important to support these projects.
Numerous packages in Bioconductor address quality assessment procedures. ArrayQual-
ityMetrics is a particularly attractive set of tools. We provide arrayMvout as a module
that performs parametric outlier detection after data reduction to support formal deci-
sionmaking about array acceptability. Ultimately the measures and procedures provided
by arrayMvout may be useful as components of other packages for quality assessment.
Another closely related package is mdgc, which employs a variety of robustifications of
Mahalanobis distance to help identify outlying arrays.

Suppose there are N affymetrix arrays to which N independent samples have been
hybridized. The arrayMvout package computes () quality measures which constitute

array-specific features. These features are then analyzed in two steps. First, principal
components analysis is applied to the N x @) feature matrix. Second, parametric mul-
tivariate outlier detection with calibration for multiple testing is applied to a subset of
the resulting principal components. Arrays identified as outliers by this procedure are
then subject to additional inspection and/or exclusion as warranted.

In this vignette we illustrate application of the procedure for a ‘negative control’
(raw MAQC data) and several constructed quality defect situations.

2 Illustration with MAQC data

We have serialized sufficient information on the MAQC subset to allow a simple demon-
stration of a negative control set. The MAQC data should be free of outliers.

We will manually search for outliers in this data resource. We compute principal
components and take the first three.

> library(arrayMvout)

> data(maqcQA)

> mm = ArrayOutliers(maqcQA[, 3:11], alpha=.01)
> mm

ArrayOutliers result.

The call was:

.local(data = data, alpha = alpha, alphaSeq = alphaSeq)
No outliers. First row of QC features

avgBG SF Present HSACO7 GAPDH NUSE RLE RLE_IQR

1 60.05505 1.17657 52.4225 1.245477 1.015217 1.057659 0.04185417 0.5516266
RNAslope
1 3.141527

There are no outliers found at a false labeling rate of 0.01.

3 Illustration with arrays from a clinical trial network

Another data resource with some problematic arrays is also included.

> data(itnQA)
> ii = ArrayOutliers(itnQA, alpha=.01)
> i1

ArrayOutliers result.
The call was:
.local(data = data, alpha = alpha, alphaSeq = alphaSeq)

There were 507 samples with 18 outliers detected.

Coordinate-wise means of inlying arrays:

avgBG SF Present HSACO7 GAPDH

4.498102e+01 1.731430e+00 4.162066e+01 2.187432e+00 1.770430e+00
RLE RLE_IQR RNAslope

6.050559e-05 2.976345e-01 3.427889e+00
Features of outlying arrays:

avgBG SF Present HSACO7 GAPDH NUSE
403 77.07796 0.4374264 47.55007 1.433827 < 1.307327 0.9991413
16 41.00919 1.9288207 39.60311 12.647909 4.707294 1.0097374
449 37.26800 6.2588701 24.39140 4.131615 2.047267 1.0284928
189 40.61447 1.9891220 39.39095 10.360385 6.718598 1.0103497
445 36.28049 9.1599338 25.08642 5.930873 2.189993 1.1064651
473 54.36467 3.6423721 26.03567 2.497312 1.893548 1.0438432
235 40.36647 2.3888050 39.61957 8.852826 7.201938 1.0302444
323 31.73768 5.6643255 32.43347 16.760480 11.955661 1.0507761
268 50.32263 2.6636200 34.85871 23.990430 7.101770 1.0542473
274 39.08553 2.9476038 36.66575 22.884391 12.036149 1.0457600
132 85.82265 1.8183446 34.61363 1.432298 1.510193 1.0822086
499 30.14740 29.3554869 17.02423 2.629898 1.718535 1.0874808
41 33.71813 15.6434771 17.80887 1.073282 2.643669 1.1669600
400 95.45017 1.2115402 36.64563 3.508757 2.479803 1.1128690
485 129.10624 1.5643922 23.87197 3.057225 1.810761 1.1098076
188 142.44325 1.4429218 30.23137 2.907469 2.101054 1.1475918
313 25.37851 16.8069277 25.72474 56.917203 11.840316 1.1360326
305 38.11554 19.0772560 11.60677 67.021339 120.011952 1.1987268

RLE_IQR RNAslope

403 0.2197193 3.66807105
16 0.3299879 5.42259351
449 0.5672631 1.89557125
189 0.3305528 5.80774028
445 0.5465581 2.54468591
473 0.6448400 1.32173147
235 0.3657481 6.54325480
323 0.4407913 5.88500524
268 0.5755214 5.74973052
274 0.4367455 7.09471717
132 0.6664186 1.19952480
499 0.6250615 1.87786720
41 1.0754575 1.11521819
400 0.6759216 2.46627267
485 0.9486388 -0.04085089

NUSE

1.000867e+00

O O O O OO O OO OO o Oo

RLE

.005285121
.021545990
.127501020
.036462661
.036035969
.108838227
.0561526272
.0562612806
.092065904
.087581891
.009663181
.132794452
.321298991
.000687765
.073777325
.018917415
.073802881
.349949413

188 0.8908112 1.76393357
313 0.6503561 6.13572050
305 1.3208768 6.96678147

We have a simple visualization.

> plot(ii, choices=c(1,3))

all QC stats
-150 -100 -50 0 50 100 150 200
| \ \ \ \ \ \ \ o
= O
N
<
o | o
= L0
—
o
= O
(qV] —
N -
485)
n
Q 188
g - avgBr— ©
o
B
AN
o Present o
| |l O
—
|
o
305 - 9
T T T T '
-0.2 0.0 0.2 0.4

PC1

4 Manual work with the MAQC subset

The remaining text of this vignette is computed statically. The source code with
eval=FALSE is given as an appendix.

We consider an AffyBatch supplied with the Bioconductor MAQCsubset package.
Marginal boxplots of raw intensity data are provided in the next figure. Sample labels
are decoded AFX _ [lab] _ [type| [replicate] .CEL where [lab] € (1,2, 3), [type| denotes
mixture type (A = 100% USRNA, B = 100% Ambion brain, C = 75% USRNA, 25%
brain, D = 25% USRNA, 75% brain), and replicate € (1,2).

4

> if (lexists("afxsub")) data(afxsub)

> library(arrayMvout)
> library(MAQCsubset)

= sampleNames (afxsub)
> if (nchar(sm)[1] > 6) {

sSn

>

rep(c("green", "blue",

col

sn

"MAQC subset",

c(10, 5, 5, 5), las = 2)

substr(sn, 3, 8)
> boxplot(afxsub, main

sampleNames (afxsub)

sn
> opar = par(no.readonly = TRUE)

> par (mar

)
[
)
[Se]
o
©
\—
%)
=~
o)
2~
T N
S ©
o
= 0O
\—
g
I
Q
+ A

|
™

Sopa
NSO

CDICD
(Y')IOO

<
op)

o

o\

N

[qV

(O]S)aTal e

o\

9\

mlm
o
I

<
3\

MAQC subset

9\

—

—

—

><><><><><><><><><><><><><><><><><><><><><><><><|

oonn<g
—

—|

mlm
—
l

—

AN AN ANANAN AN AN AN AN AN AN AN

<<
—

Of interest are measures of RNA degradation:

4.1 QA diagnostics

> library(arrayMvout)

> data(afxsubDEG)

> plotAffyRNAdeg(afxsubDEG, col = rep(c("green", "blue", "orange"),
+ c(8, 8, 8)))

RNA degradation plot

10

Mean Intensity : shifted and scaled
20 30 40
| | |
\\

o
[N}
N
) @
(o]
)

Probe Number

and the general ‘simpleaffy’ QC display:

> data(afxsubQC)
> plot(afxsubQC)

o gapdh3/gapdh5

A actin3/actinb QC StatS

X
®

56.27 :
X_3_D2 46.4? I o A :
x_3.p1 248 | —ta |
X_3_C2 Eg%g:ﬁf’ | a |
X 3 C1 g_%gg\; [d A :
X_3 B2 gzgg\; : To A :
X 3 B1 47:3800 : oA :
X 3 A2 3425% | 92 .
X_3 Al F283% | 3 :
X_2.D2 33%%% : 3 a !
o1 fiEe L LA
T ~o b5.43% | o |
X_2_C2 2669 | 148 .
56.87% [— .
X2 Cl 29% \ da \
52.06% | - |
X_2_B2 5169) o A)
x 2Bl 2{1% : o8
53.09% i o)
X_2_A2 47.16 | dA |
53.16% i — |
X 2 Al 18'82 dA
x_1 p2 2L8L% | +a |
L . | I
57.4% o
X 1Dl 355061 : p & :
x_1_c2 2§-83% ! ia !
L . 1 !
54.84% | o |
X1 Cl 5073 | 14 |
51.11%
X_1 B2 66.66 : o A :
52.09% L,
X_1B1 5‘318%\; : o A :
. 0 o
v SRR R
X_1 Al 3606 ! B |
3

-3-2-10 1 2

The affyPLM package fits probe-level robust regressions to obtain probe-set sum-
maries.

> library(affyPLM)

> splm = fitPLM(afxsub)

> png(file = "doim.png")

> par(mar = c(7, 5, 5, 5), mfrow = c(2, 2), las = 2)
> NUSE(splm, ylim = c(0.85, 1.3))

> RLE(splm)

> image(splm, which = 2, type = "sign.resid")

> image(splm, which = 5, type = "sign.resid")

In the following graphic, we have the NUSE distributions (upper left), the RLE
distributions (upper right), and second and fifth chips in signed residuals displays.

1.3
1.2

ol T
i B i

LT} (AL} i II|||l'|||||||||||||||l|
Tii i i !

RIS POIEHER SR 11 Ay e

Lot . IRl 1 2 e w
1.0 ity I||||:"|||||':|
0o - =05 it AT |

B b B LT LB LR L L L
--lll.l_ll"-!.llll|H-u||lll

o B LB LT LR

LEL LE-LR- L
R IN N -llllll".-L-llllllI

¥ 1_A2 1.

These chips seem to have adequate quality, although there is some indication that
the first four are a bit different with respect to variability.

4.2 Outlier detection using diagnostics

Let’s apply the diagnostic-dimension reduction-multivariate outlier procedure ArrayQutliers.

> AD = ArrayOutliers(afxsub, alpha = 0.05, gcOut =
+ degOut = afxsubDEG)
> nrow(AO[["out1"]])

afxsub(C, plmOut = splm,

(11 ©

We see that there are no outliers declared. This seems a reasonable result for arrays
that were hybridized in the context of a QC protocol. Let us apply the mdqc procedure.
As input this takes any matrix of quality indicators. The third component of our Ar-

rayOutliers result provides these as computed using simpleaffy qc(), affy AffyRNAdeg,
and affyPLM NUSE and RLE. The QC measures for the first two chips are:

> A0[[3]][1:2,]

avgBG SF Present = HSACO7 GAPDH NUSE RLE

X_1_A1 60.05505 1.1765695 52.42250 1.245477 1.065898 1.064069 0.04163564

X_1_A2 52.42248 0.9459093 54.63009 1.273977 1.094208 1.040718 0.03253112
RLE_IQR RNAslope
X_1_A1 0.5626532 3.141527
X_1_A2 0.5459847 3.210157

We now use the mdqc package with MVE robust covariance estimation.

> library(mdqc)
> mdq = mdqc(AO[[3]], robust = "MVE")
> mdq

Method used: nogroups Number of groups: 1

Robust estimator: MVEMDs exceeding the square root of the 90 % percentile of the Chi-S§
[1] 6 16 17 18 21 24

MDs exceeding the square root of the 95 % percentile of the Chi-Square distribution
[1]1 6 16 17 18 21 24

MDs exceeding the square root of the 99 Y percentile of the Chi-Square distribution
[11 6 16 17 18 21 24

We see that a number of the arrays are determined to be outlying by this procedure
according to several thresholds.
5 Intensity contamination in the spikein data

We begin with a simple demonstration of a contamination procedure that simulates
severe blobby interference with hybridization.

The code below is unevaluated to speed execution. Set eval=TRUE on all chunks to
see the actual process.

> require(mvoutData)
> data(s12c)

> image(si12c[, 1]1)

12_13_02_U133A_Mer_Latin_Square_Expt1_R1

For this AffyBatch instance, we have contaminated the first two arrays in this way.
We now apply the ArrayOutliers procedure:

> aosl2c = ArrayOutliers(si2c, alpha = 0.05)

\%

aos12c[[1]]

samp avgBG SF Present
12_13_02_U133A_Mer_Latin_Square_Exptl_R1 7205.48413 5.494978 19.05381
12_13_02_U133A_Mer_Latin_Square_Expt2_R1 7205.12544 5.801398 17.62332
12_13_02_U133A_Mer_Latin_Square_Expt8_R1 31.23121 1.181946 45.47982
HSACO7 GAPDH NUSE RLE RLE_IQR RNAslope
9.488671 8.6364494 1.578471 -0.514913919 1.33150311 -0.05195296
8.517500 9.7475845 1.579164 -0.514617696 1.37213796 -0.07638096
1.042255 0.8965249 1.000006 0.001987620 0.09164597 1.53050152

O N

0 N =

We find three arrays declared to be outlying. At the different candidate significance
levels we have:

10

> aosl12c[[4]]

[[1]1]
[[1]]1$inds
[1]1 1 2

[[1]]$vals

PC1 PC2
[1,] -6.345625 0.08184738
[2,] -6.485447 -0.07281758

[[1]1]1$k
[1] 5

[[1]]1$alpha
[1] 0.01

[[2]1]
[[2]]$inds
[1] 81 2

[[2]]$vals

PC1 PC2
[1,] 1.104062 -0.18796407
[2,] -6.345625 0.08184738
[3,] -6.485447 -0.07281758

[[2]]1%k
[1] 5

[[2]]$alpha
[1] 0.05

[[31]
[[3]]1$inds
[1] 8 1 2

[[3]]$vals

PC1 PC2
[1,] 1.104062 -0.18796407
[2,] -6.345625 0.08184738

PC3
0.05419247

-0.05421514

PC3

-0.008319271

0.054192469

-0.054215145

PC3

-0.008319271

0.054192469

11

[3,] -6.485447 -0.07281758 -0.054215145

[[3]]1$k
[1] 5

[[3]1]$alpha
[1] 0.1

So at the 0.01 level we have identified only the contaminated arrays.
We apply mdqc in the same manner.

> mdqc(aos12c[[3]], robust = "MVE")

Method used: nogroups Number of groups: 1

Robust estimator: MVEMDs exceeding the square root of the 90 % percentile of the Chi-S§
[1] 2

MDs exceeding the square root of the 95 % percentile of the Chi-Square distribution
[1] 2

MDs exceeding the square root of the 99 % percentile of the Chi-Square distribution
[1] 2

We see that only one of the contaminated arrays is identified by this procedure. This
may be an instance of masking.

6 Appendix: Sources and text for statically computed
sections with eval set to false

Manual work with the MAQC subset

All the code follwing has had evaluation turned off because execution times are slow.

We consider an AffyBatch supplied with the Bioconductor MAQCsubset package.
Marginal boxplots of raw intensity data are provided in the next figure. Sample labels
are decoded AFX _ [lab] _ [type| [replicate] .CEL where [lab] € (1,2, 3), [type| denotes
mixture type (A = 100% USRNA, B = 100% Ambion brain, C = 75% USRNA, 25%
brain, D = 25% USRNA, 75% brain), and replicate € (1,2).

library(arrayMvout)
library (MAQCsubset)
if (lexists("afxsub")) data(afxsub)
sn = sampleNames (afxsub)
if (nchar(sm)[1] > 6) {
sn = substr(sn, 3, 8)

+ V VvV Vv Vv V

12

+

sampleNames (afxsub) = sn

+

}

> opar = par(no.readonly=TRUE)

> par(mar=c(10,5,5,5), las=2)

> boxplot(afxsub, main="MAQC subset",

+ col=rep(c("green", "blue", "orange"), c(8,8,8)))
> par (opar)

QA diagnostics

Of interest are measures of RNA degradation:

> #afxsubDEG = AffyRNAdeg(afxsub)

> #tsave(afxsubDEG, file="afxsubDEG.rda')

> library(arrayMvout)

> data(afxsubDEG)

> plotAffyRNAdeg (afxsubDEG,

+ col=rep(c("green", "blue", "orange"),c(8,8,8)))

and the general ‘simpleafty” QC display:

#afxsubQC = qc(afxsub)

#save (afxsubQC, file="afxsubQC.rda")
data (afxsubQC)

plot (afxsubQC)

vV VvV Vv V

The affyPLM package fits probe-level robust regressions to obtain probe-set sum-
maries.

> library(affyPLM)

> #if (file.exists("splm.rda")) load("splm.rda")
> #if (lexists("splm")) splm = fitPLM(afxsub)

> splm = fitPLM(afxsub)

> #save(splm, file="splm.rda")

png (file="doim.png")

par (mar=c(7,5,5,5) ,mfrow=c(2,2),las=2)
NUSE(splm, ylim=c(.85,1.3))

RLE (splm)

image (splm, which=2, type="sign.resid")
image (splm, which=5, type="sign.resid")

vV V VvV Vv Vv Vv

These chips seem to have adequate quality, although there is some indication that
the first four are a bit different with respect to variability.

13

Outlier detection using diagnostics

Let’s apply the diagnostic-dimension reduction-multivariate outlier procedure ArrayQutliers.

> A0 = ArrayOutliers(afxsub, alpha=0.05, qcOut=afxsubQC,
+ plmOut=splm, degOut=afxsubDEG)
> nrow(AO[["out1"]])

We see that there are no outliers declared. This seems a reasonable result for arrays
that were hybridized in the context of a QC protocol. Let us apply the mdqc procedure.
As input this takes any matrix of quality indicators. The third component of our Ar-
rayOutliers result provides these as computed using simpleaffy qc(), affy AffyRNAdeg,
and affyPLM NUSE and RLE. The QC measures for the first two chips are:

> A0[[3]][1:2,]
We now use the mdqc package with MVE robust covariance estimation.

> library(mdgc)
> mdq = mdqc(AO[[3]], robust="MVE")
> mdq

We see that a number of the arrays are determined to be outlying by this procedure
according to several thresholds.

Intensity contamination in the spikein data

We begin with a simple demonstration of a contamination procedure that simulates
severe blobby interference with hybridization.

The code below is unevaluated to speed execution. Set eval=TRUE on all chunks to
see the actual process.

> require(mvoutData)
> data(s12c)

> image(s12c[,1])

For this AffyBatch instance, we have contaminated the first two arrays in this way.
We now apply the ArrayOutliers procedure:

> aosl2c = ArrayOutliers(sl2c, alpha=0.05)
> aosl2c[[1]]

We find three arrays declared to be outlying. At the different candidate significance
levels we have:

14

> aosl12c[[4]]

So at the 0.01 level we have identified only the contaminated arrays.
We apply mdqc in the same manner.

> mdqc(aos12c[[3]], robust="MVE")

We see that only one of the contaminated arrays is identified by this procedure. This
may be an instance of masking.

> sessionInfo()

R Under development (unstable) (2025-10-20 r88955)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /home/biocbuild/bbs-3.23-bioc/R/1ib/libRblas.so
LAPACK: /usr/lib/x86_64-1linux-gnu/lapack/liblapack.so0.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] tools stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] arrayMvout_1.69.0 affy_1.89.0 Biobase_2.71.0
[4] BiocGenerics_0.57.0 generics_0.1.4 parody_1.69.0

loaded via a namespace (and not attached):

[1] beanplot_1.3.1 DBI_1.2.3

[3] bitops_1.0-9 mdqgc_1.73.0

[5] magrittr_2.0.4 rlang 1.1.6

[7] scrime_1.3.5 matrixStats_1.5.0

15

[9]
[11]
[13]
[15]
[17]
[19]
[21]
[23]
[25]
[27]
[29]
[31]
[33]
[35]
[37]
[39]
[41]
[43]
[45]
[47]
[49]
[51]
[53]
[55]
[57]
[59]
[61]
[63]
[65]
[67]
[69]
[71]
[73]
[75]
[77]
[79]
[81]
[83]
[85]
[87]
[89]
[91]

compiler_4.6.0
mgcv_1.9-3

DelayedMatrixStats_1.33.0

vctrs_0.6.5
minfi_1.57.0
crayon_1.5.3
XVector_0.51.0
tzdb_0.5.0

preprocessCore_1.73.0

bit_4.6.0
cigarillo_1.1.0
jsonlite_2.0.0
rhdfbfilters_1.23.0
reshape_0.8.10
BiocParallel_ 1.45.0
cluster_2.1.8.1
RColorBrewer_1.1-3
rtracklayer_1.71.0
affyContam_1.69.0
Rcpp_1.1.0

SummarizedExperiment_1.41.0

readr_2.1.5
tidyselect_1.2.1
illuminaio_0.53.0
splines_4.6.0
yaml_2.3.10
codetools_0.2-20
doRNG_1.8.6.2
lattice_0.22-7
KEGGREST_1.51.0
survival_3.8-3
mclust_6.1.2
pillar_1.11.1
BiocManager_1.30.26
rngtools_1.5.2
foreach_1.5.2
nleqslv_3.3.5
methylumi_2.57.0
S4Vectors_0.49.0
bumphunter_1.53.0
glue_1.8.0
data.table_1.17.8

RSQLite_2.4.3
GenomicFeatures_1.63.1
png_0.1-8
quadprog_1.5-8
pkgconfig_2.0.3
fastmap_1.2.0
Rsamtools_2.27.0
UCSC.utils_1.7.0
purrr_1.2.0
cachem_1.1.0
GenomeInfoDb_1.47.0
blob_1.2.4
DelayedArray_0.37.0
Rhdf51ib_1.33.0
parallel_4.6.0
R6_2.6.1
limma_3.67.0
genefilter_1.93.0
GenomicRanges_1.63.0
Seqinfo_1.1.0
iterators_1.0.14
IRanges_2.45.0
rentrez_1.2.4
Matrix_1.7-4
abind_1.4-8
siggenes_1.85.0
curl_7.0.0
tibble_3.3.0
plyr_1.8.9
askpass_1.2.1
xml2_1.4.1
Biostrings_2.79.1
affyio_1.81.0
MatrixGenerics_1.23.0
KernSmooth_2.23-26
stats4_4.6.0
RCurl_1.98-1.17
hms_1.1.4
sparseMatrixStats_1.23.0
xtable_1.8-4
BiocIO0_1.21.0
annotate_1.89.0

16

[93] locfit_1.5-9.12 GenomicAlignments_1.47.0

[95] GEOquery_2.79.0 XML_3.99-0.19

[97] rhdf5_2.55.4 grid_4.6.0

[99] tidyr_1.3.1 AnnotationDbi_1.73.0
[101] base64_2.0.2 lumi_2.63.0
[103] nlme_3.1-168 norimix_1.3-3
[105] HDFb5Array_1.39.0 restfulr_0.0.16
[107] cli_3.6.5 S4Arrays_1.11.0
[109] dplyr_1.1.4 digest_0.6.37
[111] SparseArray_1.11.1 rjson_0.2.23
[113] lifecycle_1.0.4 memoise_2.0.1
[115] multtest_2.67.0 h5mread_1.3.0
[117] httr_1.4.7 statmod_1.5.1
[119] openssl_2.3.4 bit64_4.6.0-1

[121] MASS_7.3-65

17

	Introduction
	Illustration with MAQC data
	Illustration with arrays from a clinical trial network
	Manual work with the MAQC subset
	QA diagnostics
	Outlier detection using diagnostics

	Intensity contamination in the spikein data
	Appendix: Sources and text for statically computed sections with eval set to false

