ChIPXpress: enhanced ChIP-seq and ChIP-chip
target gene identification using publicly
available gene expression data

George Wu, Hongkai Ji
November 2, 2025

1 Introduction

ChIPx (i.e., ChIP-seq and ChIP-chip) is increasingly used to map genome-wide
transcription factor (TF) binding sites. A single ChIPx experiment can iden-
tify thousands of TF bound genes, but typically only a fraction of these genes
are functional targets that respond transcriptionally to perturbations of TF ex-
pression. Unfortunately, many ChIPx experiments do not have accompanying
gene expression data from TF perturbation experiments, making it challenging
to identify promising functional target genes for follow-up studies. ChIPXpress
is a new Bioconductor package that addresses this issue by integrating ChIPx
data with 20,000+ publicly available human and mouse gene expression sam-
ples. This tool can significantly improve TF target gene ranking based only on
ChIPx data and increase the chances of finding real functional targets among
the top ranked genes.

2 Overview

The purpose of ChIPXpress is to identify functional target genes of a TF-of-
interest by ranking TF bound target genes from ChIPx data using publicly
available gene epxression data. In order for ChIPXpress to accomplish this
task, the user will need to analyze their own ChIPx data apriori to obtain a list
of predicted TF bound genes. Then given the list of predicted TF bound genes
and a database of gene expression profiles (for the same species), ChIPXpress
will output a ranked list of TF target genes, where the order is determined
by how likely each gene is to be an actual functional TF target. The primary
function in this package that does this is called ChIPXpress.
The ChIPXpress function has three input arguments:

(1) TFID, Entrez GenelD of the TF-of-interest

(2) ChIP, Ranked vector of TF bound genes predicted from ChIPx data from
the most to least likely to be bound by the TF.

The TF bound genes should be inputted as a character vector in Entrez GenelD
format. Users will be required to process their own ChIPx data using any software
of their preference to determine the initial TF bound gene rankings. To obtain this

initial input ranking from ChIPx data, we suggest using the peak rankings, which are
based on the size of the detected peaks, that are typically reported by most ChIPx
peak callers. Then by assigning each peak to a gene, and sorted by the highest ranked
peak for each gene, one can obtain a ranked list of genes predicted to be bound by the
TF.

(3) DB, Database of gene expression profiles. This is a processed and normalized
matrix of gene expression values where the rows correspond to ungiue Gene IDs
and the columns correspond to samples.

There are currently two databases - one for mouse (DB__ GPL1261) and one for hu-
man (DB GPL570) - already built and ready for input. To use them please download
and install the ChIPXpressData package. The databases are in big.matrix format,
which is a more efficient way of storing and managing large data. Each database
contains thousands of gene expression profiles collected from a diverse assortment of
diseases, cell types, and conditions, which provides regulatory information that helps
to infer whether a TF bound gene is a functional target. Later on, we will show how
to load either of the two databases in a example ChIPXpress analysis.

Alternatively, users can build their own gene expression databases from NCBI
GEO by using functions buildDatabase and cleanDatabase. This is for users who wish
to analyze a different platform or species besides mouse or human, or if a user simply
wants to generate their own database. The details will be explained in a later section.

3 ChIPXpress Example

Here, we illustrate an example of how to use the ChIPXpress function to produce
functional TF target gene rankings. Suppose we are interested in studying
Oct4 regulation in mouse embryonic stem cells (ESCs). First, we process the
ChIP-seq data using CisGenome (or other method) to obtain a list of predicted
Oct4-bound target genes in ESCs. This has already been done previously and
is stored as a data frame in the package ready for input into the ChIPXpress
function.

> library(ChIPXpress)
> data(Oct4ESC_ChIPgenes)
> head (Oct4ESC_ChIPgenes)

Rank Chr Start End Strand Annotation Gene En
1 2 chr9 50910615 50911874 + 4833427GO6Rik NM_177702
2 5 chrll 69394955 69396249 + Trp53 NM_011640
3 6 chr2 51926560 51928414 + Rifl NM_175238
4 13 chrill 102190585 102191494 + Ubtf NM_011551
5 28 chr19 30103185 30104129 + Uhrf2 NM_144873
6 29 chr7 126135800 126136604 + Gprc5b NM_022420
peak_length FDR left_peakboundary right_peakboundary peak_summit
1 1260 O 50911137 50911247 50911212
2 1295 0 69395492 69395557 69395487
3 1855 0 51927707 51927817 51927772
4 910 O 102190977 102191077 102191007
5 945 0 30103577 30103737 30103662
6 805 0 126136142 126136247 126136217
bound_width maxT maxT_pos max_log2FC maxFC_pos minusloglO_

trezID
235345
22059
51869
21429
109113
64297
bound_center
50911192
69395524
51927762
102191027
30103657
126136194
minPoisP

1 111 11.045274 50911052 7.348307 50911052 100

2 66 10.712434 69395637 7.124972 69395637 100

3 111 10.667485 51927627 7.094812 51927627 100

4 101 10.195434 102191197 6.778066 102191197 100

5 161 9.808593 30103622 6.518497 30103622 100

6 106 9.723948 126136167 6.461699 126136167 100
minPoisP_pos

1 50911017

2 69395392

3 51926997

4 102190952

5 30103552

6 126136097

Next, we need to load the pre-built mouse database of gene expression pro-
files from the GPL1261 platform by loading the ChIPXpressData package. Re-
member, since the database is stored in big.matrix format, we need to use the
functions specially designed to work with big.matrixes. This requires installing
and loading the bigmemory package.

> library(ChIPXpressData)

> library(bigmemory)

> path <- system.file("extdata", package="ChIPXpressData")

> DB_GPL1261 <- attach.big.matrix("DB_GPL1261.bigmemory.desc", path=path)

To be more clear on exactly what we just did, we first located the path
in which the DB GPL1261 database is stored - which would be in the ext-
data folder of the installed ChIPXpressData package - and then specified the
file name and the path to load the DB GPL1261 database. To load the
DB _GPL570 database for human data, we would simply replace DB GPL1261
with DB_ GPL570.

We are now ready to run the ChIPXpress function. We specify the Entrez
GenelD of the TF-of-interest (18999 is the Entrez GenelD of Oct4), the vector
of EntrezIDs for the predicted Oct4 bound genes, and the database:

> Qutput <- ChIPXpress(TFID="18999",ChIP=0ct4ESC_ChIPgenes$EntrezID,DB=DB_GPL1261)
> head (Output[[1]])

18999 17865 381591 22702 22271 99377
5.3 6.1 15.8 20.8 22.0 26.0

> head(Output[[2]])
[1] 338369 238555 257963 242860 212569 243881

The output is a list of size two. The first item in the list is the Oct4 target
gene rankings, where the names of the vector correspond to the Entrez GenelD of
each gene and each individual value is ChIPXpress score for the gene calculating
by combining the ChIPx and truncated absolute correlation rankings. The
second item reports the TF bound genes that were not found in the database
(i.e. not measured by the microarray platform).

For the final step, you can convert the Output into a clean table with
genes names or any other preferred gene identifier by using any of your fa-
vorite annotation packages (e.g., biomaRt). Here, we can use the original
Oct4ESC _ChlIPgenes dataframe to do so directly.

GeneNames <- 0Oct4ESC_ChIPgenes$Annotation[match(names (Output[[1]]),
Oct4ESC_ChIPgenes$EntrezID)]

Result <- data.frame(1:length(Output[[1]]),GeneNames,names (Output[[1]]),0Output[[1]])

colnames (Result) <- c("Rank","GeneNames","EntrezID","ChIPXpressScore")

head(Result)

vV V.V + Vv

Rank GeneNames EntrezID ChIPXpressScore

18999 1 Poubf1 18999 5.3
17865 2 Mybl2 17865 6.1
381591 3 Litdl 381591 15.8
22702 4 Zfp42 22702 20.8
22271 5 Upp1l 22271 22.0
99377 6 Sall4d 99377 26.0

To read about exactly how (and why) ChIPXpress uses the gene expression
databases, refer to the ChIPXpress paper (Wu and Ji, 2012).

An additional option for the pre-built databases is to specify the variance of
the probes prior to standardization, then ChIPXpress wil check to see if the TF
has a low variance expression in the database (see the ChIPXpress R help file
for more details).

4 Building your own database

In some cases, the user may not want to use either of the two pre-built databases.

This may occur if you would like to make your own database for a different

platform, or you would like to obtain ChIPXpress rankings for a different species.
We will first go over the overall process of how the pre-built DB GPL1261

and DB GPL570 database are constructed and how to build your own database:

(1) download the samples of interest from NCBI GEO,

(2) process them using frma,

(3) convert array IDs into Entrez GenelDs,

(4) modify the database such that each EntrezGenelD is in one-to-one corre-

spondence with a row of expression measuremnts,

(5) normalize the database by rows.

Downloading and processing all samples files for a given platform will take
an extremely long time due to the sheer number of samples available in NCBI
GEO. For example, building a database from all the GPL1261 samples currently
available in GEO (29000+ samples) would take up to 2 weeks depending on
download speed and processing power. Thus, we highly recommend the user
to use the pre-built databases UNLESS you absolutely need to build your own
database.

Fortunately, we provide functions to do accomplish the above 5 steps in 3
steps:

(1-2) Run the buildDatabase function. buildDatabase will download the samples
from NCBI GEO using the GEOquery package and process them with frma,
by using the frma and affy packages. The output will be a matrix of expres-
sion values in big.matrix format where each row corresponds to a probe on the
platform and each column corresponds to a sample.

For example, if we want to build a database from all samples files in NCBI
GEO for the GPL1261 platform, we would do the following:

library (bigmemory)

library(biganalytics)

library (ChIPXrpess)

library(GEOquery)

library(affy)

library(frma)

library (mouse4302frmavecs)

DB <- buildDatabase(GPL_id='GPL1261',SaveDir=tempdir())

Make sure the save directory is already created and empty!

V VVVVYVVVYV

Alternatively, we can specify specific sample files in NCBI GEO using GSM
IDs. The GSM files need to all be from the same platform. Only use one of the
input methods, if GSMfiles are specified then GPL _id is not required, and vice
versa.

> GSM_ids <- c("GSM24056", "GSM24058", "GSM24060", "GSM24061",
+ "GSM94856", "GSM94857", "GSM94858" , "GSM94859")
> DB <- buildDatabase (GSMfiles=GSM_ids,SaveDir=tempdir())

As you can see, this function requires the use of the GEOquery, affy, and
frma packages to download and process the data and requires the use of the
bigmemory and biganalytics packages to work with big.matrix format files. We
also need to load the mouse/302frmavecs package, since it is required by frma
to process the GPL1261 raw CEL files. (Note: GPL1261 is the GPL ID for
mouse 430 2.0 array files) When you build your own database, you will also
need to install and download the appropriate frmavecs package. If a current
frmavec package does not exist for your desired platform or species, then please
see the frmaTools package on how to construct your own frmavecs file required
by frma.

(3) Convert the rownames of the matrix, currently as probelDs specific to the
platform, into Entrez GenelDs. This step must be done by the user themselves!
Feel free to use any annotation package or method to convert the probelD into
Entrez GenelDs. Here is example code of how we would do it:

> library(mouse4302.db)
> EntrezID <- mget(as.character (rownames (DB)),mouse4302ENTREZID)
> rownames (DB) <- as.character (EntrezID)

To be explicit, we first downloaded the mouse4302.db package which gives us the
annotation information on which probelD corresponds to which Entrez GenelD
for the mouse 430 2.0 array (or GPL1261 platform). Then we use mget to
obtain the Entrez GenelDs and replace the existing rownames with the Entrez
GenelDs.

(4-5) Run the cleanDatabase function on the annotated database. clean-
Database will search for Entrez GenelDs that corresponds to multiple rows in
the database and retain only the row with the highest variance. This is to en-
sure a 1-to-1 correspondance between each gene ID and each row of expression
measurements. Afterwards, the function will normalize the data by rows.

cleanDB <- cleanDatabase (DB, SaveFile="newDB_GPL1261.bigmemory",
SavePath=tempdir())

head(cleanDB)

cleanDB contains the finished database ready to be

inputted into ChIPXpress.

vV V.V + VvV

The user can then directly proceed to use cleanDB as input into the ChIPX-
press function. Be sure your final database includes a lot of samples in order to
obtain a reliable estimate of the correlation between the TF and each gene. This
is also to ensure that the regulatory information obtained from the database is
based on the regulatory behavior of the TF and its target genes across a diverse
assortment of cell types.

> out <- ChIPXpress (TFID="18999",ChIP=0ct4ESC_ChIPgenes,DB=cleanDB)
> head(out[[1]])
> head(out[[2]])

Or for future R sessions, the user can load the newly created database by:

> cleanDB <- attach.big.matrix("newDB_GPL1261.bigmemory.desc",path=tempdir())
> head(cleanDB)

Thus, to load the a big.matrix file, such as the pre-built database or the
newly created database in this example, we simply need to specify the directory
that contains the .bigmemory and .bigmemory.desc files. The .bigmemory file
contains the actual matrix information and the XXX.bigmemory.desc file is the
description file for the matrix. When saving new databases, feel free to name the
database as you see fit, but remember to add on a XXX.bigmemory to denote
that it is a big.matrix file. For more information on the big.matrix format, see
the bigmemory help files.

One final note, it is possible to convert the probelDs into an alternative
genelD format. To do this, simply annotate the probelDs into the alternative
gene ID format and store as the rownames of the matrix. Then, when running
ChIPXpress, just make sure that the inputted TF bound genes from ChIPx
data are also in the same genelD format. Then ChIPXpress will output rank-
ings using the alternative genelD format, rather than the default and preferred
Entrez GenelD format.

References

[1] Barrett T., Troup D.B., Whilhite S.E., et al. (2007) NCBI GEO: mining
tens of millions of expression profiles — database and tools update. Nucl.
Acids Res., 35, D760-D765.

[2] McCall M.N., Bolstad B.M., and Irizarry R.A. (2010) Frozen robust mul-
tiarray analysis (fRMA). Biostatistics, 11, 242-253.

[3] Wu, G. and Ji, H. (2012) ChIPXpress: enhanced ChIP-seq and ChIP-chip
target gene identifi-cation using publicly available gene expression data. In
preparation.

