Package ‘maaslin3’
November 6, 2025

Title " " Refining and extending generalized multivariate linear models
for meta-omic association discovery"

Year 2025
Version 1.3.0
Depends R (>=4.4)

Description MaAsLin 3 refines and extends generalized multivariate linear models for meta-
omicron association discovery. It finds abundance and prevalence associations between micro-
biome meta-omics features and complex metadata in population-scale epidemiological stud-
ies. The software includes multiple analysis methods (including support for multiple covari-
ates, repeated measures, and ordered predictors), filtering, normalization, and transform op-
tions to customize analysis for your specific study.

License MIT + file LICENSE

Imports dplyr, plyr, pbapply, ImerTest, parallel, Ime4, optparse,
logging, multcomp, ggplot2, RColorBrewer, patchwork, scales,
rlang, tibble, ggnewscale, survival, methods, BiocGenerics,
SummarizedExperiment, TreeSummarizedExperiment

Suggests knitr, testthat (>= 2.1.0), rmarkdown, markdown, kableExtra
VignetteBuilder knitr
Collate fit.R utility_scripts.R viz.R maaslin3.R

URL http://huttenhower.sph.harvard.edu/maaslin3

biocViews Metagenomics, Software, Microbiome, Normalization,
MultipleComparison

BugReports https://github.com/biobakery/maaslin3/issues

NeedsCompilation no

git_url https://git.bioconductor.org/packages/maaslin3

git_branch devel

git_last_commit b274055

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-05

http://huttenhower.sph.harvard.edu/maaslin3
https://github.com/biobakery/maaslin3/issues

2 maaslin3
Author William Nickols [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8214-9746>),
Jacob Nearing [aut]

Maintainer William Nickols <willnickols@g.harvard.edu>

Contents
maaslind 2
maaslin_check_arguments 8
maaslin_check_formula 10
maaslin_compute_formula 12
maaslin_contrast_test e e e e e e e e e 14
maaslin_filter e e 17
maaslin_fit. e 19
maaslin_log_argumentso e 24
maaslin_normalize e e e 29
maaslin_plot_results 31
maaslin_plot_results_from_output L oo 35
maaslin_process_metadatao 39
maaslin_read_data L e 41
maaslin_reorder_data e 43
maaslin_transform L L e 45
maaslin_write_results e 47
maaslin_write_results_lefse_format 49
preprocess_dna_mtX oL e e e e e e e 51
Preprocess_taxa_MtX bt et e e e e e e e e e e e e e e 53

Index 55

maaslin3 MaAsLin 3: A multivariable statistical framework for finding abun-
dance and prevalence associations between metadata and high-
dimensional microbial multi-omics data.
Description

This wrapper for all MaAsLin 3 steps finds abundance and prevalence associations between micro-
biome meta-omics features and complex metadata in population-scale epidemiological studies. The
software includes multiple analysis methods (including support for multiple covariates, repeated
measures, and ordered predictors), filtering, normalization, and transform options to customize
analysis for your specific study.

https://orcid.org/0000-0001-8214-9746

maaslin3

Usage

maaslin3(input_data,
input_metadata = NULL,
output,
formula = NULL,
fixed_effects = NULL,
reference = NULL,
random_effects = NULL,
group_effects = NULL,
ordered_effects = NULL,
strata_effects = NULL,
feature_specific_covariate = NULL,
feature_specific_covariate_name = NULL,
feature_specific_covariate_record = NULL,
min_abundance = 0,
min_prevalence = 0,
max_prevalence = 1.01,
zero_threshold = 0,
min_variance = 0,
max_significance = 0.1,

normalization = 'TSS',
transform = 'LOG',
correction = 'BH',

standardize = TRUE,
unscaled_abundance = NULL,
median_comparison_abundance = TRUE,
median_comparison_prevalence = FALSE,
median_comparison_abundance_threshold = 0,
median_comparison_prevalence_threshold = 9,
subtract_median = FALSE,
warn_prevalence = TRUE,
small_random_effects = FALSE,

augment = TRUE,

evaluate_only = NULL,
plot_summary_plot = TRUE,
summary_plot_first_n = 25,
coef_plot_vars = NULL,

heatmap_vars = NULL,
plot_associations = TRUE,

max_pngs = 30,

cores = 1,

save_models = FALSE,

save_plots_rds = FALSE,

verbosity = 'FINEST',
summary_plot_balanced = FALSE,
assay.type = 1)

4 maaslin3

Arguments

input_data A data frame of feature abundances or read counts, a filepath to a tab-delimited
file with abundances, or a SummarizedExperiment or TreeSummarizedExperi-
ment object with the taxa table in ‘assays‘ and metadata in ‘colData‘. If a data
frame or a filepath is supplied, the table should be formatted with features as
columns and samples as rows (or the transpose). The column and row names
should be the feature names and sample names respectively.

input_metadata A data frame of per-sample metadata or a filepath to a tab-delimited file with
metadata. It should be formatted with variables as columns and samples as rows
(or the transpose). The column and row names should be the variable names and
sample names respectively.

output The output folder to write results.

formula A formula in 1me4 format. Random effects, interactions, and functions of the
metadata can be included (note that these functions will be applied after stan-
dardization if standardize=TRUE). Group, ordered, and strata variables can be
specified as: group(grouping_variable), ordered(ordered_variable) and
strata(strata_variable). The other variable options below will not be con-
sidered if a formula is set.

fixed_effects A vector of variable names to be included as fixed effects.

reference For a variable with more than two levels supplied with fixed_effects, the
factor to use as a reference provided as a string of ’variable,reference’ semi-
colon delimited for multiple variables.

random_effects A vector of variable names to be included as random intercepts.

group_effects A factored categorical variable to be included for group testing. An ANOVA-
style test will be performed to assess whether any of the variable’s levels are
significant, and no coefficients or individual p-values will be returned.

ordered_effects
A factored categorical variable to be included. Consecutive levels will be tested
for significance against each other, and the resulting associations will corre-
spond to effect sizes, standard errors, and significances of each level versus the
previous.

strata_effects A vector with one variable name to be included as the strata variable in case-
control studies. Strata cannot be combined with random effects.
feature_specific_covariate
A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx‘ first.
feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models. This string
must be parse-able in a formula (e.g., no spaces).
feature_specific_covariate_record
Whether to keep the feature-specific covariates in the outputs when calculating
p-values, writing results, and displaying plots.

maaslin3 5

min_abundance Features with abundances more than min_abundance in more than min_prevalence
of the samples will be included for analysis. The threshold is applied after nor-
malization and before transformation.

min_prevalence See min_abundance.

max_prevalence Features with abundances more than min_abundance in fewer than max_prevalence
of the samples will be included for analysis. The threshold is applied after nor-
malization and before transformation.

zero_threshold Abundances less than or equal to zero_threshold will be treated as zeros. This
is primarily to be used when the abundance table has likely low-abundance false
positives.

min_variance Features with abundance variances less than or equal to min_variance will be
dropped. This is primarily used for dropping features that are entirely zero.

max_significance

The FDR corrected g-value threshold for significance used in selecting which
associations to write as significant and to plot.

normalization The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.

transform The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.

correction The correction to obtain FDR-corrected g-values from raw p-values. Any valid
options for p.adjust can be used.

standardize Whether to apply z-scores to continuous metadata variables so they are on the
same scale. This is recommended in order to compare coefficients across meta-
data variables, but note that functions of the metadata specified in the formula
will apply after standardization.

unscaled_abundance
A data frame with a single column of absolute abundances or a filepath to such
a tab-delimited file. The row names should match the names of the samples
in input_data and input_metadata. When using spike-ins, the single col-
umn should have the same name as one of the features in input_data, and the
unscaled_abundance should correspond to the absolute quantity of the spike-
in. When using total abundance scaling, the single column should have the name
’total’, and the unscaled_abundance should correspond to the total abundance
of each sample.

median_comparison_abundance
Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.
median_comparison_prevalence
Test prevalence coefficients against a null value corresponding to the median co-
efficient for a metadata variable across the features. This is only recommended
if the analyst is interested in how feature prevalence associations compare to
each other or if there is likely strong compositionality-induced sparsity.

maaslin3

median_comparison_abundance_threshold
Coefficients within median_comparison_abundance_threshold of the median
association will automatically be counted as insignificant (p-value set to 1) since
they likely represent compositionality-induced associations. This threshold will
be divided by the metadata variable’s standard deviation if the metadatum is
continuous to ensure the threshold applies to the right scale.

median_comparison_prevalence_threshold
Same as median_comparison_abundance_threshold but applied to the preva-
lence associations.

subtract_median
Subtract the median from the coefficients.

warn_prevalence
Warn when prevalence associations are likely induced by abundance associa-
tions. This requires re-fitting the linear models on the TSS log-transformed
data.

small_random_effects
Automatically replace random effects with fixed effects in the logistic preva-
lence model to handle low numbers of observations per group.

augment Add extra lowly-weighted Os and 1s to avoid linear separability.
evaluate_only Whether to evaluate just the abundnace ("abundance") or prevalence ("preva-
lence") models
plot_summary_plot
Generate a summary plot of significant associations.
summary_plot_first_n
Include the top summary_plot_first_n features with significant associations.
coef_plot_vars Vector of variable names to be used in the coefficient plot section of the sum-
mary plot. Continuous variables should match the metadata column name, and
categorical variables should be of the form "[variable] [level]”.
heatmap_vars Vector of variable names to be used in the heatmap section of the summary plot.
Continuous variables should match the metadata column name, and categorical
variables should be of the form "[variable] [level]".
plot_associations
Whether to generate plots for significant associations.

max_pngs The top max_pngs significant associations will be plotted.

cores How many cores to use when fitting models. (Using multiple cores will likely
be faster only for large datasets or complex models.

save_models Whether to return the fit models and save them to an RData file.
save_plots_rds Whether to return the fit models and save them to an RData file.
verbosity The level of verbosity for the logging package.
summary_plot_balanced
If set to TRUE the summary plot will show the top N features of each variable in-

cluded in coef_plot_vars where N is equal to: ceiling(summary_plot_first_n/length(coef_plot.
Will error if coef_plot_vars = NULL

assay.type A string or index to select the assay when using a SummarizedExperiment ob-
ject

maaslin3 7

Value
A list containing the following items:

(1) data: A dataframe of feature abundances with the retained samples for fitting.
(2) normalized_data: A dataframe of normalized feature abundances.

(3) filtered_data: A dataframe of feature abundances on the original scale after normalization
and filtering.

(4) transformed_data: A dataframe of feature abundances after filtering, normalization, and
transformation.

(5) metadata: A dataframe of metadata with the retained samples for fitting.

(6) standardized_metadata: A dataframe of metadata after scaling (if selected).

(7) formula: Checked or constructed formula(s) specifying the model to be fit.

(8) fit_data_abundance: The results from the fit abundance models (see maaslin_fit).

(9) fit_data_prevalence: The results from the fit prevalence models (see maaslin_fit).

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv", package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
fit_out <- maaslin3::maaslin3(input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state +
antibiotics + age + reads',

8 maaslin_check_arguments

plot_summary_plot = FALSE,
plot_associations = FALSE)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_check_arguments
Check parameter arguments to ensure a successful MaAsLin 3 run.

Description

Check the arguments provided are valid for further MaAsLin 3 use.

Usage

maaslin_check_arguments(feature_specific_covariate = NULL,
feature_specific_covariate_name = NULL,
feature_specific_covariate_record = NULL,
zero_threshold = 0,

normalization = 'TSS',
transform = 'LOG',
correction = 'BH',

warn_prevalence = TRUE,
evaluate_only = NULL,
unscaled_abundance = NULL,
median_comparison_abundance = TRUE)

Arguments

feature_specific_covariate
A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx‘ first.

feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models.

feature_specific_covariate_record
Whether to keep the feature-specific covariates in the outputs when calculating
p-values, writing results, and displaying plots.

zero_threshold Abundances less than or equal to zero_threshold will be treated as zeros. This
is primarily to be used when the abundance table has likely low-abundance false
positives.

maaslin_check_arguments 9

normalization

transform

correction

warn_prevalence

evaluate_only

The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.

The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.

The correction to obtain FDR-corrected g-values from raw p-values. Any valid
options for p.adjust can be used.

Warn when prevalence associations are likely induced by abundance associa-
tions. This requires re-fitting the linear models on the TSS log-transformed
data.

Whether to evaluate just the abundnace ("abundance") or prevalence ("preva-
lence") models

unscaled_abundance

A data frame with a single column of absolute abundances or a filepath to such
a tab-delimited file. The row names should match the names of the samples
in input_data and input_metadata. When using spike-ins, the single col-
umn should have the same name as one of the features in input_data, and the
unscaled_abundance should correspond to the absolute quantity of the spike-
in. When using total abundance scaling, the single column should have the name
“total’, and the unscaled_abundance should correspond to the total abundance
of each sample.

median_comparison_abundance

Value

Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.

No value is returned, but incompatibile arguments will produce an error.

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table
taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =

"maaslin3")

taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table
metadata_name <- system.file("extdata”, "HMP2_metadata.tsv"”, package =

10 maaslin_check_ formula

"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

Prepare parameter lists
maaslin3::maaslin_check_arguments(zero_threshold = 0,

normalization = 'TSS',
transform = 'LOG',
correction = 'BH',

median_comparison_abundance = TRUE)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_check_formula Check a MaAsLin 3 formula to ensure a proper MaAsLin 3 run.

Description

Ensure that the formula provided is valid. Only one of maaslin_compute_formula ormaaslin_check_formula
should be used.

Usage

maaslin_check_formula(data,
metadata,
input_formula = NULL,
feature_specific_covariate_name = NULL)

Arguments
data A data frame of feature abundances. It should be formatted with features as
columns and samples as rows. The column and row names should be the feature
names and sample names respectively.
metadata A data frame of per-sample metadata. It should be formatted with variables as

columns and samples as rows. The column and row names should be the variable
names and sample names respectively.

input_formula A formula in 1me4 format. Random effects, interactions, and functions of the
metadata can be included (note that these functions will be applied after stan-
dardization if standardize=TRUE). Group, ordered, and strata variables can be
specified as: group(grouping_variable), ordered(ordered_variable) and

maaslin_check formula 11

strata(strata_variable). The other variable options below will not be con-
sidered if a formula is set.

feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models.

Value

A list containing the following named items:

(1) formula: The constructed formula.

(2) random_effects_formula: A formula for the random effects.

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples
Read features table
taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv"”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)
read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)
read_data_list <- maaslin3::maaslin_reorder_data(

12 maaslin_compute_formula

read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_compute_formula
Compute a formula for a MaAsLin 3 run based on the specified effects.

Description

Compute a formula using variables provided through fixed_effects, random_effects, group_effects,
ordered_effects, and strata_effects. Only one of maaslin_compute_formula ormaaslin_check_formula
should be used.

Usage

maaslin_compute_formula(data,
metadata,
fixed_effects = NULL,
random_effects = NULL,
group_effects = NULL,
ordered_effects = NULL,
strata_effects = NULL,
feature_specific_covariate_name = NULL)

Arguments
data A data frame of feature abundances. It should be formatted with features as
columns and samples as rows. The column and row names should be the feature
names and sample names respectively.
metadata A data frame of per-sample metadata. It should be formatted with variables as

columns and samples as rows. The column and row names should be the variable
names and sample names respectively.

fixed_effects A vector of variable names to be included as fixed effects.

random_effects A vector of variable names to be included as random intercepts.

maaslin_compute_formula 13

group_effects A factored categorical variable to be included for group testing. An ANOVA-
style test will be performed to assess whether any of the variable’s levels are
significant, and no coefficients or individual p-values will be returned.

ordered_effects
A factored categorical variable to be included. Consecutive levels will be tested
for significance against each other, and the resulting associations will corre-
spond to effect sizes, standard errors, and significances of each level versus the
previous.

strata_effects A vector with one variable name to be included as the strata variable in case-
control studies. Strata cannot be combined with random effects.
feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models.

Value

A list containing the following named items:

(1) formula: The constructed formula.

(2) random_effects_formula: A formula for the random effects.

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples
Read features table
taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv", package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,

14 maaslin_contrast_test

input_metadata = metadata,
output = 'output',
fixed_effects = c('diagnosis', 'dysbiosis_state', 'antibiotics',
'age', 'reads'),

random_effects = c('participant_id'),
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)

read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_compute_formula(
data,
metadata,
fixed_effects = c('diagnosis', 'dysbiosis_state', 'antibiotics',
'age', 'reads'),
random_effects = c('participant_id'))

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_contrast_test Perform a contrast from a fit MaAsLin 3 model.

Description

Perform a contrast test (1merTest: :contest for mixed effects linear; multcomp: :glht for all
others) using a named contrast matrix and right hand side. One contrast test is applied per row of
the matrix.

Usage

maaslin_contrast_test(maaslin3_fit,
contrast_mat,

rhs = NULL,
max_significance = 0.1,
correction = 'BH',

median_comparison_abundance = TRUE,
median_comparison_prevalence = FALSE,
subtract_median = FALSE,
small_random_effects = FALSE,
evaluate_only = NULL)

maaslin_contrast_test 15

Arguments

maaslin3_fit The output of maaslin_fit with save_models = TRUE.

contrast_mat A matrix with one row per contrast test to run. The columns will be matched to
the coefficients of the model by name. Contrast vector coefficients need not be
specified if they would be zero. If row names are provided, they will be used to
label the test in the results.

rhs The right hand size of the contrast test. The length should be the same as the
number of rows in the contrast_mat. This will default to 0 or the median
comparison if median_comparison=TRUE.

max_significance
The FDR corrected g-value threshold for significance used in selecting which
associations to write as significant and to plot.

correction The correction to obtain FDR-corrected g-values from raw p-values. Any valid
options for p.adjust can be used.

median_comparison_abundance
Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for

relative abundance data but should not be used for absolute abundance data.
median_comparison_prevalence
Test prevalence coefficients against a null value corresponding to the median co-
efficient for a metadata variable across the features. This is only recommended
if the analyst is interested in how feature prevalence associations compare to
each other or if there is likely strong compositionality-induced sparsity.
subtract_median
Subtract the median from the coefficients.
small_random_effects
Automatically replace random effects with fixed effects in the logistic preva-
lence model to handle low numbers of observations per group.

evaluate_only Whether to evaluate just the abundnace ("abundance") or prevalence ("preva-
lence") models

Value
A dataframe with the following columns:

(1) feature: The feature involved in the association.
(2) test: The contrast test name.

(3) coef: The coefficient of the association: the slope coefficient in the abundance model and the
change in log odds in the prevalence model.

(4) null_hypothesis: The value of the null hypothesis against which the coefficients are tested
(zero or the per-metadatum median).

(5) stderr: The standard error of the coefficient.
(6) pval_individual: The (uncorrected) p-value of the association.

(7) gval_individual: The FDR corrected q-value of the association. FDR correction is performed
over all associations in the abundance and prevalence modeling without errors together.

16 maaslin_contrast_test

(8) pval_joint: The p-value of the overall association (combining abundance and prevalence) by
taking the minimum of the abundance and logistic p-values and applying the Beta(1,2) CDF.
These will be the same in the abundance and prevalence results for an association.

(9) qval_joint: The FDR corrected g-value of the association. FDR correction is performed over
all joint p-values without errors.

(10) error: Any error produced by the model during fitting. NA otherwise.
(11) model: linear for the abundance models and logistic for the prevalence models.
(12) N: The number of data points for the association’s feature.

(13) N_not_zero: The number of non-zero data points for the association’s feature.

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv"”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3

fit_out <- maaslin3::maaslin3(input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state +
antibiotics + age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

contrast_mat <- matrix(c(1, 1, @, @, 0, @, 1, 1),
ncol = 4, nrow = 2, byrow = TRUE)

colnames(contrast_mat) <- c("diagnosisUC”,

maaslin_filter

17

"diagnosisCD",
"dysbiosis_statedysbiosis_UC",
"dysbiosis_statedysbiosis_CD")

rownames(contrast_mat) <- c("diagnosis_test”, "dysbiosis_test")

maaslin_contrast_test(maaslin3_fit = fit_out,

contrast_mat = contrast_mat)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_filter

Filter abundance data before MaAsLin 3 model fitting.

Description

Set abundances below zero_threshold to zero, remove features without abundances more than
min_abundance in min_prevalence of the samples, remove features with abundances more than
min_abundance in more than max_prevalence of the samples, and remove features with variances
less than or equal to min_variance.

Usage

maaslin_filter(normalized_data,
output,
min_abundance = 0,
min_prevalence = 0,

max_prevalence
zero_threshold

Inn
® —
[
t

min_variance = 0)

Arguments

normalized_data

output

min_abundance

min_prevalence

max_prevalence

A data frame of normalized feature abundances. It should be formatted with
features as columns and samples as rows. The column and row names should be
the feature names and sample names respectively.

The output folder to write results.

Features with abundances more than min_abundance in more than min_prevalence
of the samples will be included for analysis. The threshold is applied after nor-
malization and before transformation.

See min_abundance.

Features with abundances more than min_abundance in fewer than max_prevalence
of the samples will be included for analysis. The threshold is applied after nor-
malization and before transformation.

18 maaslin_filter

zero_threshold Abundances less than or equal to zero_threshold will be treated as zeros. This
is primarily to be used when the abundance table has likely low-abundance false
positives.

min_variance Features with abundance variances less than or equal to min_variance will be
dropped. This is primarily used for dropping features that are entirely zero.
Value

A dataframe of filtered features (features are columns; samples are rows).

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples
Read features table
taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv", package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)

read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,

maaslin_fit 19

read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,
output = 'output')

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_fit Fit MaAsLin 3 models.

Description

Fit the abundance data with abundance and prevalence models to discover feature-metadata associ-
ations.

Usage

maaslin_fit(filtered_data,
transformed_data,
metadata,
formula,
random_effects_formula,
feature_specific_covariate = NULL,
feature_specific_covariate_name = NULL,
feature_specific_covariate_record = NULL,
zero_threshold = 0,
max_significance = 0.1,
correction = 'BH',
median_comparison_abundance = TRUE,
median_comparison_prevalence = FALSE,
median_comparison_abundance_threshold = 9,
median_comparison_prevalence_threshold = 0,
subtract_median = FALSE,
warn_prevalence = TRUE,
small_random_effects = FALSE,
augment = TRUE,

20 maaslin_fit
evaluate_only = NULL,
cores = 1,
save_models = FALSE,
data = NULL,
min_abundance = 0,
min_prevalence = 0,
max_prevalence = 1.01,
min_variance = 0)
Arguments
filtered_data A data frame of filtered feature abundances. It should be formatted with features
as columns and samples as rows. The column and row names should be the
feature names and sample names respectively.
transformed_data
A data frame of transformed feature abundances. It should be formatted with
features as columns and samples as rows. The column and row names should be
the feature names and sample names respectively.
metadata A data frame of per-sample metadata. It should be formatted with variables as

columns and samples as rows. The column and row names should be the variable
names and sample names respectively.
formula A formula in 1me4 format as from maaslin_check_formula.
random_effects_formula
A formula in 1me4 format as from maaslin_check_formula.
feature_specific_covariate
A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx‘ first.
feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models.
feature_specific_covariate_record
Whether to keep the feature-specific covariates in the outputs when calculating
p-values, writing results, and displaying plots.

zero_threshold Abundances less than or equal to zero_threshold will be treated as zeros. This
is primarily to be used when the abundance table has likely low-abundance false
positives.

max_significance
The FDR corrected g-value threshold for significance used in selecting which
associations to write as significant and to plot.

correction The correction to obtain FDR-corrected g-values from raw p-values. Any valid
options for p.adjust can be used.

median_comparison_abundance
Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.

maaslin_fit 21

median_comparison_prevalence
Test prevalence coefficients against a null value corresponding to the median co-
efficient for a metadata variable across the features. This is only recommended
if the analyst is interested in how feature prevalence associations compare to
each other or if there is likely strong compositionality-induced sparsity.

median_comparison_abundance_threshold
Coefficients within median_comparison_abundance_threshold of the median
association will automatically be counted as insignificant (p-value set to 1) since
they likely represent compositionality-induced associations. This threshold will
be divided by the metadata variable’s standard deviation if the metadatum is
continuous to ensure the threshold applies to the right scale.

median_comparison_prevalence_threshold
Same as median_comparison_abundance_threshold but applied to the preva-
lence associations.

subtract_median
Subtract the median from the coefficients.

warn_prevalence
Warn when prevalence associations are likely induced by abundance associa-
tions. This requires re-fitting the linear models on the TSS log-transformed
data.

small_random_effects
Automatically replace random effects with fixed effects in the logistic preva-
lence model to handle low numbers of observations per group.

augment Add extra lowly-weighted Os and 1s to avoid linear separability.

evaluate_only Whether to evaluate just the abundnace ("abundance") or prevalence ("preva-
lence") models

cores How many cores to use when fitting models. (Using multiple cores will likely
be faster only for large datasets or complex models.

save_models Whether to return the fit models and save them to an RData file.

data The original data (only necessary if warn_prevalence is TRUE).

min_abundance The original min_abundance parameter (only necessary if warn_prevalence is
TRUE).

min_prevalence The original min_prevalence parameter (only necessary if warn_prevalence is
TRUE).

max_prevalence The original max_prevalence parameter (only necessary if warn_prevalence is
TRUE).

min_variance The original min_variance parameter (only necessary if min_variance is TRUE).

Value
A list containing the following named items:

(1) fit_data_abundance: The results from the fit abundance models.

(2) fit_data_prevalence: The results from the fit prevalence models.

The fit_data_abundance and fit_data_prevalence items have the same structure. They are
both lists with the following named items:

22 maaslin_fit

(1) results: A results table with the modeled associations (see below).

(2) residuals: A features (rows) by samples (columns) dataframe of residuals from the models.

(3) fitted: A features (rows) by samples (columns) dataframe of fitted values from the models.

(4) ranef: A features (rows) by random effect (columns) dataframe of random effects from the
models. If multiple random effects are specified, this is a dataframe of dataframes.

(5) fits: If save_models=TRUE, this is a list of the fit models.

The results tables contain the following columns for each association (row):

(1) feature: The feature involved in the association.

(2) metadata: The metadata variable involved in the association.

(3) value: The value of the metadata variable: the metadata variable itself if continuous or the
level if categorical.

(4) name: The name of the model component involved in the association: the metadata variable
itself if continuous or a concatenated version of the metadata variable and level if categorical.

(5) coef: The coefficient of the association: the slope coefficient in the abundance model and the
change in log odds in the prevalence model.

(6) null_hypothesis: The value of the null hypothesis against which the coefficients are tested
(zero or the per-metadatum median).

(7) stderr: The standard error of the coefficient.

(8) pval_individual: The (uncorrected) p-value of the association.

(9) gqval_individual: The FDR corrected g-value of the association. FDR correction is performed
over all associations in the abundance and prevalence modeling without errors together.

(10) pval_joint: The p-value of the overall association (combining abundance and prevalence) by
taking the minimum of the abundance and logistic p-values and applying the Beta(1,2) CDF.
These will be the same in the abundance and prevalence results for an association.

(11) gval_joint: The FDR corrected q-value of the association. FDR correction is performed
over all joint p-values without errors.

(12) error: Any error produced by the model during fitting. NA otherwise.

(13) model: linear for the abundance models and logistic for the prevalence models.

(14) N: The number of data points for the association’s feature.

(15) N_not_zero: The number of non-zero data points for the association’s feature.

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

maaslin_fit

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)

read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

formula <- formulas$formula
random_effects_formula <- formulas$random_effects_formula

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,

24

output = 'output')

transformed_data = maaslin3::maaslin_transform(filtered_data,

output = 'output')

standardized_metadata = maaslin3::maaslin_process_metadata(

metadata,
formula = formula)

maaslin_results = maaslin3::maaslin_fit(
filtered_data,
transformed_data,
standardized_metadata,
formula,
random_effects_formula,
warn_prevalence = FALSE)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_log_arguments

maaslin_log_arguments Log MaAsLin 3 parameters.

Description

Check that the parameters provided are valid for further MaAsLin 3 use and open a logger to log

the parameters.

Usage

maaslin_log_arguments(input_data,
input_metadata,
output,
formula = NULL,
fixed_effects = NULL,
reference = NULL,
random_effects = NULL,
group_effects = NULL,
ordered_effects = NULL,
strata_effects = NULL,

feature_specific_covariate = NULL,
feature_specific_covariate_name = NULL,
feature_specific_covariate_record = NULL,
min_abundance = 0,

min_prevalence = 0,

max_prevalence = 1.01,
zero_threshold = 0,
min_variance = 0,

maaslin_log_arguments 25

Arguments

input_data

input_metadata

output
formula

fixed_effects

reference

max_significance = 0.1,

normalization = 'TSS',
transform = 'LOG',
correction = 'BH',

standardize = TRUE,
unscaled_abundance = NULL,
median_comparison_abundance = TRUE,
median_comparison_prevalence = FALSE,
median_comparison_abundance_threshold = 0,
median_comparison_prevalence_threshold = 9,
subtract_median = FALSE,
warn_prevalence = TRUE,
small_random_effects = FALSE,

augment = TRUE,

evaluate_only = NULL,
plot_summary_plot = TRUE,
summary_plot_first_n = 25,
coef_plot_vars = NULL,

heatmap_vars = NULL,
plot_associations = TRUE,

max_pngs = 30,

cores =1,

save_models = FALSE,

save_plots_rds = FALSE,

verbosity = 'FINEST',
summary_plot_balanced = FALSE)

A data frame of feature abundances or read counts or a filepath to a tab-delimited
file with abundances. It should be formatted with features as columns and sam-
ples as rows (or the transpose). The column and row names should be the feature
names and sample names respectively.

A data frame of per-sample metadata or a filepath to a tab-delimited file with
metadata. It should be formatted with variables as columns and samples as rows
(or the transpose). The column and row names should be the variable names and
sample names respectively.

The output folder to write results.

A formula in 1me4 format. Random effects, interactions, and functions of the
metadata can be included (note that these functions will be applied after stan-
dardization if standardize=TRUE). Group, ordered, and strata variables can be
specified as: group(grouping_variable), ordered(ordered_variable) and
strata(strata_variable). The other variable options below will not be con-
sidered if a formula is set.

A vector of variable names to be included as fixed effects.

For a variable with more than two levels supplied with fixed_effects, the
factor to use as a reference provided as a string of ’variable,reference’ semi-
colon delimited for multiple variables.

maaslin_log_arguments

random_effects A vector of variable names to be included as random intercepts.

group_effects A factored categorical variable to be included for group testing. An ANOVA-
style test will be performed to assess whether any of the variable’s levels are
significant, and no coefficients or individual p-values will be returned.

ordered_effects
A factored categorical variable to be included. Consecutive levels will be tested
for significance against each other, and the resulting associations will corre-
spond to effect sizes, standard errors, and significances of each level versus the
previous.

strata_effects A vector with one variable name to be included as the strata variable in case-
control studies. Strata cannot be combined with random effects.

feature_specific_covariate
A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx‘ first.

feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models.

feature_specific_covariate_record
Whether to keep the feature-specific covariates in the outputs when calculating
p-values, writing results, and displaying plots.

min_abundance Features with abundances more than min_abundance in more than min_prevalence
of the samples will be included for analysis. The threshold is applied after nor-
malization and before transformation.

min_prevalence See min_abundance.

max_prevalence Features with abundances more than min_abundance in fewer than max_prevalence
of the samples will be included for analysis. The threshold is applied after nor-
malization and before transformation.

zero_threshold Abundances less than or equal to zero_threshold will be treated as zeros. This
is primarily to be used when the abundance table has likely low-abundance false
positives.

min_variance Features with abundance variances less than or equal to min_variance will be
dropped. This is primarily used for dropping features that are entirely zero.

max_significance

The FDR corrected g-value threshold for significance used in selecting which
associations to write as significant and to plot.

normalization The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.

transform The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.

maaslin_log_arguments 27

correction The correction to obtain FDR-corrected g-values from raw p-values. Any valid
options for p.adjust can be used.

standardize Whether to apply z-scores to continuous metadata variables so they are on the
same scale. This is recommended in order to compare coefficients across meta-
data variables, but note that functions of the metadata specified in the formula
will apply after standardization.

unscaled_abundance
A data frame with a single column of absolute abundances or a filepath to such
a tab-delimited file. The row names should match the names of the samples
in input_data and input_metadata. When using spike-ins, the single col-
umn should have the same name as one of the features in input_data, and the
unscaled_abundance should correspond to the absolute quantity of the spike-
in. When using total abundance scaling, the single column should have the name
"total’, and the unscaled_abundance should correspond to the total abundance
of each sample.

median_comparison_abundance
Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.

median_comparison_prevalence
Test prevalence coefficients against a null value corresponding to the median co-
efficient for a metadata variable across the features. This is only recommended
if the analyst is interested in how feature prevalence associations compare to
each other or if there is likely strong compositionality-induced sparsity.

median_comparison_abundance_threshold
Coefficients within median_comparison_abundance_threshold of the median
association will automatically be counted as insignificant (p-value set to 1) since
they likely represent compositionality-induced associations. This threshold will
be divided by the metadata variable’s standard deviation if the metadatum is
continuous to ensure the threshold applies to the right scale.

median_comparison_prevalence_threshold
Same as median_comparison_abundance_threshold but applied to the preva-
lence associations.

subtract_median
Subtract the median from the coefficients.

warn_prevalence
Warn when prevalence associations are likely induced by abundance associa-
tions. This requires re-fitting the linear models on the TSS log-transformed
data.

small_random_effects
Automatically replace random effects with fixed effects in the logistic preva-
lence model to handle low numbers of observations per group.

augment Add extra lowly-weighted Os and 1s to avoid linear separability.
evaluate_only Whether to evaluate just the abundnace ("abundance") or prevalence ("preva-
lence") models
plot_summary_plot
Generate a summary plot of significant associations.

28 maaslin_log_arguments

summary_plot_first_n
Include the top summary_plot_first_n features with significant associations.
coef_plot_vars Vector of variable names to be used in the coefficient plot section of the sum-

mary plot. Continuous variables should match the metadata column name, and
categorical variables should be of the form "[variable] [level]".

heatmap_vars Vector of variable names to be used in the heatmap section of the summary plot.
Continuous variables should match the metadata column name, and categorical
variables should be of the form "[variable] [level]".

plot_associations
Whether to generate plots for significant associations.

max_pngs The top max_pngs significant associations will be plotted.

cores How many cores to use when fitting models. (Using multiple cores will likely
be faster only for large datasets or complex models.

save_models Whether to return the fit models and save them to an RData file.
save_plots_rds Whether to return the plots to an RDS file.

verbosity The level of verbosity for the logging package.

summary_plot_balanced
If set to TRUE the summary plot will show the top N features of each variable in-
cluded in coef_plot_vars where N is equal to: ceiling(summary_plot_first_n/length(coef_plot.
Will error if coef_plot_vars = NULL

Value

No value is returned, but a logger is opened with the parameters logged.

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples
Read features table
taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv"”, package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv", package =
"maaslin3")

metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-

factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-

factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',

maaslin_normalize 29

'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

Prepare parameter lists
maaslin3::maaslin_log_arguments(input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state +
antibiotics + age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)
unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_normalize Normalize abundance data for MaAsLin 3 model fitting.

Description

Normalize the abundance data according to the normalization parameter. If unscaled_abundance
is specified, compute the absolute abundances.

Usage
maaslin_normalize(data,
output,
zero_threshold = 0,
normalization = 'TSS',

unscaled_abundance = NULL)

Arguments
data A data frame of feature abundances. It should be formatted with features as
columns and samples as rows. The column and row names should be the feature
names and sample names respectively.
output The output folder to write results.

zero_threshold Abundances less than or equal to zero_threshold will be treated as zeros. This
is primarily to be used when the abundance table has likely low-abundance false
positives.

normalization The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.

unscaled_abundance
A data frame with a single column of absolute abundances. The row names
should match the names of the samples in input_data and input_metadata.
When using spike-ins, the single column should have the same name as one of

30 maaslin_normalize

the features in input_data, and the unscaled_abundance should correspond
to the absolute quantity of the spike-in. When using total abundance scaling,
the single column should have the name ’total’, and the unscaled_abundance
should correspond to the total abundance of each sample.

Value

A dataframe of normalized features (features are columns; samples are rows).

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv"”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)
read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

maaslin_plot_results

data <- read_data_

list$data

metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(

data,
metadata,
input_formula
age + reads')

normalized_data =

= '~ diagnosis + dysbiosis_state + antibiotics +

maaslin3::maaslin_normalize(data,
output = 'output')

unlink('output', recursive=TRUE)
logging: :logReset()

31

maaslin_plot_results

Plot the results from a MaAsLin 3 run.

Description

Two types of plots are generated. First, the summary plot contains sorted per-feature coefficients

plotted with their standard errors for key variables and a heatmap summarizing the remaining vari-

ables. Second, for significant features, association plots (scatterplots, boxplots, or tables depending
on the association) are generated to visualize and verify the model fits. The data are shown with
their transformed values in the association plots since this is the scale on which the models are fit.

Usage

maaslin_plot_results(output,

transformed_data,
unstandardized_metadata,
fit_data_abundance,
fit_data_prevalence,

normalization,

transform,

feature_specific_covariate = NULL,
feature_specific_covariate_name = NULL,
feature_specific_covariate_record = NULL,
median_comparison_abundance = TRUE,
median_comparison_prevalence = FALSE,
max_significance = 0.1,
plot_summary_plot = TRUE,
summary_plot_first_n = 25,
coef_plot_vars = NULL,

heatmap_vars = NULL,

plot_associations = TRUE,

max_pngs = 30,

32 maaslin_plot_results

balanced = FALSE,
save_plots_rds = FALSE)

Arguments

output The output folder to write results.

transformed_data
A data frame of transformed feature abundances. It should be formatted with
features as columns and samples as rows. The column and row names should be
the feature names and sample names respectively.

unstandardized_metadata
A data frame of per-sample metadata. It should be formatted with variables as
columns and samples as rows. The column and row names should be the variable
names and sample names respectively.

fit_data_abundance
The abundance outputs of maaslin_fit.

fit_data_prevalence
The prevalence outputs of maaslin_fit.

normalization The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.

transform The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.

feature_specific_covariate
A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx* first.

feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models.

feature_specific_covariate_record
Whether to keep the feature-specific covariates in the outputs when calculating
p-values, writing results, and displaying plots.

median_comparison_abundance
Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.
median_comparison_prevalence
Test prevalence coefficients against a null value corresponding to the median co-
efficient for a metadata variable across the features. This is only recommended
if the analyst is interested in how feature prevalence associations compare to
each other or if there is likely strong compositionality-induced sparsity.

maaslin_plot_results 33

max_significance
The FDR corrected g-value threshold for significance used in selecting which
associations to write as significant and to plot.
plot_summary_plot
Generate a summary plot of significant associations.
summary_plot_first_n
Include the top summary_plot_first_n features with significant associations.

coef_plot_vars Vector of variable names to be used in the coefficient plot section of the sum-
mary plot. Continuous variables should match the metadata column name, and
categorical variables should be of the form "[variable] [level]”.

heatmap_vars Vector of variable names to be used in the heatmap section of the summary plot.
Continuous variables should match the metadata column name, and categorical
variables should be of the form "[variable] [level]".

plot_associations
Whether to generate plots for significant associations.

max_pngs The top max_pngs significant associations will be plotted.

balanced If set to TRUE the summary plot will show the top N features of each variable in-
cluded in coef_plot_vars where N is equal to: ceiling(summary_plot_first_n/length(coef_plot.
Will error if coef_plot_vars = NULL

save_plots_rds Whether to return the plots to an RDS file.

Value

Results will be written to the figures folder within the folder output. The list of individual
association plots is returned if plot_associations=TRUE. In the heatmap of the summary plot,
one star corresponds to the user-set max_significance and two stars corresponds to the user-set
max_signifiance divided by 10.

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv"”, package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv", package =
"maaslin3")

metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-

34

maaslin_plot_results

factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)
read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

formula <- formulas$formula
random_effects_formula <- formulas$random_effects_formula

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,
output = 'output')

transformed_data = maaslin3::maaslin_transform(filtered_data,
output = 'output')

standardized_metadata = maaslin3::maaslin_process_metadata(
metadata,
formula = formula)

maaslin_results = maaslin3::maaslin_fit(
filtered_data,
transformed_data,
standardized_metadata,
formula,
random_effects_formula,

maaslin_plot_results_from_output 35

warn_prevalence = FALSE)

maaslin3::maaslin_write_results(
output = 'output',
maaslin_results$fit_data_abundance,
maaslin_results$fit_data_prevalence,
random_effects_formula)

maaslin3::maaslin_plot_results(
output = 'output',
transformed_data,
metadata,
maaslin_results$fit_data_abundance,
maaslin_results$fit_data_prevalence,
normalization = "TSS",
transform = "L0OG")

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_plot_results_from_output
Plot the results from a MaAsLin 3 run.

Description

Two types of plots are generated. First, the summary plot contains sorted per-feature coefficients
plotted with their standard errors for key variables and a heatmap summarizing the remaining vari-
ables. Second, for significant features, association plots (scatterplots, boxplots, or tables depending
on the association) are generated to visualize and verify the model fits. The data are shown with their
transformed values in the association plots since this is the scale on which the models are fit. In com-
parison to maaslin_plot_results that needs the entire maaslin_fit list, only the parameter list
and an outputs directory containing a completed run are needed for maaslin_plot_results_from_output.

Usage
maaslin_plot_results_from_output(output,
metadata,
normalization,
transform,

feature_specific_covariate = NULL,
feature_specific_covariate_name = NULL,
feature_specific_covariate_record = NULL,
median_comparison_abundance = TRUE,
median_comparison_prevalence = FALSE,
max_significance = 0.1,

plot_summary_plot = TRUE,
summary_plot_first_n = 25,

36 maaslin_plot_results_from_output

coef_plot_vars = NULL,
heatmap_vars = NULL,
plot_associations = TRUE,
max_pngs = 30,

balanced = FALSE,
save_plots_rds = FALSE)

Arguments
output The output folder to write results.
metadata A data frame of per-sample metadata. It should be formatted with variables as

columns and samples as rows. The column and row names should be the variable
names and sample names respectively.

normalization The normalization to apply to the features before transformation and analysis.
The option TSS (total sum scaling) is recommended, but CLR (centered log ratio)
and NONE can also be used.
transform The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.
feature_specific_covariate
A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx‘ first.
feature_specific_covariate_name
The name for the feature-specific covariates when fitting the models.
feature_specific_covariate_record
Whether to keep the feature-specific covariates in the outputs when calculating
p-values, writing results, and displaying plots.
median_comparison_abundance
Test abundance coefficients against a null value corresponding to the median
coefficient for a metadata variable across the features. This is recommended for
relative abundance data but should not be used for absolute abundance data.
median_comparison_prevalence
Test prevalence coefficients against a null value corresponding to the median co-
efficient for a metadata variable across the features. This is only recommended
if the analyst is interested in how feature prevalence associations compare to
each other or if there is likely strong compositionality-induced sparsity.
max_significance
The FDR corrected g-value threshold for significance used in selecting which
associations to write as significant and to plot.
plot_summary_plot
Generate a summary plot of significant associations.
summary_plot_first_n
Include the top summary_plot_first_n features with significant associations.

maaslin_plot_results_from_output 37

coef_plot_vars Vector of variable names to be used in the coefficient plot section of the sum-
mary plot. Continuous variables should match the metadata column name, and
categorical variables should be of the form "[variable] [level]".

heatmap_vars Vector of variable names to be used in the heatmap section of the summary plot.
Continuous variables should match the metadata column name, and categorical
variables should be of the form "[variable] [level]".

plot_associations
Whether to generate plots for significant associations.

max_pngs The top max_pngs significant associations will be plotted.

balanced If set to TRUE the summary plot will show the top N features of each variable in-
cluded in coef_plot_vars where N is equal to: ceiling(summary_plot_first_n/length(coef_plot.
Will error if coef_plot_vars = NULL

save_plots_rds Whether to return the plots to an RDS file.

Value

Results will be written to the figures folder within the folder output. The list of individual
association plots is returned if plot_associations=TRUE. In the heatmap of the summary plot,
one star corresponds to the user-set max_significance and two stars corresponds to the user-set
max_signifiance divided by 10.

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv"”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3

38

maaslin_plot_results_from_output

maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)

read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

formula <- formulas$formula
random_effects_formula <- formulas$random_effects_formula

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,
output = 'output')

transformed_data = maaslin3::maaslin_transform(filtered_data,
output = 'output')

standardized_metadata = maaslin3::maaslin_process_metadata(
metadata,
formula = formula)

maaslin_results = maaslin3::maaslin_fit(
filtered_data,
transformed_data,
standardized_metadata,
formula,
random_effects_formula,
warn_prevalence = FALSE)

maaslin3::maaslin_write_results(
output = 'output',
maaslin_results$fit_data_abundance,
maaslin_results$fit_data_prevalence,
random_effects_formula)

maaslin_process_metadata 39

maaslin3::maaslin_plot_results_from_output(
output = 'output',

metadata,

normalization = "TSS",
transform = "LOG")

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_process_metadata

Process metadata before MaAsLin 3 model fitting.

Description

Check that references are set properly if the metadata variables are categorical and provided through
fixed_effects. Standardize the continuous metadata variables as a z-score (subtract the mean,
divide by the standard deviation) if standardize is set.

Usage

maaslin_process_metadata(metadata,

Arguments

metadata

formula

fixed_effects

reference

formula = NULL,

fixed_effects = NULL,

reference = NULL,
feature_specific_covariate_name = NULL,
standardize = TRUE)

A data frame of per-sample metadata. It should be formatted with variables as
columns and samples as rows. The column and row names should be the variable
names and sample names respectively.

A formula in 1me4 format. Random effects, interactions, and functions of the
metadata can be included (note that these functions will be applied after stan-
dardization if standardize=TRUE). Group, ordered, and strata variables can be
specified as: group(grouping_variable), ordered(ordered_variable) and
strata(strata_variable). The other variable options below will not be con-
sidered if a formula is set.

A vector of variable names to be included as fixed effects.

For a variable with more than two levels supplied with fixed_effects, the
factor to use as a reference provided as a string of ’variable,reference’ semi-
colon delimited for multiple variables.

feature_specific_covariate_name

The name for the feature-specific covariates when fitting the models.

40 maaslin_process_metadata

standardize Whether to apply z-scores to continuous metadata variables so they are on the
same scale. This is recommended in order to compare coefficients across meta-
data variables, but note that functions of the metadata specified in the formula
will apply after standardization.

Value

The processed metadata.

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv"”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)
read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

maaslin_read_data 41

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

formula <- formulas$formula
random_effects_formula <- formulas$random_effects_formula

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,
output = 'output')

standardized_metadata = maaslin3::maaslin_process_metadata(
metadata,
formula = formula)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_read_data Read in the abundance data and metadata.

Description

Read in the abundance data and metadata from files if necessary.

Usage

maaslin_read_data(input_data,
input_metadata,
feature_specific_covariate = NULL,
unscaled_abundance = NULL)

Arguments

input_data A data frame of feature abundances or read counts or a filepath to a tab-delimited
file with abundances. It should be formatted with features as columns and sam-
ples as rows (or the transpose). The column and row names should be the feature
names and sample names respectively.

input_metadata A data frame of per-sample metadata or a filepath to a tab-delimited file with
metadata. It should be formatted with variables as columns and samples as rows
(or the transpose). The column and row names should be the variable names and
sample names respectively.

42

maaslin_read_data

feature_specific_covariate

A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx‘ first.

unscaled_abundance

Value

A data frame with a single column of absolute abundances or a filepath to such
a tab-delimited file. The row names should match the names of the samples
in input_data and input_metadata. When using spike-ins, the single col-
umn should have the same name as one of the features in input_data, and the
unscaled_abundance should correspond to the absolute quantity of the spike-
in. When using total abundance scaling, the single column should have the name
’total’, and the unscaled_abundance should correspond to the total abundance
of each sample.

A list containing the following items:

(1) data: A data frame of feature abundances.

(2) metadata: A data frame of metadata.

(3) feature_specific_covariate: A data frame of feature specific covariates.

(4) unscaled_abundance: A data frame of unscaled abundances.

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table
metadata_name <- system.file("extdata”, "HMP2_metadata.tsv", package =

"maaslin3")

metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))

maaslin_reorder_data 43

metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3

maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_reorder_data Reorder the abundance data and metadata.

Description

Reorder the abundance data and metadata to ensure samples are rows and remove any samples
without abundances or metadata.

Usage

maaslin_reorder_data(data,
metadata,
feature_specific_covariate = NULL,
unscaled_abundance = NULL)

Arguments
data A data frame of feature abundances or read counts. It should be formatted with
features as columns and samples as rows (or the transpose). The column and
row names should be the feature names and sample names respectively.
metadata A data frame of per-sample metadata. It should be formatted with variables as

columns and samples as rows (or the transpose). The column and row names
should be the variable names and sample names respectively.
feature_specific_covariate

A table of feature-specific covariates or a filepath to a tab-delimited file with
feature-specific covariates. It should be formatted with features as columns and
samples as rows (or the transpose). The row names and column names should
be the same as those of the input_data: the column and row names should be
the feature names and sample names respectively. Typically, this table should
be generated by ‘preprocess_mgx_mtx‘ or ‘preprocess_taxa_mtx‘ first.

44 maaslin_reorder_data

unscaled_abundance

A data frame with a single column of absolute abundances. The row names
should match the names of the samples in input_data and input_metadata.
When using spike-ins, the single column should have the same name as one of
the features in input_data, and the unscaled_abundance should correspond
to the absolute quantity of the spike-in. When using total abundance scaling,
the single column should have the name ’total’, and the unscaled_abundance
should correspond to the total abundance of each sample.

Value

A list containing the following items:

(1) data: A data frame of feature abundances.
(2) metadata: A data frame of metadata.
(3) feature_specific_covariate: A data frame of feature specific covariates.

(4) unscaled_abundance: A data frame of unscaled abundances.

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv", package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +

maaslin_transform 45

age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)
read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)
read_data_list <- maaslin3::maaslin_reorder_data(
taxa_table,
metadata)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_transform Transform abundance data for MaAsLin 3 modeling.

Description

Transform the abundance data according to the transform parameter.

Usage

maaslin_transform(filtered_data,
output,
transform = 'LOG')

Arguments

filtered_data A dataframe of filtered feature abundances. It should be formatted with features
as columns and samples as rows. The column and row names should be the
feature names and sample names respectively.

output The output folder to write results.

transform The transformation to apply to the features after normalization and before anal-
ysis. The option LOG (base 2) is recommended, but PLOG (pseudo-log) and NONE
can also be used.

Value

A dataframe of transformed features (features are columns; samples are rows).

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

46 maaslin_transform

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)

read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,
output = 'output')

transformed_data = maaslin3::maaslin_transform(filtered_data,

maaslin_write_results 47

output = 'output')

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_write_results Write the results from a MaAsLin 3 run.

Description

Write the results from a MaAsLin 3 run to the output folder as a TSV.

Usage

maaslin_write_results(output,
fit_data_abundance,
fit_data_prevalence,
random_effects_formula = NULL,
max_significance = 0.1,
save_models = FALSE)

Arguments

output The output folder to write results.
fit_data_abundance
The abundance outputs of maaslin_fit.
fit_data_prevalence
The prevalence outputs of maaslin_fit.
random_effects_formula
A formula in 1me4 format as from maaslin_check_formula.
max_significance
The FDR corrected g-value threshold for significance used in selecting which
associations to write as significant and to plot.

save_models Whether to return the fit models and save them to an RData file.

Value

Results will be written to the all_results.tsv and significant_results. tsv files in the folder

output. The file all_results. tsv will contain all results in the fit_data_abundance and fit_data_prevalence
items of the input list (with ’linear’ and ’logistic’ replaced by ’abundance’ and ’prevalence’ in the

model column). The file significant_results. tsv will contain all results with joint or individual

g-values below the ‘max_significance* parameter. No value is returned.

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

48 maaslin_write_results

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)
read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(
data,
metadata,
input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

formula <- formulas$formula
random_effects_formula <- formulas$random_effects_formula

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,

maaslin_write_results_lefse_format 49

output = 'output')

transformed_data = maaslin3::maaslin_transform(filtered_data,
output = 'output')

standardized_metadata = maaslin3::maaslin_process_metadata(
metadata,
formula = formula)

maaslin_results = maaslin3::maaslin_fit(
filtered_data,
transformed_data,
standardized_metadata,
formula,
random_effects_formula,
warn_prevalence = FALSE)

maaslin3::maaslin_write_results(
output = 'output',
maaslin_results$fit_data_abundance,
maaslin_results$fit_data_prevalence,
random_effects_formula)

unlink('output', recursive=TRUE)
logging: :logReset()

maaslin_write_results_lefse_format
Write the results from a MaAsLin 3 run in LEfSe format.

Description

Write the results from a MaAsLin 3 run to the output folder in LEfSe format.

Usage

maaslin_write_results_lefse_format(output,
fit_data_abundance,
fit_data_prevalence)

Arguments

output The output folder to write results.
fit_data_abundance

The abundance outputs of maaslin_fit.
fit_data_prevalence

The prevalence outputs of maaslin_fit.

50 maaslin_write_results_lefse_format

Value
Results will be written to the lefse_style_results_abundance.res file in the folder output.
No value is returned.

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

Read features table

taxa_table_name <- system.file("extdata”, "HMP2_taxonomy.tsv", package =
"maaslin3")
taxa_table <- read.csv(taxa_table_name, sep = '\t', row.names = 1)

Read metadata table

metadata_name <- system.file("extdata”, "HMP2_metadata.tsv”, package =
"maaslin3")
metadata <- read.csv(metadata_name, sep = '\t', row.names = 1)

metadata$diagnosis <-
factor(metadata$diagnosis, levels = c('nonIBD', 'UC', 'CD'))
metadata$dysbiosis_state <-
factor(metadata$dysbiosis_state, levels = c('none', 'dysbiosis_UC',
'dysbiosis_CD'))
metadata$antibiotics <-
factor(metadata$antibiotics, levels = c('No', 'Yes'))

#Run MaAsLin3
maaslin3::maaslin_log_arguments(
input_data = taxa_table,
input_metadata = metadata,
output = 'output',
formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads',
plot_summary_plot = FALSE,
plot_associations = FALSE)

read_data_list <- maaslin3::maaslin_read_data(
taxa_table,
metadata)
read_data_list <- maaslin3::maaslin_reorder_data(
read_data_list$data,
read_data_list$metadata)

data <- read_data_list$data
metadata <- read_data_list$metadata

formulas <- maaslin3::maaslin_check_formula(

preprocess_dna_mtx 51

data,

metadata,

input_formula = '~ diagnosis + dysbiosis_state + antibiotics +
age + reads')

formula <- formulas$formula
random_effects_formula <- formulas$random_effects_formula

normalized_data = maaslin3::maaslin_normalize(data,
output = 'output')

filtered_data = maaslin3::maaslin_filter(normalized_data,
output = 'output')

transformed_data = maaslin3::maaslin_transform(filtered_data,
output = 'output')

standardized_metadata = maaslin3::maaslin_process_metadata(
metadata,
formula = formula)

maaslin_results = maaslin3::maaslin_fit(
filtered_data,
transformed_data,
standardized_metadata,
formula,
random_effects_formula,
warn_prevalence = FALSE)

maaslin3::maaslin_write_results_lefse_format(
output = 'output',
maaslin_results$fit_data_abundance,
maaslin_results$fit_data_prevalence)

unlink('output', recursive=TRUE)
logging::logReset()

preprocess_dna_mtx Pre-process the DNA covariates for metatranscriptomics

Description

Pre-process the DNA covariates for metatranscriptomics by total-sum-scaling DNA abundances per
sample and then, for each sample in each feature:
1. Log 2 transforming the DNA abundance if the DNA abundance is >=0

2. Setting the DNA abundance to 1og2 ([minimum non-zero relative abundance in the dataset]
/ 2) if the corresponding RNA abundance is non-zero but the DNA abundance is zero

3. Setting the DNA abundance to NA if both are zero

52 preprocess_dna_mtx

When the DNA is present, the RNA data can be modeled as usual in MaAsLin 3 with 1og2 (DNA) as
a covariate. When the DNA is not present, if the RNA is present, we assume the DNA was missed
due to finite read depth, so the DNA abundance is imputed with a small pseudo-count. When neither
the DNA nor RNA is present, we assume the gene/microbe was not in the sample and therefore no
information about the transcription level can be obtained. Setting the DNA covariate to NA has
the effect of dropping the sample when fitting the relevant feature’s model in MaAsLin 3. Unlike
most MaAsLin functions that will infer the samples from the row names and column names, the
rna_table must be formated as samples (rows) by features (columns).

Usage

preprocess_dna_mtx(dna_table, rna_table)

Arguments
dna_table The samples (rows) by features (columns) data frame of DNA abundances to
preprocess. These can be relative abundances or counts.
rna_table The samples (rows) by features (columns) data frame of RNA to preprocess.
These can be relative abundances or counts.
Value

A list containing the following named items:

1. dna_table: The table of log2 transformed DNA relative abundances with NAs for any feature-
sample pairs for which both the DNA and RNA abundances were 0.

2. rna_table: The table of total sum scaled RNA abundances. These are not log2 transformed.

Author(s)

William Nickols<willnickols @ g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

mgx_in <- data.frame('a' = c(1, 2, 0, 4, 5),
b' = c(2, 3, 4, 5, 6),
'c' = c(3, 4, 5, 6, 9))
rownames(mgx_in) <- paste@("sample”, c(1:5))

mtx_in <- data.frame('a' = c(1, 2, 3, 4, 5),
‘b’ c(2, 3, 4, 5, 0),
'c' c(3, 4, 5, 6, 9))
rownames(mtx_in) <- paste@("sample”, c(1:5))

preprocess_out <- preprocess_dna_mtx(mgx_in, mtx_in)

preprocess_taxa_mtx 53

preprocess_taxa_mtx Pre-process the taxa covariates for metatranscriptomics

Description

Pre-process the taxa covariates for metatranscriptomics by total-sum-scaling the taxa, matching the
taxa to the RNAs coming from those taxa, and then, for each sample in each feature:

1. Log 2 transforming the taxon abundance if the taxon abundance is >=0

2. Setting the taxon abundance to log2([minimum non-zero relative abundance in the dataset]
/ 2) if any of the corresponding RNA abundances are non-zero but the taxon abundance is zero

3. Setting the taxon abundance to NA if both are zero

When the taxon is present, the RNA data can be modeled as usual in MaAsLin 3 with log2 (taxon)
as a covariate. When the taxon is not present, if any of its RNA is present, we assume the taxon
was missed due to finite read depth, so the taxon abundance is imputed with a small pseudo-count.
When neither the taxon nor RNA is present, we assume the gene/microbe was not in the sample and
therefore no information about the transcription level can be obtained. Setting the taxon covariate
to NA has the effect of dropping the sample when fitting the relevant feature’s model in MaAsLin 3.
Unlike most MaAsLin functions that will infer the samples from the row names and column names,
the rna_table must be formated as samples (rows) by features (columns).

Usage

preprocess_taxa_mtx(taxa_table, rna_table, rna_per_taxon)

Arguments
taxa_table The samples (rows) by features (columns) data frame of taxon abundances to
preprocess. These can be relative abundances or counts.
rna_table The samples (rows) by features (columns) data frame of RNA to preprocess.

These can be relative abundances or counts.

rna_per_taxon A dataframe with the columns ‘RNA°‘ and ‘taxon‘ with one row per ‘RNA° col-
umn found in ‘rna_table* giving both the ‘RNA‘ column and which ‘taxon‘ col-
umn it corresponds to in ‘taxa_table‘.

Value

A list containing the following named items:

1. dna_table: The table of log2 transformed taxon relative abundances with NAs for any feature-
sample pairs for which both the taxon and RNA abundances were 0.

2. rna_table: The table of total sum scaled RNA abundances. These are not log2 transformed.

54 preprocess_taxa_mtx

Author(s)

William Nickols<willnickols @g.harvard.edu>,
Jacob Nearing<nearing @broadinstitute.org>,
Maintainers: Lauren Mclver<lauren.j.mciver @ gmail.com>,

Examples

taxa_in <- data.frame('tax1' = c(1, 2, 0, 4, 5),
'tax2' = c(2, 3, 4, 5, 6), check.names = FALSE)
rownames(taxa_in) <- paste@(”sample”, c(1:5))

mtx_in <- data.frame('a' = c(1, 2, 3, 4, 5),

'b' = c(2, 3, 4, 5, 9),

'c' = c(3, 4, 5, 6, 0), check.names = FALSE)
rownames(mtx_in) <- paste@("sample”, c(1:5))

rna_per_taxon <- data.frame(RNA = c('a', 'b', 'c'),
taxon = c('tax1', 'tax1', 'tax2'))

preprocess_out <- preprocess_taxa_mtx(taxa_in, mtx_in, rna_per_taxon)

Index

maaslin3, 2
maaslin_check_arguments, 8
maaslin_check_formula, 10, 20, 47
maaslin_compute_formula, 12
maaslin_contrast_test, 14
maaslin_filter, 17
maaslin_fit, 7, 15,19, 32,47, 49
maaslin_log_arguments, 24
maaslin_normalize, 29
maaslin_plot_results, 31
maaslin_plot_results_from_output, 35
maaslin_process_metadata, 39
maaslin_read_data, 41
maaslin_reorder_data, 43
maaslin_transform, 45
maaslin_write_results, 47
maaslin_write_results_lefse_format, 49

preprocess_dna_mtx, 51
preprocess_taxa_mtx, 53

55

	maaslin3
	maaslin_check_arguments
	maaslin_check_formula
	maaslin_compute_formula
	maaslin_contrast_test
	maaslin_filter
	maaslin_fit
	maaslin_log_arguments
	maaslin_normalize
	maaslin_plot_results
	maaslin_plot_results_from_output
	maaslin_process_metadata
	maaslin_read_data
	maaslin_reorder_data
	maaslin_transform
	maaslin_write_results
	maaslin_write_results_lefse_format
	preprocess_dna_mtx
	preprocess_taxa_mtx
	Index

