Package 'adSplit'

November 5, 2025

```
Title Annotation-Driven Clustering
Version 1.81.0
Date 2021-02-01
Author Claudio Lottaz, Joern Toedling
Description This package implements clustering of microarray gene
     expression profiles according to functional annotations. For
     each term genes are annotated to, splits into two subclasses
     are computed and a significance of the supporting gene set is
     determined.
Maintainer Claudio Lottaz < Claudio Lottaz @klinik.uni-regensburg.de>
Depends R (>= 2.1.0), methods (>= 2.1.0)
Imports AnnotationDbi, Biobase (>= 1.5.12), cluster (>= 1.9.1), GO.db
     (>= 1.8.1), graphics, grDevices, KEGGREST (>= 1.30.1), multtest
     (>= 1.6.0), stats (>= 2.1.0)
Suggests golubEsets (>= 1.0), vsn (>= 1.5.0), hu6800.db (>= 1.8.1)
LazyLoad yes
URL http://compdiag.molgen.mpg.de/software/adSplit.shtml
License GPL (>= 2)
biocViews Microarray, Clustering
git_url https://git.bioconductor.org/packages/adSplit
git_branch devel
git_last_commit a2e95b4
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2025-11-05
```

2 adSplit

Contents

adSplit	2
adSplit-internal	4
diana2means	4
drawRandomPS	5
golubKEGGSplits	6
hist.splitSet	7
image.splitSet	8
makeEID2PROBESenv	9
print.split	
print.splitSet	
randomDiana2means	11
	12

adSplit

Index

Annotation-Driven Splits

Description

This function searches for annotation-driven splits of patients in microarray data. A split is a partitioning of patients into two groups. In order to do so it refers to GO terms and KEGG pathways. In addition, a significance measure can be computed by simulating a random distribution of scores. DLD-scores are used to judge the quality of a split.

Usage

```
adSplit(mydata, annotation.ids, chip.name,
    min.probes = 20, max.probes = NULL,
    B = NULL, min.group.size = 5, ngenes = 50,
    ignore.genes = 5)
```

Arguments

mydata	either an expression set as defined by the package Biobase or a matrix of expression levels (rows=genes, columns=samples).
annotation.ids	a vector of GO or KEGG identifiers in the form "GO:" or "KEGG:" respectively. The prefix "KEGG:" is removed from the KEGG-identifiers before accessing the chip's "PATH2PROBES" hash.
chip.name	the name of the chip by which the expression set is measured. adSplit attempts to load a library of the same name and expects to find a hash called " <chip-name>GO2ALLPROBES" and one called "<chip-name>PATH2PROBES" there.</chip-name></chip-name>
min.probes	annotation identifiers with fewer than this associated genes are skipped.
max.probes	annotation identifiers with more than this associated genes are skipped. The default is ten percent of the genes on the chip.

adSplit 3

B the number of random gene set samplings to be performed to compute empirical

p-values.

min.group.size filter criteria to avoid splits suggesting tiny groups. Splits where one of the two

suggested groups are smaller than this number are removed from the split set.

ngenes number of genes used to compute DLD scores.

ignore.genes number of best scoring genes to be ignored when computing DLD scores.

Details

This function applies the same splitting procedure to all annotation identifiers provided. Firstly, the associated genes for one identifier are determined and extracted from the expression data. Then the diana2means function is applied to the restricted data and the different splits generated are collected into a single splitSet object.

As annotation identifiers vectors of identifiers of the KEGG: nnnnn and GO: nnnnnn are valid. In addition, the keywords "KEGG", "GO" and "all" are allowed, representing all terms in the corresponding ontology.

If B is set to a integer number this number of samplings are used to generate a null-distribution of DLD-scores. This distribution is used to compute empirical p-values for each split. If more than one valid split is found, multiple testing is corrected for by applying Benjamini-Hochbergs correction from the multtest package.

Value

Returns an object of class splitSet with the following list elements:

cuts a matrix of split attributions. One row per annotation identifier (GO term or

KEGG pathway for which a split has been generated. One column per object in

the dataset.

score one score per generated split.

pvalue one empirical p-value per generated split, or NULL

qvalue one q-value computed according Benjamini-Hochberg's correction for multiple

testing per generated split, or NULL

Author(s)

Claudio Lottaz, Joern Toedling

See Also

diana2means, randomDiana2means, image.splitSet

Examples

```
# prepare data
library(golubEsets)
data(Golub_Merge)
```

generate annotation-driven splits for apoptosis and signal transduction

4 diana2means

```
x <- adSplit(Golub_Merge, "GO:0006915", "hu6800")
x <- adSplit(Golub_Merge, c("GO:0007165","GO:0006915"), "hu6800", max.probes=7000)
# generate a split for alanine, aspartate and glutamate metabolism including
# an empirical p-value
x <- adSplit(Golub_Merge, "KEGG:00250", "hu6800", B=100)
# generate splits for all KEGG pathways.
x <- adSplit(Golub_Merge, "KEGG", "hu6800")
image(x)</pre>
```

adSplit-internal

adSplit Internal Function

Description

Function for internal use only.

Details

No details given. This function is subject to change without further notice.

Author(s)

Claudio Lottaz

diana2means

2-Means with Hierarchical Initialization

Description

Split a set of data points into two coherent groups using the k-means algorithm. Instead of random initialization, divisive hierarchical clustering is used to determine initial groups and the corresponding centroids.

Usage

Arguments

mydata either an expression set as defined by the package Biobase or a matrix of ex-

pression levels (rows=genes, columns=samples).

report only splits where both groups are larger than this size.

ngenes number of genes used to compute cluster quality DLD-score.

ignore.genes number of best scoring genes to be ignored when computing DLD-scores.

return.cut logical, whether to return the attributions of samples to groups.

drawRandomPS 5

Details

This function uses divisive hierarchical clustering (diana) to generate a first split of the data. Thereby, each column of the data matrix is considered to represent a data element. From the thus generated temptative groups, centroids are deduced and used to initialize the k-means clustering algorithm.

For the split optimized by k-means the DLD-score is determined using the ngenes and ignore. genes arguments.

Value

If the logical return.cut is set to FALSE (the default), a single number is representing the DLD-score for the generated split is returned. Otherwise an object of class split containing the following elements is returned:

cut one number out of 0 and 1 per column in the original data, specifying the split

attribution.

score the DLD-score achieved by the split.

Author(s)

Joern Toedling, Claudio Lottaz

See Also

diana

Examples

```
# get golub data
library(vsn)
library(golubEsets)
data(Golub_Merge)

# use 10% most variable genes
e <- exprs(Golub_Merge)
vars <- apply(e, 1, var)
e <- e[vars > quantile(vars,0.9),]

# use diana2means to get splits and scores
diana2means(e)
diana2means(e, return.cut=TRUE)
```

drawRandomPS

Draw sets of probe-sets

Description

This function draws a given number of probe-sets randomly, such that probe-sets referring to the same are either included or excluded as a whole.

6 golubKEGGSplits

Usage

```
drawRandomPS(nps, EID2PSenv, allEIDs)
```

Arguments

nps number of probe-sets to be drawn.

EID2PSenv a hash mapping EntrezGene to probe-set identifiers.

allEIDs vector of all EntrezGene identifiers represented on a chip.

Value

A named vector of probe-set identifiers. The names correspond to the EntrezGene identifiers.

Author(s)

Claudio Lottaz

Examples

```
# draw ten random probe-sets from hu6800
library(hu6800.db)
EID2PSenv <- makeEID2PROBESenv(hu6800ENTREZID)
drawRandomPS(10, EID2PSenv, ls(EID2PSenv))</pre>
```

golubKEGGSplits

Examplar splitSet

Description

This is a data object precomputed by adSplit for illustration.

Usage

```
data(golubKEGGSplits)
```

Format

Annotation-driven split set holds 70 splits on 72 elements, scores range is: 3.382672 17.31385, empirical p-values range is: 0.005 0.955, q-value range is: 0.1633333 0.955.

Details

```
This object is generated by the following call: golubKEGGSplits <- adSplit(golubNorm, "KEGG", "hu6800", B=1000) where golubNorm is a normalized version of Golub_Merge from the golubEsets package.
```

```
data(golubKEGGSplits)
```

hist.splitSet 7

Description

Draws a histogram of empirical p-values and shows the corresponding q-values corrected for multiple testing.

Usage

Arguments

X	object of type splitSet. Should hold a considerable number of splits.
main	main title of the histogram.
xlab	legend for the x-axis.
col	color for the histogram bars.
xlim	limits for the x-axis (p-values).
	further parameters passed on to the default hist function.

Details

This function draws a regular histogram of empirical p-values observed in the splitSet at hand. The corresponding q-values, corrected by the method suggested by Benjamini-Hochberg, are plotted into the same graph. The scale for the q-values is shown at the left hand side of the plot.

Author(s)

Claudio Lottaz

See Also

```
adSplit
```

```
data(golubKEGGSplits)
hist(golubKEGGSplits, col="red")
```

8 image.splitSet

<pre>image.splitSet</pre>	Illustrate Split Sets
illage. Spii toe t	musiraic spin seis

Description

Draws an image of all splits, one per row, of a splitSet object. Each column corresponds to a patient.

Usage

Arguments

X	the object of class:	splitSet to be illustrated.
Λ	the object of class.	spiritset to be musically.

filter.fdr worst acceptable false discovery rate for the shown set of splits. All splits with

q-values below this level are dropped from the image.

main a title for the image.

max.label.length

Maximal length of the annotations shown to the right of the image. Longer

annotations are truncated.

full.names Show full names for annotations instead of their identifiers only.

xlab additional annotation on the x-axis.

sample.labels whether names of samples are to be shown on the x-axis.

col two strings encoding the colors to be used to illustrate to which group a sample

is attributed.

invert whether to draw in white on black background.

outfile the filename on which to draw the image in postscript format. The default is

NULL, meaning to produce the image interactively.

res resolution for bitmap output on postscript.

pointsize size of font.

... further arguments passed to image.

Details

The set of splits given is illustrated as an image. Each row corresponds to an annotation, each column to a patient. In position (x,y), the association of patient x to a group with respect to annotation y is coded as colors (yellow and red by default). The image is ordered by hierarchical clustering such that similar patients and similar splits are brought closer together.

makeEID2PROBESenv 9

Value

Always returns NULL.

Author(s)

Claudio Lottaz

See Also

adSplit

Examples

```
data(golubKEGGSplits)
image(golubKEGGSplits, filter.fdr=0.5)
```

makeEID2PR0BESenv

Generate EID2PROBES environment

Description

Make hash containing probe-sets per EntrezGene identifier.

Usage

```
makeEID2PROBESenv(EIDenv)
```

Arguments

EIDenv

an environment containing one entry per probe-set holding all corresponding EntrezGene identifiers.

Value

An environment containing one entry per EntrezGene identifier holding all corresponding probesets.

Author(s)

Joern Toedling, Claudio Lottaz

```
library(hu6800.db)
makeEID2PROBESenv(hu6800ENTREZID)
```

10 print.splitSet

print.split

Print Information on Single Splits

Description

Print information on a single split.

Usage

```
## S3 method for class 'split'
print(x, ...)
```

Arguments

x the split-object to be described.

... not used.

Author(s)

Claudio Lottaz

See Also

diana2means

print.splitSet

Print Summaries for splitSets

Description

Prints information of splitSets.

Usage

```
## S3 method for class 'splitSet'
print(x, ...)
```

Arguments

x the splitSet-object to be described.

. . . not used.

Author(s)

Claudio Lottaz

randomDiana2means 11

See Also

adSplit

Examples

```
data(golubKEGGSplits)
print(golubKEGGSplits)
```

randomDiana2means

Generate null-distributions of DLD-scores

Description

Draws a number of random sets of probe-sets consisting of the needed size and applies diana2means to compute DLD scores.

Usage

Arguments

nprobes the size of gene sets.

data a matrix of expression data, rows correspond to genes, columns to samples.

chip the name of the used chip.

ndraws the number of DLD scores computed.

ngenes the number of genes used to compute DLD scores (passed to diana2means).

ignore.genes the number of best scoring genes to be ignored when computing DLD scores

(passed to diana2means)

Details

This function uses drawRandomPS to draw ndraws gene sets. On these it applies diana2means to determine a null-distribution of DLD-scores.

Value

A vector of DLD-scores.

Author(s)

Joern Toedling, Claudio Lottaz

See Also

drawRandomPS, diana2means

randomDiana2means

```
# prepare data
library(vsn)
library(golubEsets)
data(Golub_Merge)

# generate DLD scores
scores <- randomDiana2means(20, exprs(Golub_Merge), "hu6800", ndraws = 500)</pre>
```

Index

```
* datagen
    adSplit, 2
    diana2means, 4
    drawRandomPS, 5
    makeEID2PROBESenv, 9
    randomDiana2means, 11
* datasets
    golubKEGGSplits, 6
* hplot
    hist.splitSet, 7
    image.splitSet,8
* internal
    adSplit-internal, 4
    print.split, 10
    print.splitSet, 10
adSplit, 2, 7, 9, 11
adSplit-internal, 4
diana.5
diana2means, 3, 4, 10, 11
drawRandomPS, 5, 11
golubKEGGSplits, 6
\verb|hist,splitSet-method| (\verb|hist.splitSet|), 7
hist.splitSet, 7
image,splitSet-method(image.splitSet),
image.splitSet, 3, 8
makeEID2PROBESenv, 9
print, split-method (print.split), 10
print,splitSet-method(print.splitSet),
        10
print.split, 10
print.splitSet, 10
randomDiana2means, 3, 11
tscore (adSplit-internal), 4
```