Package ‘Spectra’

November 6, 2025

Title Spectra Infrastructure for Mass Spectrometry Data
Version 1.21.0

Description The Spectra package defines an efficient infrastructure
for storing and handling mass spectrometry spectra and functionality to
subset, process, visualize and compare spectra data. It provides different
implementations (backends) to store mass spectrometry data. These comprise
backends tuned for fast data access and processing and backends for very
large data sets ensuring a small memory footprint.

Depends R (>=4.1.0), S4Vectors, BiocParallel

Imports ProtGenerics (>= 1.39.2), methods, IRanges, MsCoreUtils (>=
1.7.5), graphics, grDevices, stats, tools, utils, fs,
BiocGenerics, MetaboCoreUltils

Suggests testthat, knitr (>= 1.1.0), msdata (>= 0.19.3), roxygen2,
BiocStyle (>=2.5.19), mzR (>= 2.19.6), rhdf5 (>=2.32.0),
rmarkdown, vdiffr (>= 1.0.0), msentropy, patrick

License Artistic-2.0
LazyData false
VignetteBuilder knitr

BugReports https://github.com/RforMassSpectrometry/Spectra/issues

URL https://github.com/RforMassSpectrometry/Spectra
biocViews Infrastructure, Proteomics, MassSpectrometry, Metabolomics
Encoding UTF-8

RoxygenNote 7.3.3

Roxygen list(markdown=TRUE)

Collate 'hidden_aliases.R' 'AllGenerics.R' 'MsBackend-functions.R'
'MsBackend.R' 'MsBackendCached.R'
'MsBackendDataFrame-functions.R' 'MsBackendDataFrame.R'
'MsBackendHdf5Peaks-functions.R' MsBackendHdf5Peaks.R'
‘MsBackendMemory-functions.R' 'MsBackendMemory.R'
'MsBackendMzR-functions.R' 'MsBackendMzR.R'
'Spectra-estimatePrecursorMz.R' 'Spectra-functions.R'

1

https://github.com/RforMassSpectrometry/Spectra/issues
https://github.com/RforMassSpectrometry/Spectra

'Spectra.R' 'Spectra-neutralLoss.R' 'Spectra-precursorPurity.R'
'countldentifications.R" 'fft_spectrum.R' 'functions-util.R’
'mz-delta-functions.R' 'peak-list-functions.R'
'peaks-functions.R' 'plotting-functions.R' 'zzz.R'

git_url https://git.bioconductor.org/packages/Spectra
git_branch devel

git_last_commit 3a71e5d

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-05

Author RforMassSpectrometry Package Maintainer [cre],

Laurent Gatto [aut] (ORCID: <https://orcid.org/0000-0002-1520-2268>),

Johannes Rainer [aut] (ORCID: <https://orcid.org/0000-0002-6977-7147>),

Sebastian Gibb [aut] (ORCID: <https://orcid.org/0000-0001-7406-4443>),

Philippine Louail [aut] (ORCID:
<https://orcid.org/0009-0007-5429-6846>),

Jan Stanstrup [ctb] (ORCID: <https://orcid.org/0000-0003-0541-7369>),

Nir Shahaf [ctb],

Mar Garcia-Aloy [ctb] (ORCID: <https://orcid.org/0000-0002-1330-6610>),

Guillaume Deflandre [ctb] (ORCID:
<https://orcid.org/0009-0008-1257-2416>),

Ahlam Mentag [ctb] (ORCID: <https://orcid.org/0009-0008-5438-7067>)

Maintainer
RforMassSpectrometry Package Maintainer <maintainer@rformassspectrometry

Contents

chunkapply e
combinePeaks
combinePeaksData Lo
COMPAreSPECLIA . . .« . v v o e e e e e e e e e e e e e e
concatenateSpectrao e e e e e e e
countldentifications
deisotopeSpectra e e e
estimatePrecursorIntensity,Spectra-method L.
estimatePrecursorMz oL
fillCoreSpectraVariables
filterFourierTransformArtefacts
filterPeaksRanges
fragmentGroupIndex
hidden_aliases
joinPeaks
MsBackend e e
MsBackendCached L
neutralLoSs L L e e e e e

Contents

.org>

https://orcid.org/0000-0002-1520-2268
https://orcid.org/0000-0002-6977-7147
https://orcid.org/0000-0001-7406-4443
https://orcid.org/0009-0007-5429-6846
https://orcid.org/0000-0003-0541-7369
https://orcid.org/0000-0002-1330-6610
https://orcid.org/0009-0008-1257-2416
https://orcid.org/0009-0008-5438-7067

chunkapply 3

plotMzDelta e e e e 80
precursorPurity 81
processingChunkSize,Spectra-method oL . 83
processinglog L 85
Spectra e 94
spectra-plotting 101
spectraData e 106
spectraVariableMapping e 116

Index 118

chunkapply Apply a function stepwise to chunks of data
Description

chunkapply () splits x into chunks and applies the function FUN stepwise to each of these chunks.
Depending on the object it is called, this function might reduce memory demand considerably, if
for example only the full data for a single chunk needs to be loaded into memory at a time (e.g., for
Spectra objects with on-disk or similar backends).

Usage
chunkapply(x, FUN, ..., chunkSize = 1000L, chunks = factor())
Arguments
X object to which FUN should be applied. Can be any object that supports split.
FUN the function to apply to x.
additional parameters to FUN.
chunkSize integer (1) defining the size of each chunk into which x should be splitted.
chunks optional factor or length equal to length(x) defining the chunks into which x
should be splitted.
Value

Depending on FUN, but in most cases a vector/result object of length equal to length(x).

Author(s)

Johannes Rainer

4 combinePeaks

Examples

Apply a function (“sqrt™) to each element in “x°, processed in chunks of
size 200.

X <= rnorm(n = 1000, mean = 500)

res <- chunkapply(x, sqrt, chunkSize = 200)

length(res)

head(res)

For such a calculation the vectorized “sqrt™ would however be recommended
system. time(sqrt(x))
system. time(chunkapply(x, sqrt, chunkSize = 200))

Simple example splitting a numeric vector into chunks of 200 and

aggregating the values within the chunk using the “mean”. Due to the
“unsplit™ the result has the same length than the input with the mean
value repeated.

X <- 1:1000

res <- chunkapply(x, mean, chunkSize = 200)

length(res)

head(res)

combinePeaks Aggregating and combining mass peaks data

Description

In addition to aggregating content of spectra variables (describe in combineSpectra()) it is also
possible to aggregate and combine mass peaks data from individual spectra within a Spectra. These
combinePeaks() function combines mass peaks within each spectrum with a difference in their
m/z values that is smaller than the maximal acceptable difference defined by ppm and tolerance.
Parameters intensityFun and mzFun allow to define functions to aggregate the intensity and m/z
values for each such group of peaks. With weighted = TRUE (the default), the m/z value of the
combined peak is calculated using an intensity-weighted mean and parameter mzFun is ignored.
The MsCoreUtils: :group() function is used for the grouping of mass peaks. Parameter msLevel.
allows to define selected MS levels for which peaks should be combined. This function returns a
Spectra with the same number of spectra than the input object, but with possibly combined peaks
within each spectrum. Additional peak variables (other than "mz" and "intensity") are dropped
(i.e. their values are replaced with NA) for combined peaks unless they are constant across the
combined peaks. See also reduceSpectra() for a function to select a single representative mass
peak for each peak group.

Usage

S4 method for signature 'Spectra’
combinePeaks(

object,

tolerance = 0,

ppm = 20,

combinePeaks 5

intensityFun = base::mean,
mzFun = base: :mean,
weighted = TRUE,

msLevel. = uniqueMsLevels(object),
)
Arguments
object A Spectra object.
tolerance numeric(1) allowing to define a constant maximal accepted difference between
m/z values for peaks to be grouped. Default is tolerance = 0.
ppm numeric(1) defining a relative, m/z-dependent, maximal accepted difference

between m/z values for peaks to be grouped. Default is ppm = 20.

intensityFun Function to aggregate intensities for all peaks in each peak group into a single
intensity value.

mzFun Function to aggregate m/z values for all mass peaks within each peak group into
a single m/z value. This parameter is ignored if weighted = TRUE (the default).

weighted logical (1) whether m/z values of peaks within each peak group should be
aggregated into a single m/z value using an intensity-weighted mean. Defaults
to weighted = TRUE.

msLevel. integer defining the MS level(s) of the spectra to which the function should be
applied (defaults to all MS levels of object.

ignored.

Author(s)

Sebastian Gibb, Johannes Rainer, Laurent Gatto

See Also

* combineSpectra() for functions to combine or aggregate Spectra’s spectra data.
* combinePeaksData() for the function to combine the mass peaks data.
* reduceSpectra() and similar functions to filter mass peaks data.

» Spectra for a general description of the Spectra object.

Examples

Create a Spectra from mzML files and use the ~MsBackendMzR™ on-disk
backend.
sciex_file <- dir(system.file("sciex"”, package = "msdata"),
full.names = TRUE)
sciex <- Spectra(sciex_file, backend = MsBackendMzR())

Combine mass peaks per spectrum with a difference in their m/z value
that is smaller than 20 ppm. The intensity values of such peaks are
combined by summing their values, while for the m/z values the median

6 combinePeaksData

is reported
sciex_comb <- combinePeaks(sciex, ppm = 20,
intensityFun = sum, mzFun = median)

Comparing the number of mass peaks before and after aggregation
lengths(sciex) |> head()
lengths(sciex_comb) |> head()

Plotting the first spectrum before and after aggregation
par(mfrow = c(1, 2))

plotSpectra(sciex[2L])

plotSpectra(sciex_comb[2L])

Using ~reduceSpectra()” to keep for each group of mass peaks with a
difference in their m/z values < 20ppm the one with the highest intensity.
sciex_red <- reduceSpectra(sciex, ppm = 20)

Comparing the number of mass peaks before and after the operation
lengths(sciex) |> head()
lengths(sciex_red) |> head()

combinePeaksData Combine peaks with similar m/z across spectra

Description

combinePeaksData() aggregates provided peak matrices into a single peak matrix. Peaks are
grouped by their m/z values with the group() function from the MsCoreUtils package. In brief,
all peaks in all provided spectra are first ordered by their m/z and consecutively grouped into one
group if the (pairwise) difference between them is smaller than specified with parameter tolerance
and ppm (see MsCoreUtils: :group() for grouping details and examples).

The m/z and intensity values for the resulting peak matrix are calculated using the mzFun and
intensityFun on the grouped m/z and intensity values.

Note that only the grouped m/z and intensity values are used in the aggregation functions (mzFun
and intensityFun) but not the number of spectra.

The function supports also different strategies for peak combinations which can be specified with
the peaks parameter:

* peaks = "union” (default): report all peaks from all input spectra.

* peaks = "intersect": keep only peaks in the resulting peak matrix that are present in >= minProp
proportion of input spectra. This would generate a consensus or representative spectra from a
set of e.g. fragment spectra measured from the same precursor ion.

As a special case it is possible to report only peaks in the resulting matrix from peak groups that
contain a peak from one of the input spectra, which can be specified with parameter main. Thus,
if e.g. main = 2 is specified, only (grouped) peaks that have a peak in the second input matrix are
returned.

Setting timeDomain to TRUE causes grouping to be performed on the square root of the m/z values
(assuming a TOF instrument was used to create the data).

combinePeaksData 7

Usage

combinePeaksData(
X,
intensityFun = base::mean,
mzFun = base::mean,
weighted = FALSE,
tolerance = 0,

ppm = @,
timeDomain = FALSE,
peaks = c("union”, "intersect"),

main = integer(),
minProp = 0.5,

Arguments

X list of peak matrices.

intensityFun function to be used to combine intensity values for matching peaks. By default
the mean intensity value is returned.

mzFun function to be used to combine m/z values for matching peaks. By default the
mean m/z value is returned.

weighted logical(1) defining whether m/z values for matching peaks should be cal-
culated by an intensity-weighted average of the individuak m/z values. This
overrides parameter mzFun.

tolerance numeric(1) defining the (absolute) maximal accepted difference between mass
peaks to group them into the same final peak.

ppm numeric(1) defining the m/z-relative maximal accepted difference between mass
peaks (expressed in parts-per-million) to group them into the same final peak.

timeDomain logical(1) whether grouping of mass peaks is performed on the m/z values
(timeDomain = FALSE) or on sqrt(mz) (timeDomain = TRUE).

peaks character (1) specifying how peaks should be combined. Can be either "peaks = "union”
(default) or peaks = "intersect”. See function description for details.

main optional integer (1) to force the resulting peak list to contain only peaks that
are present in the specified input spectrum. See description for details.

minProp numeric(1) for ‘peaks = "intersect": the minimal required proportion of input
spectra (peak matrices) a mass peak has to be present to be included in the
consensus peak matrix.

additional parameters to the mzFun and intensityFun functions.

Details

For general merging of spectra, the tolerance and/or ppm should be manually specified based on
the precision of the MS instrument. Peaks from spectra with a difference in their m/z being smaller
than tolerance or smaller than ppm of their m/z are grouped into the same final peak.

8 combinePeaksData

Some details for the combination of consecutive spectra of an LC-MS run:

The m/z values of the same ion in consecutive scans (spectra) of a LC-MS run will not be identical.
Assuming that this random variation is much smaller than the resolution of the MS instrument
(i.e. the difference between m/z values within each single spectrum), m/z value groups are defined
across the spectra and those containing m/z values of the main spectrum are retained. Intensities
and m/z values falling within each of these m/z groups are aggregated using the intensityFun and
mzFun, respectively. It is highly likely that all QTOF profile data is collected with a timing circuit
that collects data points with regular intervals of time that are then later converted into m/z values
based on the relationship t = k x sqrt(m/z). The m/z scale is thus non-linear and the m/z scattering
(which is in fact caused by small variations in the time circuit) will thus be different in the lower and
upper m/z scale. m/z-intensity pairs from consecutive scans to be combined are therefore defined
by default on the square root of the m/z values. With timeDomain = FALSE, the actual m/z values
will be used.

Value

Peaks matrix with m/z and intensity values representing the aggregated values across the provided
peak matrices.

Author(s)

Johannes Rainer

Examples

set.seed(123)

mzs <- seq(1, 20, 0.1)

ints1 <- abs(rnorm(length(mzs), 10))

ints1[11:20] <- c(15, 30, 90, 200, 500, 300, 100, 70, 40, 20) # add peak
ints2 <- abs(rnorm(length(mzs), 10))

ints2[11:20] <- c(15, 30, 60, 120, 300, 200, 90, 60, 30, 23)

ints3 <- abs(rnorm(length(mzs), 10))

ints3[11:20] <- c(13, 20, 50, 100, 200, 100, 80, 40, 30, 20)

Create the peaks matrices

pl <- cbind(mz = mzs + rnorm(length(mzs), sd = 0.01),
intensity = ints1)
p2 <- cbind(mz = mzs + rnorm(length(mzs), sd = 0.01),

intensity = ints2)
p3 <- cbind(mz = mzs + rnorm(length(mzs), sd = 0.009),
intensity = ints3)

Combine the spectra. With “tolerance = @~ and “ppm = @~ only peaks with
x*xidentical** m/z are combined. The result will be a single spectrum

containing the *union* of mass peaks from the individual input spectra.
p <- combinePeaksData(list(p1, p2, p3))

Plot the spectra before and after combining

par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))

plot(p1[, 11, p1L[, 2], xlim = range(mzs[5:25]), type = "h", col = "red")
points(p2[, 11, p2[, 21, type = "h", col = "green")

compareSpectra 9

points(p3[, 11, p3[, 2], type = "h", col = "blue")

plot(pl, 11, p[, 21, xlim = range(mzs[5:25]), type = "h",
col = "black™)
The peaks were not merged, because their m/z differs too much.

Combine spectra with ~tolerance = 0.05 . This will merge all triplets.
p <- combinePeaksData(list(p1, p2, p3), tolerance = 0.05)

Plot the spectra before and after combining

par(mfrow = c(2, 1), mar = c(4.3, 4, 1, 1))

plot(p1[, 11, p1[, 21, xlim = range(mzs[5:25]), type = "h", col = "red")
points(p2[, 11, p2[, 2], type = "h", col = "green")

points(p3[, 11, p3[, 21, type = "h", col = "blue")

plot(p[, 11, p[, 21, xlim = range(mzs[5:25]), type = "h",
col = "black")

With “intensityFun = max™ the maximal intensity per peak is reported.
p <- combinePeaksData(list(p1, p2, p3), tolerance = 0.05,
intensityFun = max)

Create *consensus*/representative spectrum from a set of spectra
pl <- cbind(mz = c(12, 45, 64, 70), intensity = c(10, 20, 30, 40))

p2 <- cbind(mz = c(17, 45.1, 63.9, 70.2), intensity = c(11, 21, 31, 41))
p3 <- cbind(mz = c(12.1, 44.9, 63), intensity = c(12, 22, 32))

No mass peaks identical thus consensus peaks are empty
combinePeaksData(list(p1, p2, p3), peaks = "intersect")

Reducing the minProp to 0.2. The consensus spectrum will contain all
peaks
combinePeaksData(list(p1, p2, p3), peaks = "intersect”, minProp = 0.2)

With a tolerance of @.1 mass peaks can be matched across spectra
combinePeaksData(list(p1, p2, p3), peaks = "intersect”, tolerance = 0.1)

Report the minimal m/z and intensity
combinePeaksData(list(p1, p2, p3), peaks = "intersect”, tolerance = 0.1,
intensityFun = min, mzFun = min)

compareSpectra Spectra similarity calculations

Description

compareSpectra() compares each spectrum in x with each spectrum in y using the function pro-
vided with FUN (defaults to MsCoreUtils: :ndotproduct()). If y is missing, each spectrum in x is
compared with each other spectrum in x. The matching/mapping of peaks between the compared

10 compareSpectra

spectra is done with the MAPFUN function. The default joinPeaks() matches peaks of both spec-
tra and allows to keep all peaks from the first spectrum (type = "left"), from the second (type
="right"), from both (type = "outer"”) and to keep only matching peaks (type = "inner"); see
joinPeaks() for more information and examples). The MAPFUN function should have parameters
X, ¥, XPrecursorMz and yPrecursorMz as these values are passed to the function.

In addition to joinPeaks () also joinPeaksGnps() is supported for GNPS-like similarity score cal-
culations. Note that joinPeaksGnps () should only be used in combination with FUN = MsCoreUtils: :gnps
(see joinPeaksGnps () for more information and details). Use MAPFUN = joinPeaksNone to disable
internal peak matching/mapping if a similarity scoring function is used that performs the matching
internally.

FUN is supposed to be a function to compare intensities of (matched) peaks of the two spectra that
are compared. The function needs to take two matrices with columns "mz" and "intensity” as
input and is supposed to return a single numeric as result. In addition to the two peak matrices the
spectra’s precursor m/z values are passed to the function as parameters xPrecursorMz (precursor
m/z of the x peak matrix) and yPrecursorMz (precursor m/z of the y peak matrix). Additional
parameters to functions FUN and MAPFUN can be passed with Parameters ppm and tolerance
are passed to both MAPFUN and FUN. The function returns a matrix with the results of FUN for each
comparison, number of rows equal to length(x) and number of columns equal length(y) (i.e.
element in row 2 and column 3 is the result from the comparison of x[2] with y[3]). If SIMPLIFY
= TRUE the matrix is simplified to a numeric if length of x or y is one. See also the vignette for
additional examples, such as using spectral entropy similarity in the scoring.

Usage

S4 method for signature 'Spectra,Spectra’
compareSpectra(
X,
Y,
MAPFUN = joinPeaks,
tolerance = 0,
ppm = 20,
FUN = ndotproduct,
matchedPeaksCount = FALSE,
SIMPLIFY = TRUE
)

S4 method for signature 'Spectra,missing'
compareSpectra(

X,

y = NULL,

MAPFUN = joinPeaks,

tolerance = 0,

ppm = 20,

FUN = ndotproduct,

matchedPeaksCount = FALSE,

SIMPLIFY = TRUE

compareSpectra 11

)
Arguments

X A Spectra object.

y A Spectra object.

MAPFUN For compareSpectra(): function to map/match peaks between the two com-
pared spectra. See joinPeaks() for more information and possible functions.
Defaults to joinPeaks().

tolerance numeric(1) allowing to define a constant maximal accepted difference between
m/z values for peaks to be matched. This parameter is directly passed to MAPFUN.

ppm numeric(1) defining a relative, m/z-dependent, maximal accepted difference
between m/z values for peaks to be matched. This parameter is directly passed
to MAPFUN.

FUN function to compare intensities of peaks between two spectra. Defaults to MsCoreUtils: :ndotproduct ()

e Additional arguments passed to the internal functions.

matchedPeaksCount
logical (1) whether the number of matching peaks between the compared spec-
tra should be returned in addition to the similarity scores. Note that with matchedPeaksCount
= TRUE a 3-dimensional array is returned. See examples below for details.

SIMPLIFY logical (1) defining whether the result matrix should be simplified to a numeric
if possible (i.e. if either x or y is of length 1).

Value

For matchedPeaksCount = FALSE (the default) a matrix with the similarity scores. With matchedPeaksCount
= FALSE and SIMPLIFY = TRUE a numeric vector. For matchedPeaksCount = TRUE a 3-dimensional

array with the scores reported in the first matrix in z dimension ([, , 1]) and the number of
matching peaks in the second matrix in z dimension ([, , 2]).
Author(s)

Sebastian Gibb, Johannes Rainer, Laurent Gatto

Examples

Load a ~Spectra™ object with LC-MS/MS data.
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML",

package = "msdata”)
sps_dda <- Spectra(fl)
sps_dda

Restrict to MS2 (fragment) spectra:
sps_ms2 <- filterMsLevel(sps_dda, msLevel = 2L)

Compare spectra: comparing spectra 2 and 3 against spectra 10:20 using
the normalized dotproduct method.
res <- compareSpectra(sps_ms2[2:3], sps_ms2[10:20])

12 concatenateSpectra

first row contains comparisons of spectrum 2 with spectra 10 to 20 and
the second row comparisons of spectrum 3 with spectra 10 to 20
res

Setting parameter “matchedPeaksCount = TRUE™ returns in addition to the
simialrity score also the number of matching peaks between the compared
spectra. The results are then returned as a 3-dimensional array, with the
first matrix in z dimension (*[, , 11°) containing the scores and the

second matrix in z dimention ([, , 2]1°) the number of matching peaks:

res <- compareSpectra(sps_ms2[2:3], sps_ms2[10:20], matchedPeaksCount = TRUE)

the scores
res[, , 1L]

the number of matching peaks
res[, , 2L]

We next calculate the pairwise similarity for the first 10 spectra
compareSpectra(sps_ms2[1:10])

Use compareSpectra to determine the number of common (matching) peaks

with a ppm of 10:

type = "inner" uses a *inner join* to match peaks, i.e. keeps only

peaks that can be mapped betwen both spectra. The provided FUN returns

simply the number of matching peaks.

compareSpectra(sps_ms2[2:3], sps_ms2[10:20], ppm = 10, type = "inner",
FUN = function(x, y, ...) nrow(x))

We repeat this calculation between all pairwise combinations
of the first 20 spectra
compareSpectra(sps_ms2[1:20], ppm = 10, type = "inner"”,

FUN = function(x, y, ...) nrow(x))
concatenateSpectra Merging, aggregating and splitting Spectra
Description

Various functions are availabe to combine, aggregate or split data from one of more Spectra ob-
jects. These are:

* c() and concatenateSpectra(): combines several Spectra objects into a single object.
The resulting Spectra contains all data from all individual Spectra, i.e. the union of all
their spectra variables. Concatenation will fail if the processing queue of any of the Spectra
objects is not empty or if different backends are used for the Spectra objects. In such cases
it is suggested to first change the backends of all Spectra to the same type of backend (using
the setBackend() function and to eventually (if needed) apply the processing queue using the
applyProcessing() function.

concatenateSpectra 13

e cbind2(): Appends multiple spectra variables from a data.frame, DataFrame or matrix
to the Spectra object at once. The order of the values (rows) in y has to match the order
of spectra in x. The function does not allow to replace existing spectra variables. cbind2()
returns a Spectra object with the appended spectra variables. For a more controlled way of
adding spectra variables, see the joinSpectraData() function.

* combineSpectra(): combines sets of spectra (defined with parameter f) into a single spec-
trum per set aggregating their MS data (i.e. their peaks data matrices with the m/z and inten-
sity values of their mass peaks). The spectra variable values of the first spectrum per set are
reported for the combined spectrum. The peak matrices of the spectra per set are combined us-
ing the function specified with parameter FUN which uses by default the combinePeaksData()
function. See the documentation of combinePeaksData() for details on the aggregation of
the peak data and the package vignette for examples. The sets of spectra can be specified
with parameter f which is expected to be a factor or vector of length equal to the length of
the Spectra specifying to which set a spectrum belongs to. The function returns a Spectra
of length equal to the unique levels of f. The optional parameter p allows to define how the
Spectra should be split for potential parallel processing. The default is p = x$dataStorage
and hence a per storage file parallel processing is applied for Spectra with on disk data rep-
resentations (such as the MsBackendMzR()). This also prevents that spectra from different
data files/samples are combined (eventually use e.g. p = x$dataOrigin or any other spec-
tra variables defining the originating samples for a spectrum). Before combining the peaks
data, all eventual present processing steps are applied (by calling applyProcessing() on
the Spectra). This function will replace the original m/z and intensity values of a Spectra
hence it can not be called on a Spectra with a read-only backend. In such cases, the backend
should be changed to a writeable backend before using the setBackend() function (to e.g. a
MsBackendMemory () backend).

* joinSpectraData(): Individual spectra variables can be directly added with the $<- or [[<-
syntax. The joinSpectraData() function allows to merge a DataFrame to the existing spec-
tra data of a Spectra. This function diverges from the merge () method in two main ways:

— The by.x and by .y column names must be of length 1.

— If variable names are shared in x and y, the spectra variables of x are not modified. It’s
only the y variables that are appended with the suffix defined in suffix.y. This is to
avoid modifying any core spectra variables that would lead to an invalid object.

— Duplicated Spectrakeys (i.e. x[[by.x]1]) are not allowed. Duplicated keys in the DataFrame
(i.e y[[by.y]1]) throw a warning and only the last occurrence is kept. These should be ex-
plored and ideally be removed using for QFeatures: : reduceDataFrame(), PMS: : reducePSMs ()
or similar functions. For a more general function that allows to append data.frame,
DataFrame and matrix see cbind2().

* split(): splits the Spectra object based on parameter f into a 1ist of Spectra objects.

Usage

concatenateSpectra(x, ...)

combineSpectra(
X’
.f.‘
p

x$dataStorage,
x$dataStorage,

14

concatenateSpectra

FUN = combinePeaksData,

BPPARAM = bpparam()
)

joinSpectraData(x, y, by.x = "spectrumId”, by.y, suffix.y = ".y")

S4 method for signature 'Spectra’
c(x, ...)

S4 method for signature 'Spectra,dataframeOrDataFrameOrmatrix’
cbind2(x, vy, ...)

S4 method for signature 'Spectra,ANY'

split(x, f, drop = FALSE, ...)
Arguments
X A Spectra object.

Additional arguments.

f For split(): factor defining how to split x. See base: : split() for details. For
combineSpectra(): factor defining the grouping of the spectra that should be
combined. Defaults to x$dataStorage.

p For combineSpectra(): factor defining how to split the input Spectra for
parallel processing. Defaults to x$dataStorage, i.e., depending on the used
backend, per-file parallel processing will be performed.

FUN For combineSpectra(): function to combine the (peak matrices) of the spectra.
Defaults to combinePeaksData().

BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation. This is passed directly to the backendInitialize() method of the
MsBackend.

y For joinSpectraData(): DataFrame with the spectra variables to join/add. For
cbind2(): adata. frame, DataFrame or matrix. The number of rows and their
order has to match the number of spectra in x, respectively their order.

by . x A character (1) specifying the spectra variable used for merging. Default is
"spectrumId”.

by.y A character (1) specifying the column used for merging. Set to by. x if miss-
ing.

suffix.y A character (1) specifying the suffix to be used for making the names of
columns in the merged spectra variables unique. This suffix will be used to
amend names (y), while spectraVariables(x) will remain unchanged.

drop For split(): not considered.

Author(s)

Sebastian Gibb, Johannes Rainer, Laurent Gatto

concatenateSpectra 15

See Also

* combinePeaks() for functions to aggregate mass peaks data.

» Spectra for a general description of the Spectra object.

Examples

Create a Spectra providing a “DataFrame™ containing a MS data.

spd <- DataFrame(msLevel = c(1L, 2L), rtime = c(1.1, 1.2))
spd$mz <- list(c(100, 103.2, 104.3, 106.5), c(45.6, 120.4, 190.2))
spd$intensity <- list(c(200, 400, 34.2, 17), c(12.3, 15.2, 6.8))

s <- Spectra(spd)
s

Create a second Spectra from mzML files and use the ~MsBackendMzR™

on-disk backend.

sciex_file <- dir(system.file("sciex"”, package = "msdata"),
full.names = TRUE)

sciex <- Spectra(sciex_file, backend = MsBackendMzR())

sciex

Subset to the first 100 spectra to reduce running time of the examples
sciex <- sciex[1:100]

#o--mmmme- COMBINE SPECTRA --------

Combining the ~Spectra® object “s™ with the MS data from ~sciex".

Calling directly “c(s, sciex)™ would result in an error because

both backends use a different backend. We thus have to first change
the backends to the same backend. We change the backend of the “sciex”

~Spectra” to a “MsBackendMemory®, the backend used by “s.
sciex <- setBackend(sciex, MsBackendMemory())

Combine the two ~Spectra”
all <- c(s, sciex)
all

The new ~Spectra™ objects contains the union of spectra variables from
both:

spectraVariables(all)

The spectra variables that were not present in “s™:
setdiff(spectraVariables(all), spectraVariables(s))

The values for these were filled with missing values for spectra from
s
all$peaksCount |> head()

16

concatenateSpectra

I AGGREGATE SPECTRA --------

Sets of spectra can be combined into a single, representative spectrum
per set using ~combineSpectra() . This aggregates the peaks data (i.e.
the spectra's m/z and intensity values) while using the values for all
spectra variables from the first spectrum per set. Below we define the
sets as all spectra measured in the *same second*, i.e. rounding their
retention time to the next closer integer value.

f <= round(rtime(sciex))

head(f)

cmp <- combineSpectra(sciex, f = f)

The length of ~“cmp” is now equal to the length of unique levels in ~f~:
length(cmp)

The spectra variable value from the first spectrum per set is used in
the representative/combined spectrum:
cmp$rtime

The peaks data was aggregated: the number of mass peaks of the first six
spectra from the original ~Spectra™:
lengths(sciex) |> head()

and for the first aggreagated spectra:
lengths(cmp) |> head()

The default peaks data aggregation method joins all mass peaks. See
documentation of the ~combinePeaksData()~ function for more options.

i oo SPLITTING DATA --------

A “Spectra” can be split into a “list™ of ~Spectra® objects using the
“split()” function defining the sets into which the ~Spectra™ should
be splitted into with parameter “f~.

sciex_split <- split(sciex, f)

length(sciex_split)
sciex_split |> head()

I ADDING SPECTRA DATA --------

Adding new spectra variables

sciex1 <- filterDataOrigin(sciex, dataOrigin(sciex)[1])

spv <- DataFrame(spectrumId = sciex1$spectrumId[3:12], ## used for merging
varl = rnorm(10),
var2 = sample(letters, 10))

spv

sciex2 <- joinSpectraData(sciex1, spv, by.y = "spectrumId”)

countldentifications 17

spectraVariables(sciex2)
spectraData(sciex2)[1:13, c("spectrumId”, "varl”, "var2")]

Append new spectra variables with cbind2()
df <- data.frame(cola = seq_len(length(sciex1)), colb = "b")
data_append <- cbhind2(sciex1, df)

countIdentifications Count the number of identifications per scan

Description

The function takes a Spectra object containing identification results as input. It then counts the
number of identifications each scan (or their descendants) has lead to - this is either O or 1 for MS2
scans, or, for MS1 scans, the number of MS2 scans originating from any MS1 peak that lead to an
identification.

This function can be used to generate id-annotated total ion chromatograms, as can illustrated here.

Usage
countIdentifications(
object,
identification = "sequence”,

f = dataStorage(object),
BPPARAM = bpparam()
)

Arguments

object An instance of class Spectra that contains identification data, as defined by the
sequence argument.

identification character(1) with the name of the spectra variable that defines whether a scan
lead to an identification (typically containing the idenfified peptides sequence
in proteomics). The absence of identification is encode by an NA. Default is

"sequence”.
f A factor defining how to split object for parallelized processing. Default is
dataOrigin(x), i.e. each raw data files is processed in parallel.
BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for details.
Details

The computed number of identifications is stored in a new spectra variables named "countIdentifications”.
If it already exists, the function throws a message and returns the object unchanged. To force the
recomputation of the "countIdentifications” variable, users should either delete or rename it.

https://rformassspectrometry.github.io/docs/sec-id.html#an-identification-annotated-chromatogram

18 countldentifications

Value

An updated Spectra() object that now contains an integer spectra variable countIdentifications
with the number of identification for each scan.

Author(s)

Laurent Gatto

See Also

addProcessing() for other data analysis functions.

Examples

spdf <- new("DFrame”, rownames = NULL, nrows = 86L,
listData = list(
msLevel = c(1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1., 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L),
acquisitionNum = 8975:9060,
precScanNum = c(NA, 8956L, 8956L, 8956L, 8956L, 8956L, 8956L,
8956L, 8956L, 8956L, 8956L, 8956L, 8956L,
8956L, 8956L, 8956L, 8956L, 8956L, 8956L, NA,
8975L, 8975L, 8975L, 8975L, 8975L, 8975L,
8975L, 8975L, 8975L, 8975L, 8975L, 8975L,
8975L, 8975L, 8975L, 8975L, 8975L, NA, 8994L,
8994L, 8994L, 8994L, 8994L, 8994L, 8994L,
8994L, 8994L, 8994L, 8994L, 8994L, 8994L, NA,
9012L, 9012L, 9012L, 9012L, 9012L, 9012L,
9012L, 9012L, 9012L, 9012L, 9012L, 9012L,
9012L, 9012L, 9012L, 9012L, 9012L, 9012L, NA,
9026L, 9026L, 9026L, 9026L, 9026L, 9026L,
9026L, 9026L, 9026L, 9026L, 9026L, 9026L,
9026L, 9026L, 9026L),
sequence = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
"LSEHATAPTR”, NA, NA, NA, NA, NA, NA, NA,
"EGSDATGDGTK", NA, NA, "NEDEDSPNK", NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, "GLTLAQGGVK",
NA, NA, NA, NA, "STLPDADRER", NA, NA, NA, NA, NA,
NA, NA, NA)),
elementType = "ANY"”, elementMetadata = NULL, metadata = list())

sp <- Spectra(spdf)

deisotopeSpectra 19

We have in this data 5 MS1 and 81 MS2 scans
table(msLevel(sp))

The acquisition number of the MS1 scans
acquisitionNum(filterMsLevel(sp, 1))

And the number of MS2 scans with precursor ions selected
from MS1 scans (those in the data and others)
table(precScanNum(sp))

Count number of sequences/identifications per scan
sp <- countldentifications(sp)

MS2 scans either lead to an identification (5 instances) or none
(76). Among the five MS1 scans in the experiment, 3 lead to MS2
scans being matched to no peptides and two MS1 scans produced two
and three PSMs respectively.

table(sp$countIdentifications, sp$msLevel)

deisotopeSpectra Filter and subset Spectra objects

Description

A variety of functions to filter or subset Spectra objects are available. These can be generally
separated into two main classes: I) classical subset operations that immediately reduce the number
of spectra in the object and II) filters that reduce the content of the object without changing its
length (i.e. the number of spectra). The latter can be further subdivided into functions that affect
the content of the spectraData (i.e. the general spectrum metadata) and those that reduce the
content of the object’s peaksData (i.e. the m/z and intensity values of a spectrum’s mass peaks).

A description of functions from these 3 different categories are given below in sections Subset
Spectra, Filter content of spectraData() and Filter content of peaksData(), respectively.

Usage

deisotopeSpectra(
X)
substDefinition = isotopicSubstitutionMatrix("HMDB_NEUTRAL"),
tolerance = 0,
ppm = 20,
charge =1

reduceSpectra(x, tolerance = @, ppm = 20)
filterPrecursorMaxIntensity(x, tolerance = @, ppm = 20)

filterPrecursorIsotopes(

20

X)

tolerance = 0,

ppm = 20,

substDefinition = isotopicSubstitutionMatrix("HMDB_NEUTRAL")
)
filterPrecursorPeaks(

object,

tolerance = 0,

ppm = 20,

mz = c("==", ">="),

msLevel. = uniqueMsLevels(object)

)

S4 method for signature 'Spectra
dropNaSpectraVariables(object)
S4 method for signature 'Spectra’
selectSpectraVariables(

object,

deisotopeSpectra

spectraVariables = union(spectraVariables(object), peaksVariables(object))

)

S4 method for signature 'Spectra’
x[i, j, ..., drop = FALSE]

S4 method for signature 'Spectra’
filterAcquisitionNum(
object,
n = integer(),
dataStorage = character(),
dataOrigin = character()

)

S4 method for signature 'Spectra'
filterEmptySpectra(object)

S4 method for signature 'Spectra’
filterDataOrigin(object, dataOrigin = character())

S4 method for signature 'Spectra’
filterDataStorage(object, dataStorage = character())

S4 method for signature 'Spectra’
filterFourierTransformArtefacts(
object,
halfWindowSize = 0.05,
threshold = 0.2,

deisotopeSpectra

keepIsotopes = TRUE,
maxCharge = 5,
isotopeTolerance = 0.005

)
S4 method for signature 'Spectra’
filterIntensity(

object,

intensity = c(@, Inf),

msLevel. = uniqueMsLevels(object),
)

S4 method for signature 'Spectra’

filterIsolationWindow(object, mz = numeric())

S4 method for signature 'Spectra’
filterMsLevel(object, msLevel. = integer())

S4 method for signature 'Spectra’
filterMzRange(
object,
mz = numeric(),
msLevel. = uniqueMsLevels(object),
keep = TRUE
)

S4 method for signature 'Spectra’
filterMzValues(

object,

mz = numeric(),

tolerance = 0,

ppm = 20,
msLevel. = uniqueMslLevels(object),
keep = TRUE

)

S4 method for signature 'Spectra’

filterPolarity(object, polarity = integer())

S4 method for signature 'Spectra’
filterPrecursorMz(object, mz = numeric())

S4 method for signature 'Spectra'

filterPrecursorMzRange(object, mz = numeric())

S4 method for signature 'Spectra’

filterPrecursorMzValues(object, mz = numeric(), ppm = 20, tolerance

0)

21

22

deisotopeSpectra

S4 method for signature 'Spectra’
filterPrecursorCharge(object, z = integer())

S4 method for signature 'Spectra’
filterPrecursorScan(object, acquisitionNum = integer(), f = dataOrigin(object))

S4 method for signature 'Spectra'
filterRt(object, rt = numeric(), msLevel. = integer())

S4 method for signature 'Spectra’
filterRanges(
object,
spectraVariables = character(),
ranges = numeric(),
match = c("all”, "any")
)

S4 method for signature 'Spectra’
filterValues(

object,

spectraVariables = character(),

values = numeric(),

ppm = @,

tolerance = 0,

match = c("all”, "any")

Arguments

X

substDefinition

tolerance

Spectra object.

For deisotopeSpectra() and filterPrecursorIsotopes(): matrix ordata.frame

with definitions of isotopic substitutions. Uses by default isotopic substitutions

defined from all compounds in the Human Metabolome Database (HMDB). See
MetaboCoreUtils: :isotopologues() orMetaboCoreUtils: :isotopicSubstitutionMatrix()
in the MetaboCoreUtils for details.

For filterMzValues() and reduceSpectra(): numeric(1) allowing to de-

fine a constant maximal accepted difference between m/z values for peaks to be

matched (or grouped). For containsMz() it can also be of length equal mz to

specify a different tolerance for each m/z value. For filterPrecursorMaxIntensity():
numeric(1) defining the (constant) maximal accepted difference of precursor

m/z values of spectra for grouping them into precursor groups. For filterPrecursorIsotopes():
passed directly to the MetaboCoreUtils: : isotopologues() function. For filterValues():
numeric of any length allowing to define a maximal accepted difference be-

tween user input values and the spectraVariables values. If it is not equal to

the length of the value provided with parameter spectraVariables, tolerance[1]

will be recycled. Default is tolerance = @.

deisotopeSpectra 23

ppm For filterMzValues() and reduceSpectra(): numeric(1) defining a rela-
tive, m/z-dependent, maximal accepted difference between m/z values for peaks
to be matched (or grouped). For filterPrecursorMaxIntensity(): numeric(1)
defining the relative maximal accepted difference of precursor m/z values of
spectra for grouping them into precursor groups. For filterPrecursorIsotopes():
passed directly to the MetaboCoreUtils: : isotopologues() function. For filterValues():
numeric of any length allowing to define a maximal accepted difference be-
tween user input values and the spectraVariables values. If it is not equal
to the length of the value provided with parameter spectraVariables, ppm[1]
will be recycled.

charge For deisotopeSpectra(): expected charge of the ionized compounds. See
MetaboCoreUtils: :isotopologues() for details.

object Spectra object.

mz For filterIsolationWindow(): numeric(1) with the m/z value to filter the
object. For filterPrecursorMz() and filterMzRange(): numeric(2) defin-
ing the lower and upper m/z boundary. For filterMzValues() and filterPrecursorMzValues():
numeric with the m/z values to match peaks or precursor m/z against. For
filterPrecursorPeaks(): character(1) defining whether mass peaks with
an m/z matching the spectrum’s precursor m/z (mz = "==", the default) or mass
peaks with a m/z that is equal or larger (mz = ">=") should be removed.

msLevel. integer defining the MS level(s) of the spectra to which the function should be
applied (defaults to all MS levels of object. For filterMsLevel(): the MS
level to which object should be subsetted.
spectraVariables
For selectSpectraVariables(): character with the names of the spectra
variables to which the backend should be subsetted. For filterRanges() and
filterValues(): character vector specifying the column(s) from spectraData(object)
on which to filter the data and that correspond to the the names of the spectra
variables that should be used for the filtering.

i For [: integer, logical or character to subset the object.
j For [: not supported.

Additional arguments.

drop For [: not considered.

n for filterAcquisitionNum(): integer with the acquisition numbers to filter
for.

dataStorage For filterDataStorage(): character to define which spectra to keep. For

filterAcquisitionNum(): optionally specify if filtering should occur only for
spectra of selected dataStorage.

dataOrigin For filterDataOrigin(): character to define which spectra to keep. For
filterAcquisitionNum(): optionally specify if filtering should occurr only
for spectra of selected dataOrigin.

halfWindowSize ForfilterFourierTransformArtefacts(): numeric(1) defining the m/z win-
dow left and right of a peak where to remove fourier transform artefacts.

24 deisotopeSpectra

threshold For filterFourierTransformArtefacts(): the relative intensity (to a peak)
below which peaks are considered fourier artefacts. Defaults to threshold =
0.2 hence removing peaks that have an intensity below 0.2 times the intensity
of the tested peak (within the selected halfWindowSize).

keepIsotopes For filterFourierTransformArtefacts(): whether isotope peaks should not
be removed as fourier artefacts.

maxCharge For filterFourierTransformArtefacts(): the maximum charge to be con-
sidered for isotopes.

isotopeTolerance

For filterFourierTransformArtefacts(): the m/z tolerance to be used to
define whether peaks might be isotopes of the current tested peak.

intensity For filterIntensity(): numeric of length 1 or 2 defining either the lower
or the lower and upper intensity limit for the filtering, or a function that takes
the intensities as input and returns a logical (same length then peaks in the
spectrum) whether the peak should be retained or not. Defaults to intensity =
c(0, Inf) thus only peaks with NA intensity are removed.

keep For filterMzValues() and filterMzRange(): logical (1) whether the match-
ing peaks should be retained (keep = TRUE, the default) or dropped (keep =
FALSE).

polarity for filterPolarity(): integer specifying the polarity to to subset object.

z For filterPrecursorCharge(): integer () with the precursor charges to be

used as filter.

acquisitionNum for filterPrecursorScan(): integer with the acquisition number of the spec-
tra to which the object should be subsetted.

f For filterPrecursorScan(): defining which spectra belong to the same orig-
inal data file (sample): Defaults to f = dataOrigin(x).

rt for filterRt(): numeric(2) defining the retention time range to be used to
subset/filter object.

ranges for filterRanges(): A numeric vector of paired values (upper and lower

boundary) that define the ranges to filter the object. These paired values need
to be in the same order as the spectraVariables parameter (see below).

match For filterRanges() and filterValues(): character(1) defining whether
the condition has to match for all provided ranges/values (match = "all"; the
default), or for any of them (match = "any") for spectra to be retained.

values for filterValues(): A numeric vector that define the values to filter the Spec-
tra data. These values need to be in the same order as the spectraVariables
parameter.

Subset Spectra

These functions affect the number of spectra in a Spectra object creating a subset of the original
object without affecting its content.

* [: subsets the spectra keeping only selected elements (i). The method always returns a
Spectra object.

deisotopeSpectra 25

e filterAcquisitionNum(): filters the object keeping only spectra matching the provided ac-
quisition numbers (argument n). If dataOrigin or dataStorage is also provided, object
is subsetted to the spectra with an acquisition number equal to n in spectra with matching
dataOrigin or dataStorage values retaining all other spectra. Returns the filtered Spectra.

» filterDataOrigin(): filters the object retaining spectra matching the provided dataOrigin.
Parameter dataOrigin has to be of type character and needs to match exactly the data
origin value of the spectra to subset. Returns the filtered Spectra object (with spectra ordered
according to the provided dataOrigin parameter).

e filterDataStorage(): filters the object retaining spectra stored in the specified dataStorage.
Parameter dataStorage has to be of type character and needs to match exactly the data stor-
age value of the spectra to subset. Returns the filtered Spectra object (with spectra ordered
according to the provided dataStorage parameter).

» filterEmptySpectra(): removes empty spectra (i.e. spectra without peaks). Returns the
filtered Spectra object (with spectra in their original order).

e filterIsolationWindow(): retains spectra that contain mz in their isolation window m/z
range (i.e. with an isolationWindowLowerMz <=mz and isolationWindowUpperMz >= mz.
Returns the filtered Spectra object (with spectra in their original order).

» filterMsLevel(): filters object by MS level keeping only spectra matching the MS level
specified with argument msLevel. Returns the filtered Spectra (with spectra in their original
order).

e filterPolarity(): filters the object keeping only spectra matching the provided polarity.
Returns the filtered Spectra (with spectra in their original order).

* filterPrecursorCharge(): retains spectra with the defined precursor charge(s).

e filterPrecursorIsotopes(): groups MS2 spectra based on their precursor m/z and pre-
cursor intensity into predicted isotope groups and keep for each only the spectrum repre-
senting the monoisotopic precursor. MS1 spectra are returned as is. See documentation for
deisotopeSpectra() below for details on isotope prediction and parameter description.

* filterPrecursorMaxIntensity(): filters the Spectra keeping for groups of (MS2) spectra
with similar precursor m/z values (given parameters ppm and tolerance) the one with the
highest precursor intensity. The function filters only MS2 spectra and returns all MS1 spectra.
If precursor intensities are NA for all spectra within a spectra group, the first spectrum of that
groups is returned. Note: some manufacturers don’t provide precursor intensities. These can
however also be estimated with estimatePrecursorIntensity().

e filterPrecursorMzRange() (previously filterPrecursorMz() which is now deprecated):
retains spectra with a precursor m/z within the provided m/z range. See examples for details
on selecting spectra with a precursor m/z for a target m/z accepting a small difference in ppm.

e filterPrecursorMzValues(): retains spectra with precursor m/z matching any of the pro-
vided m/z values (given ppm and tolerance). Spectra with missing precursor m/z value (e.g.
MSI1 spectra) are dropped.

e filterPrecursorScan(): retains parent (e.g. MS1) and children scans (e.g. MS2) of acqui-
sition number acquisitionNum. Returns the filtered Spectra (with spectra in their original
order). Parameter f allows to define which spectra belong to the same sample or original data
file (defaults to f = dataOrigin(object)). See also fragmentGroupIndex() for a function
to generate an integer index grouping MS”n spectra with their corresponding MS1 spectra
based on acquisition order.

26 deisotopeSpectra

* filterRanges(): allows filtering of the Spectra object based on user defined numeric ranges
(parameter ranges) for one or more available spectra variables in object (spectra variable
names can be specified with parameter spectraVariables). Spectra for which the value of
a spectra variable is within it’s defined range are retained. If multiple ranges/spectra vari-
ables are defined, the match parameter can be used to specify whether all conditions (match
= "all"; the default) or if any of the conditions must match (match = "any"; all spectra for
which values are within any of the provided ranges are retained).

e filterRt(): retains spectra of MS level msLevel with retention times (in seconds) within
(>=) rt[1] and (<=) rt[2]. This retention time filter is applied to all spectra (regardless of
their MS level) if msLevel. = integer() (the default). Returns the filtered Spectra (with
spectra in their original order).

* filterValues(): allows filtering of the Spectra object based on similarities of numeric val-
ues of one or more spectraVariables(object) (parameter spectraVariables) to provided
values (parameter values) given acceptable differences (parameters tolerance and ppm). If
multiple values/spectra variables are defined, the match parameter can be used to specify
whether all conditions (match = "all”; the default) or if any of the conditions must match
(match = "any"; all spectra for which values are within any of the provided ranges are re-
tained).

Filter content of spectraData()

The functions described in this section filter the content from a Spectra’s spectra data, i.e. affect
values of, or complete, spectra variables. None of these functions reduces the object’s number of
spectra.

* dropNaSpectraVariables(): removes spectra variables (i.e. columns in the object’s spectraData
that contain only missing values (NA). Note that while columns with only NAs are removed, a
spectraData() call after dropNaSpectraVariables() might still show columns contain-
ing NA values for core spectra variables. The total number of spectra is not changed by this
function.

* selectSpectraVariables(): reduces the information within the object to the selected spec-
tra variables: all data for variables not specified will be dropped. For mandatory columns (i.e.,
those listed by coreSpectraVariables(), such as msLevel, rtime ...) only the values will
be dropped but not the variable itself. Additional (or user defined) spectra variables will be
completely removed. Returns the filtered Spectra.

Filter content of peaksData()

The functions described in this section filter the content of the Spectra’s peaks data, i.e. either
the number or the values (m/z or intensity values) of the mass peaks. Also, the actual operation
is only executed once peaks data is accessed (through peaksData(), mz() or intensity()) or
applyProcessing() is called. These operations don’t affect the number of spectra in the Spectra
object.

* deisotopeSpectra(): deisotopes each spectrum keeping only the monoisotopic peak for
groups of isotopologues. Isotopologues are estimated using the MetaboCoreUtils: :isotopologues()
function from the MetaboCoreUtils package. Note that the default parameters for isotope pre-
diction/detection have been determined using data from the Human Metabolome Database

deisotopeSpectra 27

(HMDB) and isotopes for elements other than CHNOPS might not be detected. See param-
eter substDefinition in the documentation of MetaboCoreUtils: :isotopologues() for
more information. The approach and code to define the parameters for isotope prediction is
described here.

e filterFourierTransformArtefacts(): removes (Orbitrap) fast fourier artefact peaks from
spectra (see examples below). The function iterates through all intensity ordered peaks in
a spectrum and removes all peaks with an m/z within +/- halfWindowSize of the current
peak if their intensity is lower than threshold times the current peak’s intensity. Additional
parameters keepIsotopes, maxCharge and isotopeTolerance allow to avoid removing of
potential [13]C isotope peaks (maxCharge being the maximum charge that should be consid-
ered and isotopeTolerance the absolute acceptable tolerance for matching their m/z). See
filterFourierTransformArtefacts() for details and background and deisitopeSpectra()
for an alternative.

* filterIntensity(): filters mass peaks in each spectrum keeping only those with intensities
that are within the provided range or match the criteria of the provided function. For the for-
mer, parameter intensity has to be a numeric defining the intensity range, for the latter a
function that takes the intensity values of the spectrum and returns a logical whether the
peak should be retained or not (see examples below for details) - additional parameters to
the function can be passed with To remove only peaks with intensities below a certain
threshold, say 100, use intensity = c(100, Inf). Note: also a single value can be passed
with the intensity parameter in which case an upper limit of Inf is used. Note that this func-
tion removes also peaks with missing intensities (i.e. an intensity of NA). Parameter msLevel.
allows to restrict the filtering to spectra of the specified MS level(s).

» filterMzRange(): filters mass peaks in the object keeping or removing those in each spec-
trum that are within the provided m/z range. Whether peaks are retained or removed can be
configured with parameter keep (default keep = TRUE).

e filterMzValues(): filters mass peaks in the object keeping all peaks in each spectrum that
match the provided m/z value(s) (for keep = TRUE, the default) or removing all of them (for
keep = FALSE). The m/z matching considers also the absolute tolerance and m/z-relative ppm
values. tolerance and ppm have to be of length 1.

e filterPeaksRanges(): filters mass peaks of a Spectra object using any set of range-based
filters on numeric spectra or peaks variables. See filterPeaksRanges() for more informa-
tion.

» filterPrecursorPeaks(): removes peaks from each spectrum in object with an m/z equal
or larger than the m/z of the precursor, depending on the value of parameter mz: formz = ==" (the default) peaks wif
eranceandppm, respectively) are removed. For mz=">="all peaks with an m/z larger or equal to the pr
(e.g. typically for MS1 spectra).

* reduceSpectra(): keeps for groups of peaks with similar m/z values in (given ppm and
tolerance) in each spectrum only the mass peak with the highest intensity removing all
other peaks hence reducing each spectrum to the highest intensity peaks per peak group. Peak
groups are defined using the MsCoreUtils: :group() function from the MsCoreUtils pack-
age. See also the combinePeaks() function for an alternative function to combine peaks
within each spectrum.

Author(s)
Sebastian Gibb, Johannes Rainer, Laurent Gatto, Philippine Louail, Nir Shahaf

https://github.com/EuracBiomedicalResearch/isotopologues

28 deisotopeSpectra

See Also

* combineSpectra() for functions to combine or aggregate Spectra.

* combinePeaks () for functions to combine or aggregate a Spectra’s peaksData()

Examples

Load a ~Spectra” object with LC-MS/MS data.

fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML",
package = "msdata")

sps_dda <- Spectra(fl)

sps_dda

I SUBSET SPECTRA =--------

Subset to the first 3 spectra
tmp <- sps_dda[1:3]

tmp

length(tmp)

Subset to all MS2 spectra; this could be done with [, or, more
efficiently, with the ~filterMsLevel™ function:
sps_dda[msLevel (sps_dda) == 2L]

filterMsLevel (sps_dda, 2L)

Filter the object keeping only MS2 spectra with an precursor m/z value
between a specified range:
filterPrecursorMzRange(sps_dda, c(80, 90))

Filter the object to MS2 spectra with an precursor m/z matching a
pre-defined value (given ppm and tolerance)
filterPrecursorMzValues(sps_dda, 85, ppm = 5, tolerance = 0.1)

The ~filterRanges()~ function allows to filter a ~Spectra” based on
numerical ranges of any of its (numerical) spectra variables.

First, determine the variable(s) on which to base the filtering:

sv <- c¢("rtime"”, "precursorMz", "peaksCount")

Note that ANY variables can be chosen here, and as many as wanted.

Define the ranges (pairs of values with lower and upper boundary) to be
used for the individual spectra variables. The first two values will be
used for the first spectra variable (e.g., ~"rtime"”~ here), the next two
for the second (e.g. ~"precursorMz”~ here) and so on:

ranges <- c(30, 350, 200, 500, 350, 600)

n-

n-

Input the parameters within the filterRanges function:

filt_spectra <- filterRanges(sps_dda, spectraVariables = sv,
ranges = ranges)

filt_spectra

~filterRanges()™ can also be used to filter a “Spectra” object with
multiple ranges for the same “spectraVariable™ (e.g, here ~"rtime"™)

deisotopeSpectra 29

sv <= c¢("rtime", "rtime")

ranges <- c(30, 100, 200, 300)

filt_spectra <- filterRanges(sps_dda, spectraVariables = sv,
ranges = ranges, match = "any")

filt_spectra

While ~filterRanges()~ filtered on numeric ranges, ~filterValues()"

allows to filter an object matching spectra variable values to user

provided values (allowing to configure allowed differences using the
“ppm> and "“tolerance” parameters).

First determine the variable(s) on which to base the filtering:

sv <- c("rtime"”, "precursorMz")

Note that ANY variables can be chosen here, and as many as wanted.

Define the values that will be used to filter the spectra based on their
similarities to their respective ~spectraVariables~.

The first values in the parameters values, tolerance and ppm will be

used for the first spectra variable (e.g. ~"rtime"”" here), the next for
the second (e.g. ~"precursorMz”" here) and so on:

values <- c(350, 80)

tolerance <- c(100, 0.1)

ppm <- c(@, 50)

Input the parameters within the ~filterValues()™ function:
filt_spectra <- filterValues(sps_dda, spectraVariables = sv,

values = values, tolerance = tolerance, ppm = ppm)
filt_spectra

I FILTER SPECTRA DATA --------

Remove spectra variables without content (i.e. with only missing values)
sps_noNA <- dropNaSpectraVariables(sps_dda)

This reduced the size of the object slightly
print(object.size(sps_dda), unit = "MB")
print(object.size(sps_noNA), unit = "MB")

With the “selectSpectraVariables()™ function it is in addition possible

to subset the data of a “Spectra™ to the selected columns/variables,

keeping only their data:

tmp <- selectSpectraVariables(sps_dda, c("msLevel”,
"scanIndex"))

print(object.size(tmp), units = "MB")

n n

mz", "intensity",

Except the selected variables, all data is now removed. Accessing
core spectra variables still works, but returns only NA
rtime(tmp) |> head()

I FILTER PEAKS DATA =--------

~filterMzValues()~ filters the mass peaks data of a ~“Spectra” retaining

30

deisotopeSpectra

only those mass peaks with an m/z value matching the provided value(s).
sps_sub <- filterMzValues(sps_dda, mz = c(103, 104), tolerance = 0.3)

The filtered ~Spectra™ has the same length
length(sps_dda)
length(sps_sub)

But the number of mass peaks changed
lengths(sps_dda) |> head()
lengths(sps_sub) |> head()

This function can also be used to remove specific peaks from a spectrum
by setting “keep = FALSE™.
sps_sub <- filterMzValues(sps_dda, mz = c(103, 104),
tolerance = 0.3, keep = FALSE)
lengths(sps_sub) |> head()

With the ~filterMzRange()~ function it is possible to keep (or remove)
mass peaks with m/z values within a specified numeric range.

sps_sub <- filterMzRange(sps_dda, mz = c(100, 150))

lengths(sps_sub) |> head()

See also the ~filterPeaksRanges()”~ function for a more flexible framework
to filter mass peaks

Removing fourier transform artefacts seen in Orbitra data.

Loading an Orbitrap spectrum with artefacts.

data(fft_spectrum)

plotSpectra(fft_spectrum, xlim = c(264.5, 265.5))
plotSpectra(fft_spectrum, xlim = c(264.5, 265.5), ylim = c(@, 5e6))

fft_spectrum <- filterFourierTransformArtefacts(fft_spectrum)
fft_spectrum
plotSpectra(fft_spectrum, xlim = c(264.5, 265.5), ylim = c(@, 5e6))

Using a few examples peaks in your data you can optimize the parameters

fft_spectrum_filtered <- filterFourierTransformArtefacts(fft_spectrum,
halfWindowSize = 0.2,
threshold = 0.005,
keepIsotopes = TRUE,
maxCharge = 5,
isotopeTolerance = 0.005

)

fft_spectrum_filtered
length(mz(fft_spectrum_filtered)[[11])
plotSpectra(fft_spectrum_filtered, xlim = c(264.5, 265.5), ylim

c(0, 5e6))

*Reducingx a ~Spectra” keeping for groups of mass peaks (characterized
by similarity of their m/z values) only one representative peak. This

estimatePrecursorIntensity,Spectra-method 31

function helps cleaning fragment spectra.
Filter the data set to MS2 spectra
ms2 <- filterMsLevel(sps_dda, 2L)

For groups of fragment peaks with a difference in m/z < @.1, keep only
the largest one.

ms2_red <- reduceSpectra(ms2, ppm = @, tolerance = 0.1)

lengths(ms2) |> tail()

lengths(ms2_red) |> tail()

estimatePrecursorIntensity, Spectra-method
Estimate Precursor Intensities

Description

Some MS instrument manufacturers don’t provide precursor intensities for fragment spectra. These

can however be estimated, given that also MS1 spectra are available. The estimatePrecursorIntensity()
funtion defines the precursor intensities for MS2 spectra using the intensity of the matching MS1

peak from the closest MS1 spectrum (i.e. the last MS1 spectrum measured before the respective

MS2 spectrum). With method = "interpolation” it is also possible to calculate the precursor
intensity based on an interpolation of intensity values (and retention times) of the matching MS1

peaks from the previous and next MS1 spectrum. See below for an example.

Usage

S4 method for signature 'Spectra’
estimatePrecursorIntensity(

object,

ppm = 20,

tolerance = 0,

method = c("previous”, "interpolation”),

msLevel. = 2L,
f = dataOrigin(object),
BPPARAM = bpparam()

)
Arguments

object Spectra with MS1 and MS2 spectra.

ppm numeric (1) with the maximal allowed relative difference of m/z values between
the precursor m/z of a spectrum and the m/z of the respective ion on the MS1
scan.

tolerance numeric(1) with the maximal allowed difference of m/z values between the
precursor m/z of a spectrum and the m/z of the respective ion on the MS1 scan.

method character (1) defining whether the precursor intensity should be estimated on

the previous MS1 spectrum (method = "previous”, the default) or based on an
interpolation on the previous and next MS1 spectrum (method = "interpolation”).

32

msLevel.

BPPARAM

Author(s)

estimatePrecursorMz

integer (1) the MS level for which precursor intensities should be estimated.
Defaults to 2L.

factor (or vector to be coerced to factor) defining which spectra belong to the
same original data file (sample). Defaults to f = dataOrigin(x).

Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation. This is passed directly to the backendInitialize() method of the
MsBackend.

Johannes Rainer with feedback and suggestions from Corey Broeckling

Examples

#' ## Calculating the precursor intensity for MS2 spectra:

#it

Some MS instrument manufacturer don't report the precursor intensities
for MS2 spectra. The “estimatePrecursorIntensity™ function can be used
in these cases to calculate the precursor intensity on MS1 data. Below
we load an mzML file from a vendor providing precursor intensities and
compare the estimated and reported precursor intensities.
tmt <- Spectra(msdata::proteomics(full.names = TRUE)[5],

backend = MsBackendMzR())
pmi <- estimatePrecursorIntensity(tmt)
plot(pmi, precursorIntensity(tmt))

We can also replace the original precursor intensity values with the
newly calculated ones
tmt$precursorIntensity <- pmi

estimatePrecursorMz Estimating precursor m/z valus for DDA data

Description

MS data from Waters instruments are calibrated through the Lock Mass, but, while all m/z values
of mass peaks in each spectrum will be calibrated by this method, the reported precursor m/z might
not. The precursor m/z in the converted mzML file will have m/z values from quadrupole isolation
windows instead of accurate m/z values. See also the GNPS documentation for more information.

The estimatePrecursorMz() function estimates/adjusts the reported precursor m/z of a fragment
spectrum using the following approach: in data dependent acquisition (DDA) mode, the MS instru-
ment will select ions with the highest intensities in one MS scan for fragmentation. Thus, for each
fragment spectrum, this method identifies in the previous MS1 spectrum the peak with the highest
intensity and an m/z value similar to the fragment spectrum’s reported precursor m/z (given param-
eters tolerance and ppm). This m/z value is then reported. Since the fragment spectrum’s potential
MS1 mass peak is selected based on its intensity, this method should only be used for DDA data.

https://ccms-ucsd.github.io/GNPSDocumentation/fileconversion_waters/

estimatePrecursorMz

Usage

33

estimatePrecursorMz(object, tolerance = 0.3, ppm = 10, BPPARAM = SerialParam())

Arguments

object

tolerance

ppm

BPPARAM

Value

Spectra() object with DDA data.

numeric(1) defining an absolute acceptable difference in m/z between the frag-
ment spectra’s reported precursor m/z and the MS1 peaks considered as the pre-
cursor peak. All MS1 peaks from the previous MS1 scan with an m/z between
the fragment spectrum’s precursorMz +/- (tolerance + ppm(precursorMz, ppm))
are considered.

numeric(1) defining the m/z dependent acceptable difference in m/z. See doc-
umentation of parameter tolerance for more information.

parallel processing setup. Defaults to BPPARAM = SerialParam(). See BiocParallel: :SerialParam()
for more information.

numeric of length equal to the number of spectra in object with the fragment spectra’s estimated
precursor m/z values. For MS1 spectra NA_real_ values are returned. The original precursor m/z
is reported for MS2 spectra for which no matching MS1 peak was found.

Note

This approach is applicable only when fragment spectra are obtained through data-dependent ac-
quisition (DDA), as it assumes that the peak with the highest intensity within the given isolation
m/z window (from the previous MS1 spectrum) corresponds to the precursor ion.

The spectra in object have to be ordered by their retention time.

Users of this function should evaluate and compare the estimated precursor m/z values with the
originally reported one and only consider adjusted values they feel comfortable with.

Author(s)

Mar Garcia-Aloy, Johannes Rainer

See Also

addProcessing() for other data analysis and manipulation functions.

Examples

Load a DDA test data set. For the present data set no large differences
between the reported and the *actualx precursor m/z are expected.
fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML", package = "msdata”)

s <- Spectra(fl)

pmz <- estimatePrecursorMz(s)

34 fillCoreSpectraVariables

plot the reported and estimated precursor m/z values against each other
plot(precursorMz(s), pmz)
abline(o, 1)

They seem highly similar, but are they identical?
identical(precursorMz(s), pmz)
all.equal(precursorMz(s), pmz)

Plot also the difference of m/z values against the m/z value
plot(precursorMz(s), precursorMz(s) - pmz, xlab = "precursor m/z",
ylab = "difference reported - estimated precursor m/z")

we could then replace the reported precursor m/z values
s$precursorMz <- pmz

fillCoreSpectraVariables
Fill spectra data with columns for missing core variables

Description

fillCoreSpectraVariables() fills a provided data. frame with columns for eventually missing
core spectra variables. The missing core variables are added as new columns with missing values
(NA) of the correct data type. Use coreSpectraVariables() to list the set of core variables and
their data types.

Usage

fillCoreSpectraVariables(
x = data.frame(),
columns = names(coreSpectraVariables())

)
Arguments
X data.frame or DataFrame with potentially present core variable columns.
columns character with the names of the (core) spectra variables that should be added if
not already present in x. Defaults to columns = names(coreSpectraVariables()).
Value

input data frame x with missing core variables added (with the correct data type).

filterFourierTransformArtefacts 35

Examples

Define a data frame
a <- data.frame(msLevel = c(1L, 1L, 2L), other_column = "b")

Add missing core chromatogram variables to this data frame
fillCoreSpectraVariables(a)

The data.frame thus contains columns for all core spectra
variables in the respective expected data type (but filled with
missing values).

filterFourierTransformArtefacts
Fast fourier transform artefact filter

Description

The filterFourierTransformArtefacts() function removes (Orbitrap) fast fourier artefact peaks
from spectra. Such artefacts (also referred to as ripples) seem to be related to the ringing phe-
nomenon and are frequently seen in Orbitrap data as small random mass peaks ~ 0.01 Da from a
main peak with a very large intensity. See also here for more details and information. The data set
fft_spectrum represents a Spectra() object with a single Orbitrap spectrum with such artefacts
(see examples below).

See also Spectra() (section *Data subsetting, filtering and merging) for the definition of the func-
tion.

Details

The current implementation iterates through all intensity ordered peaks in a spectrum and removes
all peaks with an m/z within +/- halfWindowSize of the current peak if their intensity is lower than
threshold times the current peak’s intensity. Additional parameters keepIsotopes, maxCharge
and isotopeTolerance allow to avoid removing of potential [13]C isotope peaks (maxCharge be-
ing the maximum charge that should be considered and isotopeTolerance the absolute acceptable
tolerance for matching their m/z).

Author(s)

Jan Stanstrup, Johannes Rainer

Examples

library(Spectra)
data(fft_spectrum)

plotSpectra(fft_spectrum)

Focus on an artefact
plotSpectra(fft_spectrum, xlim = c(264.5, 265.5))

https://en.wikipedia.org/wiki/Ringing_artifacts
https://www.shimadzu.com/an/service-support/technical-support/analysis-basics/tips-ftir/apodization.html

36 filterPeaksRanges

plotSpectra(fft_spectrum, xlim = c(264.5, 265.5), ylim = c(@, 5e6))

fft_spectrum <- filterFourierTransformArtefacts(fft_spectrum)
fft_spectrum
plotSpectra(fft_spectrum, xlim = c(264.5, 265.5), ylim = c(@, 5e6))

R code to download/extract the data.

Not run:

library(Spectra)

get orbitrap data
download.file("https://ftp.ebi.ac.uk/pub/databases/metabolights/studies/public/MTBLS469/AV_01_v2_male_arml_jui
data <- Spectra("AV_01_v2_male_arml_juice.mzXML")

extracted_spectrum <- data[195]

End(Not run)

filterPeaksRanges Filter peaks based on spectra and peaks variable ranges

Description

The filterPeaksRanges() function allows to filter the peaks matrices of a Spectra object using
any set of range-based filters on numeric spectra variables or peaks variables. These ranges can be
passed to the function using the ... as <variable name> = <range> pairs. <variable name>
has to be an available spectra or peaks variable. <range> can be a numeric of length 2 defining
the lower and upper boundary, or a numeric two-column matrix (multi-row matrices are also sup-
ported, see further below). filterPeaksRanges(s, mz = c(200, 300)) would for example reduce
the peaks matrices of the Spectra object s to mass peaks with an m/z value between 200 and 300.
filterPeaksRanges() returns the original Spectra object with the filter operation added to the
processing queue. Thus, the filter gets only applied when the peaks data gets extracted with mz (),
intensity() or peaksData(). If ranges for both spectra and peaks variables are defined, the func-
tion evaluates first whether the spectra variable value for a spectrum is within the provided range
and, if so, applies also the peaks variable-based filter (otherwise an empty peaks matrix is returned).

If more than one spectra variable and/or peaks variable are defined, their filter results are combined
with a logical AND: a peak matrix is only returned for a spectrum if all values of spectra variables
are within the provided (respective) ranges for spectra variables, and this matrix is further filtered
to contain only those peaks which values are within the provided peaks variable ranges.

Filtering with multiple ranges per spectra and peaks variables is also supported: ranges can also be
provided as multi-row numeric (two-column) matrices. In this case, the above described procedure
is applied for each row separately and their results are combined with a logical OR, i.e. peaks
matrices are returned that match any of the conditions/filters of a row. The number of rows of the
provided ranges (being it for spectra or peaks variables) have to match.

Missing value handling: any comparison which involves a missing value (being it a spectra vari-
able value, a peaks variable value or a value in one of the provided ranges) is treated as a logical
FALSE. For example, if the retention time of a spectrum is NA and the data is filtered using a re-
tention time range, an empty peaks matrix is returned (for keep = TRUE, for keep = FALSE the full
peaks matrix is returned).

filterPeaksRanges 37

Usage
filterPeaksRanges(object, ..., keep = TRUE)
Arguments
object A Spectra object.
the ranges for the spectra and/or peaks variables. Has to be provided as <name> = <range>
pairs with <name> being the name of a spectra or peaks variable (of numeric data
type) and <range> being either a numeric of length 2 or a numeric two column
matrix (see function desription above for details),
keep logical (1) whether to keep (default) or remove peaks that match the provided
range(s).
Note

In contrast to some other filter functions, this function does not provide a msLevel parameter that
allows to define the MS level of spectra on which the filter should be applied. The filter(s) will
always be applied to all spectra (irrespectively of their MS level). Through combination of multiple
filter ranges it is however possible to apply MS level-dependent filters (see examples below for
details).

The filter will not be applied immediately to the data but only executed when the mass peak data is
accessed (through peaksData(), mz() or intensity()) or by calling applyProcessing().

Author(s)

Johannes Rainer

Examples

Define a test Spectra
d <- data.frame(rtime = c(123.2, 134.2), msLevel = c(1L, 2L))
d$mz <- list(c(100.1, 100.2, 100.3, 200.1, 200.2, 300.3),
c(100.3, 100.4, 200.2, 400.3, 400.4))
Use the index of the mass peak within the spectrum as index for
better illustration of filtering results
d$intensity <- list(c(1:6), 1:5)
s <- Spectra(d)
s

Filter peaks removing all mass peaks with an m/z between 200 and 300
res <- filterPeaksRanges(s, mz = c(200, 300), keep = FALSE)
res

The Spectra object has still the same length and spectra variables
length(res)
res$rtime

The filter gets applied when mass peak data gets extracted, using either
“mz()", “intensity()” or “peaksData() . The filtered peaks data does
not contain any mass peaks with m/z values between 200 and 300:

38 fragmentGroupIndex

peaksData(res)[[1L]]
peaksData(res)[[2L]]

We next combine spectra and filter variables. We want to keep only mass
peaks of MS2 spectra that have an m/z between 100 and 110.

res <- filterPeaksRanges(s, mz = c(100, 110), msLevel = c(2, 2))

res

length(res)

Only data for peaks are returned for which the spectra's MS level is

between 2 and 2 and with an m/z between 100 and 110. The peaks data for
the first spectrum, that has MS level 1, is thus empty:
peaksData(res)[[1L]]

While the peaks matrix for the second spectrum (with MS level 2) contains
the mass peaks with m/z between 100 and 110.
peaksData(res)[[2L]]

To keep also the peaks data for the first spectrum, we need to define
an additional set of ranges, which we define using a second row in each
ranges matrix. We use the same filter as above, i.e. keeping only mass
peaks with an m/z between 100 and 110 for spectra with MS level 2, but
add an additional row for MS level 1 spectra keeping mass peaks with an
m/z between @ and 2000. Filter results of different rows are combined
using a logical OR, i.e. peaks matrices with mass peaks are returned
matching either the first, or the second row.
res <- filterPeaksRanges(s, mz = rbind(c(100, 110), c(@, 1000)),

msLevel = rbind(c(2, 2), c(1, 1)))

The results for the MS level 2 spectrum are the same as before, but with
the additional row we keep the full peaks matrix of the MS1 spectrum:
peaksData(res)[[1L]]

peaksData(res)[[2L]]

As a last example we define a filter that keeps all mass peaks with an
m/z either between 100 and 200, or between 300 and 400.

res <- filterPeaksRanges(s, mz = rbind(c(100, 200), c(300, 400)))
peaksData(res)[[1L]]

peaksData(res)[[2L]]

Such filters could thus be defined to restrict/filter the MS data to
specific e.g. retention time and m/z ranges.

fragmentGroupIndex Mass fragmentation collections of each full scan

Description

This function generates an integer index grouping MS”n spectra (MS level > 1) with their corre-
sponding MS1 spectra based on acquisition order. Each group contains exactly one MS1 spectrum

fragmentGroupIndex 39

and all subsequent higher-level spectra (MS2, MS3, ...) acquired until the next MS1 scan. MS1-only
spectra are also assigned sequential group IDs.

Note that this function:

* does not consider the direct relationship between a precursor scan and the associated product
scans,

* and does not distinguish between different fragmentation trees.

For example, all MS3 scans measured after a given MS1 are grouped together with all MS2 scans

from that MS1, regardless of which MS2 spectrum they originated from. See filterPrecursorScan()

for a function that considers relationships between fragment and precursor scans.

Usage

fragmentGroupIndex(object, BPPARAM = SerialParam())

Arguments
object A Spectra object (from the Spectra package) containing MS data. Must in-
clude at least two MS levels (msLevel) and be ordered by acquisitionNum
within each dataOrigin.
BPPARAM A BiocParallelParam object for parallel execution. Defaults to SerialParam().
Value

An integer vector of the same length as object. Each element gives the group index associ-
ated with the corresponding spectrum (MS1 or MS”n). Group indices are unique across all files
(dataOrigin values).

Note

* Each file (dataOrigin) must contain at least one MS1 spectrum.

* If a group contains only MS1 spectra, each MS1 is assigned a unique group ID.

* The user is responsible for ensuring that spectra are correctly ordered. Improper ordering may

lead to incorrect groupings.
Author(s)
Philippine Louail

See Also

filterPrecursorScan() for a function that instead returns a Spectra object containing each par-
ent (e.g., MS1) and its direct child scans (e.g., MS2) according to their acquisition numbers.

40 hidden_aliases
Examples
fl_ms3 <- system.file("proteomics”, "MS3TMT11.mzML", package
sps_dda <- Spectra(fl_ms3)
idx <- fragmentGroupIndex(sps_dda)
head(idx)
hidden_aliases Internal page for hidden aliases
Description
For S4 methods that require a documentation entry but only clutter the index.
Usage
S4 method for signature 'numeric'’
bin(
X y
Y,
size = 1,
breaks = seq(floor(min(y)), ceiling(max(y)), by = size),
FUN = max,
returnMids = TRUE,
.check = TRUE
)

S4 method for signature 'MsBackendCached'
lengths(x, use.names = FALSE)

S4 method for signature 'MsBackendDataFrame'
show(object)

S4 method for signature 'MsBackendDataFrame'
backendMerge(object, ...)

S4 method for signature 'MsBackendDataFrame'
backendRequiredSpectraVariables(object, ...)

S4 method for signature 'MsBackendDataFrame'
acquisitionNum(object)

S4 method for signature 'MsBackendDataFrame'
peaksData(object, columns = c("mz", "intensity"))

S4 method for signature 'MsBackendDataFrame'
centroided(object)

hidden_aliases 41

S4 replacement method for signature 'MsBackendDataFrame'
centroided(object) <- value

S4 method for signature 'MsBackendDataFrame'
collisionEnergy(object)

S4 replacement method for signature 'MsBackendDataFrame'
collisionEnergy(object) <- value

S4 method for signature 'MsBackendDataFrame'
dataOrigin(object)

S4 replacement method for signature 'MsBackendDataFrame'
dataOrigin(object) <- value

S4 method for signature 'MsBackendDataFrame'
dataStorage(object)

S4 replacement method for signature 'MsBackendDataFrame'
dataStorage(object) <- value

S4 method for signature 'MsBackendDataFrame,ANY'
extractByIndex(object, i)

S4 method for signature 'MsBackendDataFrame'
intensity(object)

S4 replacement method for signature 'MsBackendDataFrame'
intensity(object) <- value

S4 method for signature 'MsBackendDataFrame'
isEmpty(x)

S4 method for signature 'MsBackendDataFrame'
isolationWindowLowerMz(object)

S4 replacement method for signature 'MsBackendDataFrame'’
isolationWindowLowerMz(object) <- value

S4 method for signature 'MsBackendDataFrame'
isolationWindowTargetMz(object)

S4 replacement method for signature 'MsBackendDataFrame'’
isolationWindowTargetMz(object) <- value

S4 method for signature 'MsBackendDataFrame'
isolationWindowUpperMz(object)

42

S4 replacement method for signature 'MsBackendDataFrame'
isolationWindowUpperMz(object) <- value

S4 method for signature 'MsBackendDataFrame'
length(x)

S4 method for signature 'MsBackendDataFrame'
lengths(x, use.names = FALSE)

S4 method for signature 'MsBackendDataFrame'
msLevel (object, ...)

S4 replacement method for signature 'MsBackendDataFrame'
msLevel (object) <- value

S4 method for signature 'MsBackendDataFrame'
mz(object)

S4 replacement method for signature 'MsBackendDataFrame'
mz(object) <- value

S4 method for signature 'MsBackendDataFrame'
polarity(object)

S4 replacement method for signature 'MsBackendDataFrame'
polarity(object) <- value

S4 method for signature 'MsBackendDataFrame'
precScanNum(object)

S4 method for signature 'MsBackendDataFrame'
precursorCharge(object)

S4 method for signature 'MsBackendDataFrame'
precursorIntensity(object)

S4 method for signature 'MsBackendDataFrame'
precursorMz(object)

S4 replacement method for signature 'MsBackendDataFrame'
peaksData(object) <- value

S4 method for signature 'MsBackendDataFrame'
peaksVariables(object)

S4 method for signature 'MsBackendDataFrame'
rtime(object)

hidden_aliases

hidden_aliases 43

S4 replacement method for signature 'MsBackendDataFrame'
rtime(object) <- value

S4 method for signature 'MsBackendDataFrame'
scanIndex(object)

S4 method for signature 'MsBackendDataFrame'
selectSpectraVariables(object, spectraVariables = spectraVariables(object))

S4 method for signature 'MsBackendDataFrame'
smoothed(object)

S4 replacement method for signature 'MsBackendDataFrame'
smoothed(object) <- value

S4 method for signature 'MsBackendDataFrame'
spectraData(object, columns = spectraVariables(object))

S4 replacement method for signature 'MsBackendDataFrame'
spectraData(object) <- value

S4 method for signature 'MsBackendDataFrame'
spectraNames(object)

S4 replacement method for signature 'MsBackendDataFrame'
spectraNames(object) <- value

S4 method for signature 'MsBackendDataFrame'
spectraVariables(object)

S4 method for signature 'MsBackendDataFrame'
tic(object, initial = TRUE)

S4 method for signature 'MsBackendDataFrame'
x$name

S4 replacement method for signature 'MsBackendDataFrame'’
x$name <- value

S4 method for signature 'MsBackendDataFrame'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackendDataFrame,dataframeOrDataFrameOrmatrix’
cbind2(x, y = data.frame(), ...)

S4 method for signature 'MsBackendDataFrame,ANY'
split(x, f, drop = FALSE, ...)

44

S4 method for signature 'MsBackendDataFrame'
filterAcquisitionNum(

object,

n = integer(),

dataStorage = character(),

dataOrigin = character()

)

S4 method for signature 'MsBackendHdf5Peaks'
backendRequiredSpectraVariables(object, ...)

S4 method for signature 'MsBackendHdf5Peaks'
backendInitialize(

object,

files = character(),

data = DataFrame(),

hdf5path = character(),

BPPARAM = bpparam()
)

S4 method for signature 'MsBackendHdf5Peaks'
show(object)

S4 method for signature 'MsBackendHdf5Peaks'
peaksData(object, columns = peaksVariables(object))

S4 method for signature 'MsBackendHdf5Peaks'
intensity(object)

S4 replacement method for signature 'MsBackendHdf5Peaks'
intensity(object) <- value

S4 method for signature 'MsBackendHdf5Peaks'
ionCount(object)

S4 method for signature 'MsBackendHdf5Peaks'
isCentroided(object, ...)

S4 method for signature 'MsBackendHdf5Peaks'
mz(object)

S4 replacement method for signature 'MsBackendHdf5Peaks'
mz(object) <- value

S4 replacement method for signature 'MsBackendHdf5Peaks'
peaksData(object) <- value

hidden_aliases

hidden_aliases

S4 method for signature 'MsBackendHdf5Peaks'’
spectraData(object, columns = spectraVariables(object))

[

S4 replacement method for signature 'MsBackendHdf5Peaks
spectraData(object) <- value

S4 replacement method for signature 'MsBackendHdf5Peaks
x$name <- value

S4 method for signature 'MsBackendHdf5Peaks'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackendHdf5Peaks,ANY'
extractByIndex(object, i)

S4 method for signature 'MsBackendHdf5Peaks'
backendMerge(object, ...)

S4 method for signature 'MsBackendMemory'
show(object)

S4 method for signature 'MsBackendMemory'
backendMerge(object, ...)

S4 method for signature 'MsBackendMemory'
backendRequiredSpectraVariables(object, ...)

S4 method for signature 'MsBackendMemory'
acquisitionNum(object)

S4 method for signature 'MsBackendMemory'
centroided(object)

S4 replacement method for signature 'MsBackendMemory'
centroided(object) <- value

S4 method for signature 'MsBackendMemory'
collisionEnergy(object)

S4 replacement method for signature 'MsBackendMemory'
collisionEnergy(object) <- value

S4 method for signature 'MsBackendMemory'
dataOrigin(object)

S4 replacement method for signature 'MsBackendMemory'
datalOrigin(object) <- value

45

46

S4 method for signature 'MsBackendMemory'
dataStorage(object)

S4 replacement method for signature 'MsBackendMemory'
dataStorage(object) <- value

S4 method for signature 'MsBackendMemory, ANY'
extractByIndex(object, i)

S4 method for signature 'MsBackendMemory'
intensity(object)

S4 replacement method for signature 'MsBackendMemory'
intensity(object) <- value

S4 method for signature 'MsBackendMemory'
ionCount(object)

S4 method for signature 'MsBackendMemory'
isolationWindowLowerMz(object)

S4 replacement method for signature 'MsBackendMemory'
isolationWindowLowerMz(object) <- value

S4 method for signature 'MsBackendMemory'
isolationWindowTargetMz(object)

S4 replacement method for signature 'MsBackendMemory'
isolationWindowTargetMz(object) <- value

S4 method for signature 'MsBackendMemory'
isolationWindowUpperMz(object)

S4 replacement method for signature 'MsBackendMemory'
isolationWindowUpperMz(object) <- value

S4 method for signature 'MsBackendMemory'
length(x)

S4 method for signature 'MsBackendMemory'
msLevel (object, ...)

S4 replacement method for signature 'MsBackendMemory'
msLevel (object) <- value

S4 method for signature 'MsBackendMemory'
mz(object)

hidden_aliases

hidden_aliases 47

S4 replacement method for signature 'MsBackendMemory'
mz(object) <- value

S4 method for signature 'MsBackendMemory'
peaksData(object, columns = c("mz", "intensity"))

S4 replacement method for signature 'MsBackendMemory'
peaksData(object) <- value

S4 method for signature 'MsBackendMemory'
polarity(object)

S4 replacement method for signature 'MsBackendMemory'
polarity(object) <- value

S4 method for signature 'MsBackendMemory'
precScanNum(object)

S4 method for signature 'MsBackendMemory'
precursorCharge(object)

S4 method for signature 'MsBackendMemory'
precursorIntensity(object)

S4 method for signature 'MsBackendMemory'
precursorMz(object)

S4 method for signature 'MsBackendMemory'
rtime(object)

S4 replacement method for signature 'MsBackendMemory'
rtime(object) <- value

S4 method for signature 'MsBackendMemory'
scanIndex(object)

S4 method for signature 'MsBackendMemory'
selectSpectraVariables(object, spectraVariables = spectraVariables(object))

S4 method for signature 'MsBackendMemory'
smoothed(object)

S4 replacement method for signature 'MsBackendMemory'
smoothed(object) <- value

S4 method for signature 'MsBackendMemory'
spectraData(object, columns = spectraVariables(object))

48

hidden_aliases

S4 replacement method for signature 'MsBackendMemory'
spectraData(object) <- value

S4 method for signature 'MsBackendMemory'
spectraNames(object)

S4 replacement method for signature 'MsBackendMemory'
spectraNames(object) <- value

S4 method for signature 'MsBackendMemory'
spectraVariables(object)

S4 method for signature 'MsBackendMemory'
peaksVariables(object)

S4 method for signature 'MsBackendMemory'
tic(object, initial = TRUE)

S4 method for signature 'MsBackendMemory'
x$name

S4 replacement method for signature 'MsBackendMemory'
x$name <- value

S4 method for signature 'MsBackendMemory'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackendMemory,dataframeOrDataFrameOrmatrix’
cbind2(x, y = data.frame(), ...)

S4 method for signature 'MsBackendMemory, ANY'
split(x, f, drop = FALSE, ...)

S4 method for signature 'MsBackendMemory'
filterAcquisitionNum(

object,

n = integer(),

dataStorage = character(),

dataOrigin = character()

)

S4 method for signature 'MsBackendMemory'
longForm(object, columns = spectraVariables(object))

S4 method for signature 'MsBackendMzR'
backendRequiredSpectraVariables(object, ...)

S4 method for signature 'MsBackendMzR'

hidden_aliases

backendInitialize(object, files, ..., BPPARAM = bpparam())

S4 method for signature 'MsBackendMzR'
show(object)

S4 method for signature 'MsBackendMzR'
peaksData(object, columns = peaksVariables(object))

S4 method for signature 'MsBackendMzR'
intensity(object)

S4 replacement method for signature 'MsBackendMzR'
intensity(object) <- value

S4 method for signature 'MsBackendMzR'
ionCount(object)

S4 method for signature 'MsBackendMzR'
isCentroided(object, ...)

S4 method for signature 'MsBackendMzR'
mz(object)

S4 replacement method for signature 'MsBackendMzR'
mz(object) <- value

S4 method for signature 'MsBackendMzR'
spectraData(object, columns = spectraVariables(object))

S4 replacement method for signature 'MsBackendMzR'
spectraData(object) <- value

S4 method for signature 'MsBackendMzR'
spectraNames(object)

S4 replacement method for signature 'MsBackendMzR'
spectraNames(object) <- value

S4 method for signature 'MsBackendMzR'
spectraVariables(object)

S4 replacement method for signature 'MsBackendMzR'
x$name <- value

S4 method for signature 'MsBackendMzR'
export(

object,

X,

50 JjoinPeaks
file = tempfile(),
format = c("mzML", "mzXML"),
copy = FALSE,
BPPARAM = bpparam()
)
S4 method for signature 'Spectra’
show(object)
S4 method for signature 'list'
combinePeaks(object, ...)
Value
Not applicable
Note
: this replaces all the data in the backend.
joinPeaks Join (map) peaks of two spectra
Description

These functions map peaks from two spectra with each other if the difference between their m/z
values is smaller than defined with parameters tolerance and ppm. All functions take two matrices

* joinPeaks(): maps peaks from two spectra allowing to specify the type of join that should be

performed: type = "outer” each peak in x will be matched with each peak in y, for peaks that
do not match any peak in the other spectra an NA intensity is returned. With type = "left”
all peaks from the left spectrum (x) will be matched with peaks in y. Peaks in y that do not
match any peak in x are omitted. type = "right” is the same as type = "left” only for y.
Only peaks that can be matched between x and y are returned by type = "inner"”, i.e. only
peaks present in both spectra are reported.

joinPeaksGnps(): matches/maps peaks between spectra with the same approach used in
GNPS: peaks are considered matching if a) the difference in their m/z values is smaller than
defined by tolerance and ppm (this is the same as joinPeaks) and b) the difference of their
m/z adjusted for the difference of the spectras’ precursor is smaller than defined by tolerance
and ppm. Based on this definition, peaks in x can match up to two peaks in y hence peaks in
the returned matrices might be reported multiple times. Note that if one of xPrecursorMz or
yPrecursorMz are NA or if both are the same, the results are the same as with joinPeaks().
To calculate GNPS similarity scores, MsCoreUtils: :gnps() should be called on the aligned
peak matrices (i.e. compareSpectra should be called with MAPFUN = joinPeaksGnps and FUN
=MsCoreUtils: :gnps).

joinPeaksNone(): does not perform any peak matching but simply returns the peak matrices
in a 1ist. This function should be used with the MAPFUN parameter of compareSpectra() if
the spectra similarity function used (parameter FUN of compareSpectra()) performs its own
peak matching and does hence not expect matched peak matrices as an input.

JjoinPeaks 51
Usage
joinPeaks(x, y, type = "outer"”, tolerance = @, ppm = 10, ...)
joinPeaksGnps(
X,
Y,
xPrecursorMz = NA_real_,
yPrecursorMz = NA_real_,
tolerance = 0,
ppm = 0,
type = "outer”,
)
joinPeaksNone(x, y, ...)
Arguments
X matrix with two columns "mz"” and "intensity"” containing the m/z and inten-
sity values of the mass peaks of a spectrum.
y matrix with two columns "mz"” and "intensity” containing the m/z and inten-
sity values of the mass peaks of a spectrum.
type For joinPeaks() and joinPeaksGnps(): character(1) specifying the type
of join that should be performed. See function description for details.
tolerance numeric(1) defining a constant maximal accepted difference between m/z val-
ues of peaks from the two spectra to be matched/mapped.
ppm numeric(1) defining a relative, m/z-dependent, maximal accepted difference
between m/z values of peaks from the two spectra to be matched/mapped.
optional parameters passed to the MsCoreUtils: : join() function.
xPrecursorMz for joinPeaksGnps(): numeric(1) with the precursor m/z of the spectrum x.
yPrecursorMz for joinPeaksGnps(): numeric(1) with the precursor m/z of the spectrum y.
Value

All functions return a 1ist of elements "x"” and "y" each being a two column matrix with m/z
(first column) and intensity values (second column). The two matrices contain the matched peaks
between input matrices x and y and hence have the same number of rows. Peaks present in x but not
in the y input matrix have m/z and intensity values of NA in the result matrix for y (and vice versa).

Implementation notes

A mapping function must take two numeric matrices x and y as input and must return 1ist with
two elements named "x" and "y" that represent the aligned input matrices. The function should
also have . .. in its definition. Parameters ppm and tolerance are suggested but not required.

Author(s)

Johannes Rainer, Michael Witting

52 JjoinPeaks

See Also

» compareSpectra() for the function to calculate similarities between spectra.

* MsCoreUtils::gnps() in the MsCoreUtils package for more information on the GNPS simi-
larity score.

Examples

x <- cbind(c(31.34, 50.14, 60.3, 120.9, 230, 514.13, 874.1),
1:7)

y <= cbind(c(12, 31.35, 70.3, 120.9 + ppm(120.9, 5),
230 + ppm(230, 10), 315, 514.14, 901, 1202),
1:9)

No peaks with identical m/z
joinPeaks(x, y, ppm = @, type = "inner")

With ppm 10 two peaks are overlapping
joinPeaks(x, y, ppm = 10, type = "inner")

Outer join: contain all peaks from x and y
joinPeaks(x, y, ppm = 10, type = "outer"”)

Left join: keep all peaks from x and those from y that match
joinPeaks(x, y, ppm = 10, type = "left")

Right join: keep all peaks from y and those from x that match. Using
a constant tolerance of 0.01
joinPeaks(x, y, tolerance = 0.01, type = "right")

GNPS-like peak matching

Define spectra

x <= cbind(mz = c(10, 36, 63, 91, 93), intensity = c(14, 15, 999, 650, 1))
y <- cbind(mz = c(10, 12, 50, 63, 105), intensity = c(35, 5, 16, 999, 450))
The precursor m/z

pmz_x <- 91

pmz_y <- 105

Plain joinPeaks identifies only 2 matching peaks: 1 and 5
joinPeaks(x, y)

joinPeaksGnps finds 4 matches
joinPeaksGnps(x, y, pmz_x, pmz_y)

with one of the two precursor m/z being NA, the result are the same as
with joinPeaks (with type = "left").
joinPeaksGnps(x, y, pmz_x, yPrecursorMz = NA)

MsBackend 53

MsBackend Mass spectrometry data backends

Description

Note that the classes described here are not meant to be used directly by the end-users and the
material in this man page is aimed at package developers.

MsBackend is a virtual class that defines what each different backend needs to provide. MsBackend
objects provide access to mass spectrometry data. Such backends can be classified into in-memory
or on-disk backends, depending on where the data, i.e spectra (m/z and intensities) and spectra
annotation (MS level, charge, polarity, ...) are stored.

Typically, in-memory backends keep all data in memory ensuring fast data access, while on-disk
backends store (parts of) their data on disk and retrieve it on demand.

The Backend functions and implementation notes for new backend classes section documents the
API that a backend must implement.

Currently available backends are:
* MsBackendMemory and MsBackendDataFrame: store all data in memory. The MsBackendMemory

is optimized for accessing and processing the peak data (i.e. the numerical matrices with the
m/z and intensity values) while the MsBackendDataFrame keeps all data in a DataFrame.

* MsBackendMzR: stores the m/z and intensities on-disk in raw data files (typically mzML or
mzXML) and the spectra annotation information (header) in memory in a DataFrame. This
backend requires the mzR package.

* MsBackendHdf5Peaks: stores the m/z and intensities on-disk in custom hdf5 data files and the
remaining spectra variables in memory (in a DataFrame). This backend requires the rhdf5
package.

See below for more details about individual backends.

Usage
S4 method for signature 'MsBackend'
backendBpparam(object, BPPARAM = bpparam())

S4 method for signature 'MsBackend'
backendInitialize(object, ...)

S4 method for signature 'list'
backendMerge(object, ...)

S4 method for signature 'MsBackend'
backendMerge(object, ...)

S4 method for signature 'MsBackend'
backendParallelFactor(object, ...)

54

S4 method for signature
export(object, ...)

S4 method for signature
acquisitionNum(object)

S4 method for signature
peaksData(object, columns =

S4 method for signature
peaksVariables(object)

S4 method for signature
cbind2(x, y = data.frame(),

S4 method for signature
centroided(object)

'MsBackend'

'MsBackend'

'MsBackend'
c("mz", "intensity"))

'"MsBackend'
'MsBackend,dataframeOrDataFrameOrmatrix’

)

'MsBackend'

S4 replacement method for signature 'MsBackend'

centroided(object) <- value

S4 method for signature
collisionEnergy(object)

'MsBackend'

S4 replacement method for signature 'MsBackend'
collisionEnergy(object) <- value

S4 method for signature
dataOrigin(object)

'MsBackend'

S4 replacement method for signature 'MsBackend'’

dataOrigin(object) <- value

S4 method for signature
dataStorage(object)

'MsBackend'

S4 replacement method for signature 'MsBackend'’
dataStorage(object) <- value

S4 method for signature

'MsBackend'

dropNaSpectraVariables(object)

S4 method for signature
extractByIndex(object, i)

'MsBackend, ANY'

S4 method for signature 'MsBackend,missing'’

extractByIndex(object, i)

MsBackend

MsBackend

S4 method for signature 'MsBackend'
filterAcquisitionNum(object, n, file,

S4 method for signature 'MsBackend'

filterDataOrigin(object, dataOrigin = character())

S4 method for signature 'MsBackend'

filterDataStorage(object, dataStorage = character())

S4 method for signature 'MsBackend'
filterEmptySpectra(object, ...)

S4 method for signature 'MsBackend'

filterIsolationWindow(object, mz = numeric(), ...)

S4 method for signature 'MsBackend'

filterMsLevel (object, msLevel = integer())

S4 method for signature 'MsBackend'

filterPolarity(object, polarity = integer())

S4 method for signature 'MsBackend'

filterPrecursorMzRange(object, mz = numeric())

S4 method for signature 'MsBackend'
filterPrecursorMz(object, mz = numeric())

S4 method for signature 'MsBackend'

filterPrecursorMzValues(object, mz = numeric(), ppm =

S4 method for signature 'MsBackend'

filterPrecursorCharge(object, z = integer())

S4 method for signature 'MsBackend'

filterPrecursorScan(object, acquisitionNum

S4 method for signature 'MsBackend'
filterRanges(
object,
spectraVariables = character(),
ranges = numeric(),
match = c("all”, "any")
)

S4 method for signature 'MsBackend'
filterRt(object, rt = numeric(), msLevel.

20, tolerance

0)

55

= integer(), f = dataOrigin(object))

= integer())

56

S4 method for signature 'MsBackend'
filterValues(
object,
spectraVariables = character(),
values = numeric(),
ppm = @,
tolerance = 0,
match = c("all”, "any")
)

S4 method for signature 'MsBackend'
intensity(object)

S4 replacement method for signature 'MsBackend'
intensity(object) <- value

S4 method for signature 'MsBackend'
ionCount(object)

S4 method for signature 'MsBackend'
isCentroided(object, ...)

S4 method for signature 'MsBackend'
isEmpty(x)

S4 method for signature 'MsBackend'
isolationWindowLowerMz(object)

S4 replacement method for signature 'MsBackend'
isolationWindowLowerMz(object) <- value

S4 method for signature 'MsBackend'
isolationWindowTargetMz(object)

S4 replacement method for signature 'MsBackend'
isolationWindowTargetMz(object) <- value

S4 method for signature 'MsBackend'
isolationWindowUpperMz(object)

S4 replacement method for signature 'MsBackend'
isolationWindowUpperMz(object) <- value

S4 method for signature 'MsBackend'
isReadOnly(object)

S4 method for signature 'MsBackend'
length(x)

MsBackend

MsBackend

S4 method for signature 'MsBackend'
msLevel (object)

S4 replacement method for signature
msLevel (object) <- value

S4 method for signature 'MsBackend'
mz(object)

S4 replacement method for signature
mz(object) <- value

S4 method for signature 'MsBackend'
lengths(x, use.names = FALSE)

S4 method for signature 'MsBackend'
polarity(object)

S4 replacement method for signature
polarity(object) <- value

S4 method for signature 'MsBackend'
precScanNum(object)

S4 method for signature 'MsBackend'
precursorCharge(object)

S4 method for signature 'MsBackend'
precursorIntensity(object)

S4 method for signature 'MsBackend'
precursorMz(object)

S4 replacement method for signature
precursorMz(object, ...) <- value

S4 replacement method for signature
peaksData(object) <- value

S4 method for signature 'MsBackend'
reset(object)

S4 method for signature 'MsBackend'
rtime(object)

S4 replacement method for signature
rtime(object) <- value

'MsBackend'

'MsBackend'

'MsBackend'

'MsBackend'

'MsBackend'

'MsBackend'

57

MsBackend

S4 method for signature 'MsBackend'
scanIndex(object)

S4 method for signature 'MsBackend'
selectSpectraVariables(object, spectraVariables = spectraVariables(object))

S4 method for signature 'MsBackend'
smoothed(object)

S4 replacement method for signature 'MsBackend'’
smoothed(object) <- value

S4 method for signature 'MsBackend'
spectraData(object, columns = spectraVariables(object))

S4 replacement method for signature 'MsBackend'
spectraData(object) <- value

S4 method for signature 'MsBackend'
spectraNames(object)

S4 replacement method for signature 'MsBackend'
spectraNames(object) <- value

S4 method for signature 'MsBackend'
spectraVariables(object)

S4 method for signature 'MsBackend,ANY'
split(x, f, drop = FALSE, ...)

S4 method for signature 'MsBackend'
supportsSetBackend(object, ...)

S4 method for signature 'MsBackend'
tic(object, initial = TRUE)

S4 method for signature 'MsBackend'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackend'
x$name

S4 replacement method for signature 'MsBackend'
x$name <- value

S4 method for signature 'MsBackend'
x[[i, j, ...]1]

MsBackend 59

S4 replacement method for signature 'MsBackend'
xC[i, j, ...1] <= value

S4 method for signature 'MsBackend'
uniqueMsLevels(object, ...)

S4 method for signature 'MsBackend'
dataStorageBasePath(object)

S4 replacement method for signature 'MsBackend'’
dataStorageBasePath(object) <- value

S4 method for signature 'MsBackend'
longForm(object, columns = spectraVariables(object))

MsBackendDataFrame ()

S4 method for signature 'MsBackendDataFrame'
backendInitialize(object, data, peaksVariables = c("mz"”, "intensity"), ...)

MsBackendHdf5Peaks ()
MsBackendMemory ()

S4 method for signature 'MsBackendMemory'

backendInitialize(object, data, peaksVariables = c("mz"”, "intensity"), ...)
MsBackendMzR ()
Arguments
object Object extending MsBackend.
BPPARAM for backendBpparam(): parameter object from the BiocParallel package defin-

ing the parallel processing setup. Defaults to BPPARAM = bpparam(). See BiocParallel: :bpparam()
for more information.

Additional arguments.

columns For spectraData() accessor: optional character with column names (spec-
tra variables) that should be included in the returned DataFrame. By default,
all columns are returned. For peaksData() accessor: optional character with
requested columns in the individual matrix of the returned 1ist. Defaults to
peaksVariables(object) and depends on what peaks variables the backend
provides. For longForm(): the spectra and peaks variables that should be in-
cluded in the returned data.frame. Defaults to spectraVariables(object)
and is thus the union of spectra and peaks variables.

X Object extending MsBackend.

y For cbind2(): A data.frame or DataFrame with the spectra variables to be

60

value

file

dataOrigin

dataStorage

mz

msLevel

polarity
ppm

tolerance

acquisitionNum

MsBackend

added to the backend. The number of rows of y and their order have to match
the number of spectra and their order in x.

replacement value for <- methods. See individual method description or ex-
pected data type.

For [: integer, logical or character to subset the object.

for filterAcquisitionNum(): integer with the acquisition numbers to filter
for.

For filterFile(): index or name of the file(s) to which the data should be
subsetted. For export(): character of length 1 or equal to the number of
spectra.

For filterDataOrigin(): character to define which spectra to keep. For
filterAcquisitionNum(): optionally specify if filtering should occur only for
spectra of selected dataOrigin.

For filterDataStorage(): character to define which spectra to keep. For
filterAcquisitionNum(): optionally specify if filtering should occur only for
spectra of selected dataStorage.

For filterIsolationWindow(): numeric(1) with the m/z value to filter the
object. For filterPrecursorMzRange(): numeric(2) with the lower and up-
per m/z boundary. For filterPrecursorMzValues(): numeric with the m/z
value(s) to filter the object.

integer defining the MS level of the spectra to which the function should be
applied. For filterMsLevel(): the MS level to which object should be sub-
setted.

For filterPolarity(): integer specifying the polarity to to subset object.

For filterPrecursorMzValues(): numeric(1) with the m/z-relative maximal

acceptable difference for a m/z to be considered matching. See MsCoreUtils: :closest()

for details. For filterValues(): numeric of any length allowing to define a

maximal accepted difference between user input values and the spectraVariables

values. If it is not equal to the length of the value provided with parameter
spectraVariables, ppm[1] will be recycled.

For filterPrecursorMzValues(): numeric(1) with the maximal absolute ac-
ceptable difference for a m/z value to be considered matching. See MsCoreUtils
for details. For filterValues(): numeric accepted tolerance between the
values and the spectra variables. Defaults to tolerance = 0. If it is not equal to

::closest()

the length of the value provided with parameter spectraVariables, tolerance[1]

will be recycled.

For filterPrecursorCharge(): integer () with the precursor charges to be
used as filter.

for filterPrecursorScan(): integer with the acquisition number of the spec-
tra to which the object should be subsetted.

factor defining the grouping to split x. See split(). For filterPrecursorScan():

factor defining from which original data files the spectra derive to avoid select-
ing spectra from different samples/files. Defaults to f = dataOrigin(object).

MsBackend 61

spectraVariables
For selectSpectraVariables(): character with the names of the spectra
variables to which the backend should be subsetted. For filterRanges() and
filterValues(): character vector specifying the column(s) from spectraData(object)
on which to filter the data and that correspond to the the names of the spectra
variables that should be used for the filtering.

ranges for filterRanges(): A numeric vector of paired values (upper and lower
boundary) that define the ranges to filter the object. These paired values need
to be in the same order as the spectraVariables parameter (see below).

match For filterRanges() and filterValues(): character(1) defining whether
the condition has to match for all provided ranges/values (match = "all"; the
default), or for any of them (match = "any") for spectra to be retained.

rt for filterRt(): numeric(2) defining the retention time range to be used to
subset/filter object.

msLevel. same as msLevel above.

values For filterValues(): A numeric vector that define the values to filter the

object. values needs to be of same length than parameter spectraVariables
and in the same order.

use.names For 1lengths(): whether spectrum names should be used.
drop For [: not considered.
initial For tic(): logical(1) whether the initially reported total ion current should be

reported, or whether the total ion current should be (re)calculated on the actual
data (initial = FALSE).

j For [: not supported.
name For $ and $<-: the name of the spectra variable to return or set.
data For backendInitialize(): DataFrame with spectrum metadata/data. This pa-

rameter can be empty for MsBackendMzR backends but needs to be provided for
MsBackendDataFrame backends.

peaksVariables ForbackendInitialize() for MsBackendMemory: character specifying which
of the columns of the provided data contain peaks variables (i.e. information
for individual mass peaks). Defaults to peaksVariables = c("mz", "intensity").
"mz" and "intensity" should always be specified.

Value

See documentation of respective function.

Implementation notes

Backends extending MsBackend must implement all of its methods (listed above). Developers
of new MsBackends should follow the MsBackendMemory implementation. To ensure a new im-
plementation being conform with the MsBackend definition, developers should included test suites
provided by this package in their unit test setup. For that a variable be should be created in the pack-
age’s "testthat.R" file that represents a (initialized) instance of the developed backend. Then the
path to the test suites should be defined with test_suite <- system.file("test_backends”,

62

MsBackend

"test_MsBackend”, package = "Spectra") followed by test_dir(test_suite) to run all test
files in that directory. Individual unit test files could be run with test_file(file.path(test_suite,
"test_spectra_variables.R"), stop_on_failure = TRUE) (note that without stop_on_failure
= TRUE tests would fail silently) . Adding this code to the packages "testthat.R" file ensures that
all tests checking the validity of an MsBackend instance defined in the Spectra package are also
run on the newly develped backend class.

The MsBackend defines the following slots:

* @readonly: logical(1) whether the backend supports writing/replacing of m/z or intensity
values.

Backends extending MsBackend must implement all of its methods (listed above). Developers of
new MsBackends should follow the MsBackendDataF rame implementation.

The MsBackendCached() backend provides a caching mechanism to allow read only backends to
add or change spectra variables. This backend shouldn’t be used on its own, but is meant to be
extended. See MsBackendCached() for details.

The MsBackend defines the following slots:

* @readonly: logical(1) whether the backend supports writing/replacing of m/z or intensity
values.

Backend functions

New backend classes must extend the base MsBackend class will have to implement some of the
following methods (see the MsBackend vignette for detailed description and examples):

e [: subset the backend. Only subsetting by element (row/i) is allowed. Parameter i should
support integer indices and logical and should throw an error if i is out of bounds. The
MsCoreUtils::i2index could be used to check the input i. For i = integer() an empty
backend should be returned. Implementation of this method is optional, as the default calls
the extractByIndex () method (which has to be implemented as the main subsetting method).

* $, $<-: access or set/add a single spectrum variable (column) in the backend. Using a value
of NULL should allow deleting the specified spectra variable. An error should be thrown if the
spectra variable is not available.

e [[, [[<-: access or set/add a single spectrum variable (column) in the backend. The default
implementation uses $, thus these methods don’t have to be implemented for new classes
extending MsBackend.

* acquisitionNum(): returns the acquisition number of each spectrum. Returns an integer of
length equal to the number of spectra (with NA_integer_ if not available).

* backendBpparam(): return the parallel processing setup supported by the backend class. This
function can be used by any higher level function to evaluate whether the provided parallel
processing setup (or the default one returned by bpparam()) is supported by the backend.
Backends not supporting parallel processing (e.g. because they contain a connection to a
database that can not be shared across processes) should extend this method to return only
SerialParam() and hence disable parallel processing for (most) methods and functions. See
also backendParallelFactor () for a function to provide a preferred splitting of the backend
for parallel processing.

MsBackend 63

* backendInitialize(): initialises the backend. This method is supposed to be called rights
after creating an instance of the backend class and should prepare the backend (e.g. set the
data for the memory backend or read the spectra header data for the MsBackendMzR backend).
Parameters can be defined freely for each backend, depending on what is needed to initialize
the backend. It is however suggested to also support a parameter data that can be used to
submit the full spectra data as a DataFrame to the backend. This would allow the backend
to be also usable for the setBackend() function from Spectra. Note that eventually (for
read-only backends) also the supportsSetBackend method would need to be implemented
to return TRUE. The backendInitialize () method has also to ensure to correctly set spectra
variable dataStorage.

* backendMerge(): merges (combines) MsBackend objects into a single instance. All objects
to be merged have to be of the same type (e.g. MsBackendDataFrame()).

* backendParallelFactor(): returns a factor defining an optimal (preferred) way how the
backend can be split for parallel processing used for all peak data accessor or data manipula-
tion functions. The default implementation returns a factor of length O (factor ()) providing
thus no default splitting. backendParallelFactor() for MsBackendMzR on the other hand
returns factor (dataStorage(object)) hence suggesting to split the object by data file.

* backendRequiredSpectraVariables(): returns a character with spectra variable names
that are mandatory for a specific backend. The default returns an empty character(). The
implementation for MsBackendMzR returns c("dataStorage”, "scanIndex”) as these two
spectra variables are required to load the MS data on-the-fly. This method needs only to be
implemented if a backend requires specific variables to be defined.

e cbind2(): allows to appends multiple new spectra variables to the backend at once. The
values for the new spectra variables have to be in the same order as the spectra in x. Replacing
existing spectra variables is not supported through this function. For a more controlled way of
adding spectra variables, the joinSpectraData() should be used.

e centroided(), centroided<-: gets or sets the centroiding information of the spectra. centroided()
returns a logical vector of length equal to the number of spectra with TRUE if a spectrum is
centroided, FALSE if it is in profile mode and NA if it is undefined. See also isCentroided()
for estimating from the spectrum data whether the spectrum is centroided. value for centroided<-
is either a single logical or a logical of length equal to the number of spectra in object.

e collisionEnergy(), collisionEnergy<-: gets or sets the collision energy for all spectra in
object. collisionEnergy() returns a numeric with length equal to the number of spectra
(NA_real_ if not present/defined), collisionEnergy<- takes a numeric of length equal to
the number of spectra in object.

» dataOrigin(): gets a character of length equal to the number of spectra in object with the
data origin of each spectrum. This could e.g. be the mzML file from which the data was read.

» dataStorage(): gets a character of length equal to the number of spectra in object with the
data storage of each spectrum. Note that missing values (NA_character_) are not supported
for dataStorage.

* dataStorageBasePath(), dataStorageBasePath<-: gets or sets the common *base* path of the directory ¢
acterof length 1. Most backends (such as for example theMsBackendMemorywill not support this functi
BackendMzR, this function allows to get or change the path to the directory containing the original
BackendMzR ‘ instance gets copied to another computer or file system.

* dropNaSpectraVariables(): removes spectra variables (i.e. columns in the object’s spectraData
that contain only missing values (NA). Note that while columns with only NAs are removed, a

MsBackend

spectraData() call after dropNaSpectraVariables() might still show columns containing
NA values for core spectra variables.

export(): exports data from a Spectra class to a file. This method is called by the export, Spectra
method that passes itself as a second argument to the function. The export,MsBackend im-
plementation is thus expected to take a Spectra class as second argument from which all data

is exported. Taking data from a Spectra class ensures that also all eventual data manipula-

tions (cached in the Spectra’s lazy evaluation queue) are applied prior to export - this would

not be possible with only a MsBackend class. An example implementation is the export()
method for the MsBackendMzR backend that supports export of the data in mzML or mzXML
format. See the documentation for the MsBackendMzR class below for more information.

extractByIndex(): function to subset a backend to selected elements defined by the provided
index. Similar to [, this method should allow extracting (or to subset) the data in any order. In
contrast to [, however, i is expected to be an integer (while [should also support logical
and eventually character). While being apparently redundant to [, this methods avoids pack-
age namespace errors/problems that can result in implementations of [being not found by R
(which can happen sometimes in parallel processing using the BiocParallel: : SnowParam()).
This method is used internally by Spectra to extract/subset its backend. Implementation of
this method is mandatory.

filterAcquisitionNum(): filters the object keeping only spectra matching the provided ac-
quisition numbers (argument n). If dataOrigin or dataStorage is also provided, object
is subsetted to the spectra with an acquisition number equal to n in spectra with matching
dataOrigin or dataStorage values retaining all other spectra.

filterDataOrigin(): filters the object retaining spectra matching the provided dataOrigin.
Parameter dataOrigin has to be of type character and needs to match exactly the data origin
value of the spectra to subset. filterDataOrigin() should return the data ordered by the
provided dataOrigin parameter, i.e. if dataOrigin = c("2", "1") was provided, the spectra
in the resulting object should be ordered accordingly (first spectra from data origin "2" and
then from "1"). Implementation of this method is optional since a default implementation for
MsBackend is available.

filterDataStorage(): filters the object retaining spectra matching the provided dataStorage.
Parameter dataStorage has to be of type character and needs to match exactly the data stor-
age value of the spectra to subset. filterDataStorage() should return the data ordered by
the provided dataStorage parameter, i.e. if dataStorage = c("2", "1") was provided, the
spectra in the resulting object should be ordered accordingly (first spectra from data storage
"2" and then from "1"). Implementation of this method is optional since a default implemen-
tation for MsBackend is available.

filterEmptySpectra(): removes empty spectra (i.e. spectra without peaks). Implementa-
tion of this method is optional since a default implementation for MsBackend is available.

filterFile(): retains data of files matching the file index or file name provided with param-
eter file.

filterIsolationWindow(): retains spectra that contain mz in their isolation window m/z
range (i.e. with an isolationWindowLowerMz <= mz and isolationWindowUpperMz >= mz.
Implementation of this method is optional since a default implementation for MsBackend is
available.

filterMsLevel(): retains spectra of MS level msLevel. Implementation of this method is
optional since a default implementation for MsBackend is available.

MsBackend 65

filterPolarity(): retains spectra of polarity polarity. Implementation of this method is
optional since a default implementation for MsBackend is available.

e filterPrecursorMzRange() (previously filterPrecursorMz): retains spectra with a pre-
cursor m/z within the provided m/z range. Implementation of this method is optional since a
default implementation for MsBackend is available.

e filterPrecursorMzValues(): retains spectra with a precursor m/z matching any of the pro-
vided m/z values (given ppm and tolerance). Implementation of this method is optional since
a default implementation for MsBackend is available.

e filterPrecursorCharge(): retains spectra with the defined precursor charge(s). Implemen-
tation of this method is optional since a default implementation for MsBackend is available.

e filterPrecursorScan(): retains parent (e.g. MS1) and children scans (e.g. MS2) of acqui-
sition number acquisitionNum. Parameter f is supposed to define the origin of the spectra
(i.e. the original data file) to ensure related spectra from the same file/sample are selected
and retained. Implementation of this method is optional since a default implementation for
MsBackend is available.

» filterRanges(): allows filtering of the Spectra object based on user defined numeric ranges
(parameter ranges) for one or more available spectra variables in object (spectra variable
names can be specified with parameter spectraVariables). Spectra for which the value of
a spectra variable is within it’s defined range are retained. If multiple ranges/spectra vari-
ables are defined, the match parameter can be used to specify whether all conditions (match
= "all"; the default) or if any of the conditions must match (match = "any"; all spectra for
which values are within any of the provided ranges are retained). Implementation of this
method is optional since a default implementation for MsBackend is available.

e filterRt(): retains spectra of MS level msLevel with retention times within (>=) rt[1] and
(<=) rt[2]. The filter is applied to all spectra if no MS level is specified (the default, msLevel.
= integer()). Implementation of this method is optional since a default implementation for
MsBackend is available.

» filterValues(): allows filtering of the Spectra object based on similarities of numeric val-
ues of one or more spectraVariables(object) (parameter spectraVariables) to provided
values (parameter values) given acceptable differences (parameters tolerance and ppm). If
multiple values/spectra variables are defined, the match parameter can be used to specify
whether all conditions (match = "all”; the default) or if any of the conditions must match
(match = "any"; all spectra for which values are within any of the provided ranges are re-
tained). Implementation of this method is optional since a default implementation for MsBackend
is available.

* intensity(): gets the intensity values from the spectra. Returns a IRanges: :NumericList ()
of numeric vectors (intensity values for each spectrum). The length of the 1ist is equal to
the number of spectrain object.

* intensity<-: replaces the intensity values. value hastobe a list (or IRanges: :NumericList())
of length equal to the number of spectra and the number of values within each list element
identical to the number of peaks in each spectrum (i.e. the lengths(x)). Note that just write-
able backends support this method.

e ionCount(): returns a numeric with the sum of intensities for each spectrum. If the spectrum
is empty (see isEmpty()), NA_real_ is returned.

66

MsBackend

isCentroided(): a heuristic approach assessing if the spectra in object are in profile or
centroided mode. The function takes the qtl th quantile top peaks, then calculates the differ-
ence between adjacent m/z value and returns TRUE if the first quartile is greater than k. (See
Spectra:::.peaks_is_centroided for the code.)

isEmpty(): checks whether a spectrum in object is empty (i.e. does not contain any peaks).
Returns a logical vector of length equal number of spectra.

isolationWindowLowerMz(), isolationWindowLowerMz<-: gets or sets the lower m/z bound-
ary of the isolation window.

isolationWindowTargetMz(), isolationWindowTargetMz<-: gets or sets the target m/z of
the isolation window.

isolationWindowUpperMz(), isolationWindowUpperMz<-: gets or sets the upper m/z bound-
ary of the isolation window.

isReadOnly(): returns a logical (1) whether the backend is read only or does allow also to
write/update data.

length(): returns the number of spectra in the object.

lengths(): gets the number of peaks (m/z-intensity values) per spectrum. Returns an integer
vector (length equal to the number of spectra). For empty spectra, @ is returned.

longForm(): extract the MS data in long form, i.e., as a data. frame with columns being re-
quested spectra and peak variables and one row per mass peak. Parameter columns can be used
to specify the columns (i.e., spectra or peaks variables) that should be returned. The default
is columns = spectraVariables(object) and all spectra and peak variables are returned. It
is strongly suggested to extract only selected columns and not the full data to avoid potential
out-of-memory problems. Implementation of this method is optional as a default implemen-
tation for MsBackend is available which converts the DataFrame returned by spectraData()
into long form.

msLevel(): gets the spectra’s MS level. Returns an integer vector (of length equal to the
number of spectra) with the MS level for each spectrum (or NA_integer_ if not available).

msLevel<-: replaces the spectra’s MS level.

mz(): gets the mass-to-charge ratios (m/z) from the spectra. Returns a IRanges: :NumericList()
or length equal to the number of spectra, each element a numeric vector with the m/z values
of one spectrum.

mz<-: replaces the m/z values. value has to be a list of length equal to the number of
spectra and the number of values within each list element identical to the number of peaks in
each spectrum (i.e. the lengths(x)). Note that just writeable backends support this method.

polarity(), polarity<-: gets or sets the polarity for each spectrum. polarity() returns
an integer vector (length equal to the number of spectra), with @ and 1 representing negative
and positive polarities, respectively. polarity<- expects an integer vector of length 1 or equal
to the number of spectra.

precursorCharge(), precursorIntensity(), precursorMz(), precScanNum(), precAcquisitionNum():

get the charge (integer), intensity (numeric), m/z (numeric), scan index (integer) and ac-
quisition number (interger) of the precursor for MS level 2 and above spectra from the
object. Returns a vector of length equal to the number of spectra in object. NA are reported
for MS1 spectra of if no precursor information is available.

MsBackend 67

* peaksData() returns a 1ist with the spectras’ peak data, i.e. m/z and intensity values or
other peak variables. The length of the list is equal to the number of spectra in object.
Each element of the list has to be a two-dimensional array (matrix or data.frame) with
columns depending on the provided columns parameter (by default "mz"” and "intensity”,
but depends on the backend’s available peaksVariables). For an empty spectrum, a matrix
(data. frame) with 0 rows and columns according to columns is returned. The optional pa-
rameter columns, if supported by the backend, allows to define which peak variables should
be returned in the numeric peak matrix. As a default c("mz"”, "intensity"”) should be
used.

* peaksData<- replaces the peak data (m/z and intensity values) of the backend. This method
expects a 1ist of two dimensional arrays (matrix or data. frame) with columns representing
the peak variables. All existing peaks data is expected to be replaced with these new values.
The length of the 1ist has to match the number of spectra of object. Note that only writeable
backends need to support this method.

* peaksVariables(): lists the available variables for mass peaks. Default peak variables are
"mz" and "intensity"” (which all backends need to support and provide), but some back-
ends might provide additional variables. All these variables are expected to be returned (if
requested) by the peaksData() function.

* reset() abackend (if supported). This method will be called on the backend by the reset, Spectra
method that is supposed to restore the data to its original state (see reset, Spectra for more
details). The function returns the reser backend. The default implementation for MsBackend
returns the backend as-is.

* rtime(), rtime<-: gets or sets the retention times for each spectrum (in seconds). rtime()
returns a numeric vector (length equal to the number of spectra) with the retention time for
each spectrum. rtime<- expects a numeric vector with length equal to the number of spectra.

* scanIndex(): returns an integer vector with the scan index for each spectrum. This rep-
resents the relative index of the spectrum within each file. Note that this can be different to
the acquisitionNum() of the spectrum which is the index of the spectrum as reported in the
mzML file.

e selectSpectraVariables(): reduces the information within the backend to the selected
spectra variables. It is suggested to not remove values for the "dataStorage" variable, since
this might be required for some backends to work properly (such as the MsBackendMzR).

* smoothed(),smoothed<-: gets or sets whether a spectrum is smoothed. smoothed() returns a
logical vector of length equal to the number of spectra. smoothed<- takes a logical vector
of length 1 or equal to the number of spectra in object.

* spectraData(), spectraData<-: gets or sets general spectrum metadata (annotation, also
called header). spectraData() returns a DataFrame, spectraData<- expects a DataFrame
with the same number of rows as there are spectra in object. Note that spectraData()
has to return the full data, i.e. also the m/z and intensity values (as a 1ist or SimpleList
in columns "mz" and "intensity”. See also fillCoreSpectraVariables() for a function
that can complete a spectra data data frame with eventually missing core spectra variables.

* spectraNames(): returns a character vector with the names of the spectra in object or
NULL if not set. spectraNames<- allows to set spectra names (if the object is not read-only).

* spectraVariables(): returns a character vector with the available spectra variables (columns,
fields or attributes) available in object. This should return all spectra variables which are
present in object, also "mz" and "intensity"” (which are by default not returned by the
spectraVariables, Spectra method).

68 MsBackend

* split(): splits the backend into a 1ist of backends (depending on parameter). The default
method for MsBackend uses split.default(), thus backends extending MsBackend don’t
necessarily need to implement this method.

* supportsSetBackend(): whether a MsBackend supports the Spectra setBackend() func-
tion. For a MsBackend to support setBackend() it needs to have a parameter called data in its
backendInitialize() method that support receiving all spectra data as a DataFrame from
another backend and to initialize the backend with this data. In general read-only backends
do not support setBackend() hence, the default implementation of supportsSetBackend()
returns ! isReadOnly(object). If a read-only backend would support the setBackend() and
being initialized with a DataFrame an implementation of this method for that backend could
be defined that returns TRUE (see also the MsBackend vignette for details and examples).

e tic(): gets the total ion current/count (sum of signal of a spectrum) for all spectra in object.
By default, the value reported in the original raw data file is returned. For an empty spectrum,
NA_real_ is returned.

e uniqueMsLevels(): gets the unique MS levels of all spectra in object. The default im-
plementation calls unique (msLevel (object)) but more efficient implementations could be
defined for specific backends.

Subsetting and merging backend classes

Backend classes must support (implement) the [method to subset the object. This method should
only support subsetting by spectra (rows, i) and has to return a MsBackend class.

Backends extending MsBackend should also implement the backendMerge () method to support
combining backend instances (only backend classes of the same type should be merged). Merging
should follow the following rules:

» The whole spectrum data of the various objects should be merged. The resulting merged
object should contain the union of the individual objects’ spectra variables (columns/fields),
with eventually missing variables in one object being filled with NA.

In-memory data backends

MsBackendMemory and MsBackendDataF rame:

The MsBackendMemory and MsBackendDataFrame objects keep all MS data in memory are thus
ideal for fast data processing. Due to their large memory footprint they are however not suited
for large scale experiments. The two backends store the data different. The MsBackendDataFrame
stores all data in a DataFrame and thus supports also S4-classes as spectra variables. Also, sepratate
access to m/z or intensity values (i.e. using the mz() and intensity() methods) is faster for
the MsBackendDataFrame. The MsBackendMemory on the other hand, due to the way the data is
organized internally, provides much faster access to the full peak data (i.e. the numerical matrices
of m/z and intensity values). Also subsetting and access to any spectra variable (except "mz" and
"intensity") is fastest for the MsBackendMemory.

Thus, for most use cases, the MsBackendMemory provides a higher performance and flexibility than
the MsBackendDataFrame and should thus be preferred. See also issue 246 for a performance
comparison.

New objects can be created with the MsBackendMemory () and MsBackendDataFrame() function,
respectively. Both backends can be subsequently initialized with the backendInitialize () method,

https://github.com/rformassspectrometry/Spectra/issues/246

MsBackend 69

taking a DataFrame (or data.frame) with the (full) MS data as first parameter data. The second
parameter peaksVariables allows to define which columns in data contain peak variables such
as the m/z and intensity values of individual peaks per spectrum. The default for this parameter is
peaksVariables = c("mz", "intensity"). Note that it is not supported to provide either "mz" or
"intensity", if provided, both need to be present in the data frame. Alternatively, the function
also supports a data frame without m/z and intensity values, in which case a Spectra without mass
peaks is created.

Suggested columns of this DataFrame are:

* "msLevel”: integer with MS levels of the spectra.
* "rt": numeric with retention times of the spectra.
* "acquisitionNum”: integer with the acquisition number of the spectrum.

* "scanIndex": integer with the index of the scan/spectrum within the mzML/mzXML/CDF
file.

* "dataOrigin”: character defining the data origin.

» "dataStorage": character indicating grouping of spectra in different e.g. input files. Note
that missing values are not supported.

e "centroided”: logical whether the spectrum is centroided.
* "smoothed”: logical whether the spectrum was smoothed.
e "polarity”: integer with the polarity information of the spectra.

* "precScanNum”: integer specifying the index of the (MS1) spectrum containing the precur-
sor of a (MS2) spectrum.

* "precursorMz”: numeric with the m/z value of the precursor.

* "precursorIntensity”: numeric with the intensity value of the precursor.

e "precursorCharge”: integer with the charge of the precursor.

e "collisionEnergy": numeric with the collision energy.

* "mz": IRanges: :NumericList() of numeric vectors representing the m/z values for each
spectrum.

e "intensity": IRanges: :NumericList() of numeric vectors representing the intensity val-
ues for each spectrum.

Additional columns are allowed too.

The peaksData() function for MsBackendMemory and MsBackendDataFrame returns a list of
numeric matrix by default (with parameter columns = c("mz", "intensity"”)). If other peak
variables are requested, a 1ist of data.frame is returned (ensuring m/z and intensity values are
always numeric).

MsBackendMzR, on-disk MS data backend

The MsBackendMzR keeps only a limited amount of data in memory, while the spectra data (m/z and
intensity values) are fetched from the raw files on-demand. This backend uses the mzR package for
data import and retrieval and hence requires that package to be installed. Also, it can only be used
to import and represent data stored in mzML, mzXML and CDF files.

70 MsBackend

The MsBackendMzR backend extends the MsBackendDataFrame backend using its DataFrame to
keep spectra variables (except m/z and intensity) in memory.

New objects can be created with the MsBackendMzR() function which can be subsequently filled
with data by calling backendInitialize() passing the file names of the input data files with
argument files.

This backend provides an export() method to export data from a Spectra in mzML or mzXML
format. The definition of the function is:

export(object, x, file = tempfile(), format =c("mzML", "mzXML"), copy = FALSE)
The parameters are:

e object: an instance of the MsBackendMzR class.
* x: the Spectra object to be exported.

» file: character with the (full) output file name(s). Should be of length 1 or equal length(x).
If a single file is specified, all spectra are exported to that file. Alternatively it is possible to
specify for each spectrum in x the name of the file to which it should be exported (and hence
file has to be of length equal length(x)).

» format: character (1), either "mzML" or "mzXML" defining the output file format.

* copy: logical(1) whether general file information should be copied from the original MS
data files. This only works if x uses a MsBackendMzR backend and if dataOrigin(x) contains
the original MS data file names.

* BPPARAM: parallel processing settings.

See examples in Spectra or the vignette for more details and examples.

The MsBackendMzR ignores parameter columns of the peaksData() function and returns always
m/z and intensity values.

MsBackendHdf5Peaks, on-disk MS data backend

The MsBackendHdf5Peaks keeps, similar to the MsBackendMzR, peak data (i.e. m/z and intensity
values) in custom data files (in HDF5 format) on disk while the remaining spectra variables are kept
in memory. This backend supports updating and writing of manipulated peak data to the data files.

New objects can be created with the MsBackendHdf5Peaks () function which can be subsequently
filled with data by calling the object’s backendInitialize () method passing the desired file names

of the HDFS5 data files along with the spectra variables in form of a DataF rame (see MsBackendDataF rame
for the expected format). An optional parameter hdf5path allows to specify the folder where the
HDFS5 data files should be stored to. If provided, this is added as the path to the submitted file names
(parameter files).

By default backendInitialize() will store all peak data into a single HDFS file which name has
to be provided with the parameter files. To store peak data across several HDFS files data has
to contain a column "dataStorage” that defines the grouping of spectra/peaks into files: peaks for
spectra with the same value in "dataStorage” are saved into the same HDF?5 file. If parameter
files is omitted, the value in dataStorage is used as file name (replacing any file ending with
".h5". To specify the file names, files’ length has to match the number of unique elements in
"dataStorage”.

For details see examples on the Spectra() help page.

The MsBackendHdf5Peaks ignores parameter columns of the peaksData() function and returns
always m/z and intensity values.

MsBackend 71

Author(s)

Johannes Rainer, Sebastian Gibb, Laurent Gatto, Philippine Louail

Examples

The MsBackend class is a virtual class and can not be instantiated
directly. Below we define a new backend class extending this virtual
class

MsBackendDummy <- setClass("MsBackendDummy", contains = "MsBackend")
MsBackendDummy ()

This class inherits now all methods from “MsBackend™, all of which
however throw an error. These methods would have to be implemented
for the new backend class.

try(mz(MsBackendDummy()))

See “MsBackendDataFrame™ as a reference implementation for a backend
class (in the *R/MsBackendDataFrame.Rx file).

MsBackendDataFrame

##

The ~MsBackendDataFrame™ uses a ~S4Vectors::DataFrame™ to store all MS
data. Below we create such a backend by passing a “DataFrame™ with all
data to it.

data <- DataFrame(msLevel = c(1L, 2L, 1L), scanIndex = 1:3)

data$mz <- list(c(1.1, 1.2, 1.3), c(1.4, 54.2, 56.4, 122.1), c(15.3, 23.2))
datas$intensity <- list(c(3, 2, 3), c(45, 100, 12.2, 1), c(123, 12324.2))

Backends are supposed to be created with their specific constructor
function
be <- MsBackendDataFrame()

be

The ~backendInitialize()~ method initializes the backend filling it with
data. This method can take any parameters needed for the backend to

get loaded with the data (e.g. a file name from which to load the data,

a database connection or, in this case, a data frame containing the data).
be <- backendInitialize(be, data)

be

Data can be accessed with the accessor methods
msLevel (be)

mz(be)
Even if no data was provided for all spectra variables, its accessor
methods are supposed to return a value.

precursorMz(be)

The ~peaksData()™ method is supposed to return the peaks of the spectra as

72

MsBackendCached

a “list™.
peaksData(be)

List available peaks variables
peaksVariables(be)

Use columns to extract specific peaks variables. Below we extract m/z and
intensity values, but in reversed order to the default.
peaksData(be, columns = c("intensity”, "mz"))

List available spectra variables (i.e. spectrum metadata)
spectraVariables(be)

Extract precursor m/z, rtime, MS level spectra variables
spectraData(be, c("precursorMz”, "rtime", "msLevel”))

MsBackendMemory

#H

The ~MsBackendMemory™ uses a more efficient internal data organization
and allows also adding arbitrary additional peaks variables (annotations)
Below we thus add a column "peak_ann” with arbitrary names/ids for each
peak and add the name of this column to the ~peaksVariables™ parameter
of the ~backendInitialize()™ method (in addition to ~"mz"~ and

~"intensity”" that should **always*x be specified.

data$peak_ann <_ 1ist(c(llall’ HII’ Ildll)’ C(IIII’ Hdll, Ilell’ Ilf‘ll)’ C(“h“, lli”))
be <- backendInitialize(MsBackendMemory(), data,
peaksVariables = c("mz", "intensity"”, "peak_ann"))
be
spectraVariables(be)

peak_ann is also listed as a peaks variable
peaksVariables(be)

The additional peaks variable can be accessed using the ~“peaksData()~
function
peaksData(be, "peak_ann")

The $<- method can be used to replace values of an existing peaks
variable. It is important that the number of elements matches the
number of peaks per spectrum.

be$peak_ann <- list(1:3, 1:4, 1:2)

A peaks variable can again be removed by setting it to NULL
be$peak_ann <- NULL

peaksVariables(be)

MsBackendCached Base MsBackend class providing data caching mechanism

MsBackendCached 73

Description

The MsBackendCached class is a rudimentary implementation of the MsBackend providing a simple
mechanism to cache spectra data locally. This class is thought to be used as a base class for other
MsBackend implementations to reuse its caching mechanism and avoid having to re-implement
commonly used methods. This class is thus not thought to be used directly by a user.

The MsBackendCached caching mechanism allows MsBackend instances to add or replace spectra
variables even if the backend used by them does not allow to alter values (e.g. if a SQL database
is used as a backend). Any replacement operation with $<- will add the specified values to a
local data. frame within the MsBackendCached class that allows to cache these values (increasing
obviously the memory demand of the object).

Any data accessor functions of the extending MsBackend class (such as $ or msLevel () or spectraData())
should first use callNextMethod() to call the respective accessor of MsBackendCached that will
evaluate if the requested spectra variable(s) are in the local cache and return these. If the requested
spectra variables are neither in the local cache, nor listed in the @spectraVariables slot (which
defines all spectra variables that can be requested from the extending MsBackend class) but are core
spectra variables then missing values of the correct data type are returned.

Usage
MsBackendCached()

S4 method for signature 'MsBackendCached'
backendInitialize(

object,

data = data.frame(),

nspectra = 0L,

spectraVariables = character(),

)

S4 method for signature 'MsBackendCached'
dataStorage(object)

S4 method for signature 'MsBackendCached,ANY'
extractByIndex(object, i)

S4 method for signature 'MsBackendCached'
length(x)

S4 method for signature 'MsBackendCached'
spectraVariables(object)

S4 method for signature 'MsBackendCached'
spectraData(object, columns = spectraVariables(object))

S4 replacement method for signature 'MsBackendCached'
spectraData(object) <- value

74

MsBackendCached

S4 method for signature 'MsBackendCached'
x[i, j, ..., drop = FALSE]

S4 method for signature 'MsBackendCached'
x$name

S4 replacement method for signature 'MsBackendCached'
x$name <- value

S4 method for signature 'MsBackendCached'
selectSpectraVariables(object, spectraVariables = spectraVariables(object))

S4 method for signature 'MsBackendCached'
show(object)

S4 method for signature 'MsBackendCached'
intensity(object)

S4 method for signature 'MsBackendCached'
ionCount(object)

S4 method for signature 'MsBackendCached'

mz(object)
Arguments

object A MsBackendCached object.

data For backendInitialize(): (optional) data.frame with cached values. The
number of rows (and their order) has to match the number of spectra.

nspectra For backendInitialize(): integer with the number of spectra.

spectraVariables
For backendInitialize(): character with the names of the spectra variables
that are provided by the extending backend. For selectSpectraVariables():
character specifying the spectra variables to keep.
ignored

i For [: integer with the indices to subset the object.

X A MsBackendCached object.

columns For spectraData(): character with the names of the spectra variables to re-
trieve.

value replacement value for <- methods. See individual method description or ex-
pected data type.

h For [: ignored.

drop For [: not considered.

name For $<-: the name of the spectra variable to set.

MsBackendCached 75

Value

See documentation of respective function.

Implementation notes
Classes extending the MsBackendCached need to

e call the backendInitialize() method of this class in their own backendInitialize()
method and set at least the number of spectra with the nspectra parameter and the spectraVariables
that are available to the (extending) backend class.

* implement the spectraData() method that also calls the spectraData() method from MsBackendCached
to also retrieve cached values (e.g. using res <- callNextMethod() at the beginning of the
spectraData function). The spectraData,MsBackendCached method will return NULL if the
selected spectra variables were not cached and are not core spectra variables not being pro-
vided by the extending backend. Thus, the extending backend can then proceed to retrieve the
respective values from its own backend/data storage.

* implement eventually the [method that calls in addition the [from the MsBackendCached.

All other methods accessing or setting spectra variables don’t need to be implemented by the extend-
ing backend class (the default implementations of the MsBackendCached will then be used instead;
these ensure that cached values are returned first). Spectra variables can be modified or added us-
ing the $<- method of the MsBackendCached. Replacing or adding multiple variables using the
spectraData<- is not supported by MsBackendCached. The extending backend might however
implement such a method that internally uses $<- to add/replace single variables.

The MsBackendCached has the following slots:

* nspectra: integer (1) defining the number of spectra of the backend. This variable needs to
be set and must match the number of rows of localData and the actual number of spectra in
the (extending) backend.

* localData: data.frame with the cached local data. Any replacement operation with $<- will
set/add a column with the respective values.

* spectraVariables: character defining the spectra variables that are provided by the ex-
tending MsBackend class (e.g. all spectra variables that can be retrieved from the data base or
original data files).

Available methods

e acquisitionNum(): returns the acquisition number of each spectrum. Returns an integer of
length equal to the number of spectra (with NA_integer_ if not available).

* backendInitialize(): initializes the backend. The method takes parameters data (data. frame
with cached data), nspectra (integer defining the number of spectra) and spectraVariables
(character with the spectra variables that are provided by the extending backend.

* centroided(), centroided<-: gets or sets the centroiding information of the spectra. centroided
returns a logical vector of length equal to the number of spectra with TRUE if a spectrum is
centroided, FALSE if it is in profile mode and NA if it is undefined. See also isCentroided for
estimating from the spectrum data whether the spectrum is centroided. value for centroided<-
is either a single logical or a logical of length equal to the number of spectra in object.

MsBackendCached

collisionEnergy(), collisionEnergy<-: gets or sets the collision energy for all spectra in
object. collisionEnergy() returns a numeric with length equal to the number of spectra
(NA_real_ if not present/defined), collisionEnergy<- takes a numeric of length equal to
the number of spectra in object.

dataOrigin(): gets a character of length equal to the number of spectra in object with the
data origin of each spectrum. This could e.g. be the mzML file from which the data was read.

intensity(): gets the intensity values from the spectra. Returns a IRanges: :NumericList()
of numeric vectors (intensity values for each spectrum). The length of the 1ist is equal to
the number of spectrain object.

ionCount(): returns a numeric with the sum of intensities for each spectrum. If the spectrum
is empty (see isEmpty()), NA_real_ is returned.

isEmpty(): checks whether a spectrum in object is empty (i.e. does not contain any peaks).
Returns a logical vector of length equal number of spectra.

isolationWindowLowerMz(), isolationWindowLowerMz<-: gets or sets the lower m/z bound-
ary of the isolation window.

isolationWindowTargetMz(), isolationWindowTargetMz<-: gets or sets the target m/z of
the isolation window.

isolationWindowUpperMz(), isolationWindowUpperMz<-: gets or sets the upper m/z bound-
ary of the isolation window.

length(): returns the number of spectra (i.e. the @nspectra).

lengths(): gets the number of peaks (m/z-intensity values) per spectrum. Returns an integer
vector (length equal to the number of spectra). For empty spectra, @ is returned.

msLevel(): gets the spectra’s MS level. Returns an integer vector (of length equal to the
number of spectra) with the MS level for each spectrum (or NA_integer_ if not available).

mz(): gets the mass-to-charge ratios (m/z) from the spectra. Returns a IRanges: :NumericList()
or length equal to the number of spectra, each element a numeric vector with the m/z values
of one spectrum.

polarity(), polarity<-: gets or sets the polarity for each spectrum. polarity returns an
integer vector (length equal to the number of spectra), with @ and 1 representing negative
and positive polarities, respectively. polarity<- expects an integer vector of length 1 or equal
to the number of spectra.

precursorCharge(), precursorIntensity(), precursorMz(), precScanNum(), precAcquisitionNum():
get the charge (integer), intensity (numeric), m/z (numeric), scan index (integer) and ac-

quisition number (interger) of the precursor for MS level 2 and above spectra from the

object. Returns a vector of length equal to the number of spectra in object. NA are reported

for MS1 spectra of if no precursor information is available.

rtime(), rtime<-: gets or sets the retention times for each spectrum (in seconds). rtime()
returns a numeric vector (length equal to the number of spectra) with the retention time for
each spectrum. rtime<- expects a numeric vector with length equal to the number of spectra.

scanIndex(): returns an integer vector with the scan index for each spectrum. This rep-
resents the relative index of the spectrum within each file. Note that this can be different to
the acquisitionNum() of the spectrum which is the index of the spectrum as reported in the
mzML file.

neutralLoss 77

selectSpectraVariables(): subset the object to specified spectra variables. This will even-
tually remove spectra variables listed in @spectraVariables and will also drop columns from
the local cache if not among spectraVariables.

smoothed(),smoothed<-: gets or sets whether a spectrum is smoothed. smoothed() returns a
logical vector of length equal to the number of spectra. smoothed<- takes a logical vector
of length 1 or equal to the number of spectra in object.

spectraVariables(): returns the available spectra variables, i.e. the unique set of core spec-
tra variables, cached spectra variables and spectra variables defined in the @spectraVariables
slot (i.e. spectra variables thought to be provided by the extending MsBackend instance).

spectraData(): returns a DataFrame with cached spectra variablers or initialized core spec-
tra variables. Parameter spectraVariables allows to specify the variables to retrieve. The
function returns NULL if the requested variables are not cached and are not provided by the
extending backend. Note that this method only returns cached spectra variables or core spec-
tra variables not provided by the extending backend. It is the responsibility of the extending
backend to add/provide these.

[: subsets the cached data. Parameter i needs to be an integer vector.

$, $<-: access or set/add a single spectrum variable (column) in the backend.

Author(s)

Johannes Rainer

See Also

MsBackend for the documentation of MS backends.

neutralloss Calculate Neutral Loss Spectra

Description

This help page lists functions that convert MS/MS spectra to neutral loss spectra. The main function
for this is neutrallLoss and the specific algorithm to be used is defined (and configured) with
dedicated parameter objects (paramer param of the neutrallLoss() function).

The parameter objects for the different algorithms are:

PrecursorMzParam(): calculates neutral loss spectra as in Aisporna et al. 2022 by subtract-
ing the (fragment’s) peak m/z value from the precursor m/z value of each spectrum (precur-
sor m/z - fragment m/z). Parameter msLevel allows to restrict calculation of neutral loss
spectra to specified MS level(s). Spectra from other MS level(s) are returned as-is. Param-
eter filterPeaks allows to remove certain peaks from the neutral loss spectra. By default
(filterPeaks = "none") no filtering takes place. With filterPeaks = "removePrecursor”
all fragment peaks with an m/z value matching the precursor m/z (considering also ppm and
tolerance are removed. With filterPeaks = "abovePrecursor”, all fragment peaks with
an m/z larger than the precursor m/z (m/z > precursor m/z - tolerance - ppm of the precur-
sor m/z) are removed (thus removing also in most cases the fragment peaks representing the

78

neutrallLoss

precursor). Finally, with filterPeaks = "belowPrecursor” all fragment peaks with an m/z
smaller than the precursor m/z (m/z < precursor m/z + tolerance + ppm of the precursor m/z)
are removed. Also in this case the precursor fragment peak is (depending on the values of ppm
and tolerance) removed.

Usage

PrecursorMzParam(
filterPeaks = c("none"”, "abovePrecursor”, "belowPrecursor”, "removePrecursor"),
msLevel = c(2L, NA_integer_),

ppm = 10,
tolerance = 0
)
S4 method for signature 'Spectra,PrecursorMzParam'
neutralLoss(object, param, ...)
Arguments
filterPeaks For PrecursorMzParam(): character(1) or function defining if and how

fragment peaks should be filtered before calculation. Pre-defined options are:
"none” (keep all peaks), "abovePrecursor” (removes all fragment peaks with
an m/z >= precursor m/z), "belowPrecursor” (removes all fragment peaks
with an m/z <= precursor m/z). In addition, it is possible to pass a custom
function with this parameter with arguments x (two column peak matrix) and
precursorMz (the precursor m/z) that returns the sub-setted two column peak
matrix.

msLevel integer defining for which MS level(s) the neutral loss spectra should be calcu-
lated. Defaults to msLevel = c(2L, NA) thus, neutral loss spectra will be calcu-
lated for all spectra with MS level equal to 2 or with missing/undefined MS level.
All spectra with a MS level different than msLevel will be returned unchanged.

ppm numeric (1) with m/z-relative acceptable difference in m/z values to filter peaks.
Defaults to ppm = 10. See function description for details.

tolerance numeric(1) with absolute acceptable difference in m/z values to filter peaks.
Defaults to tolerance = @. See function description for details.

object Spectra() object with the fragment spectra for which neutral loss spectra should
be calculated.

param One of the parameter objects discussed below.

Currently ignored.

Value

A Spectra() object with calculated neutral loss spectra.

neutralLoss 79

Note

By definition, mass peaks in a Spectra object need to be ordered by their m/z value (in increasing
order). Thus, the order of the peaks in the calculated neutral loss spectra might not be the same than
in the original Spectra object.

Note also that for spectra with a missing precursor m/z empty spectra are returned (i.e. spectra
without peaks) since it is not possible to calcualte the neutral loss spectra.

Author(s)

Johannes Rainer

References

Aisporna A, Benton PH, Chen A, Derks RJE, Galano JM, Giera M and Siuzdak G (2022). Neu-
tral Loss Mass Spectral Data Enhances Molecular Similarity Analysis in METLIN. Journal of the
American Society for Mass Spectrometry. doi:10.1021/jasms.1c00343

See Also

addProcessing() for other data analysis and manipulation functions.

Examples

Create a simple example Spectra object with some MS1, MS2 and MS3 spectra.
DF <- DataFrame(msLevel = c(1L, 2L, 3L, 1L, 2L, 3L),
precursorMz = c(NA, 40, 20, NA, 300, 200))

DF$mz <- IRanges::NumericlList(

c(3, 12, 14, 15, 16, 200),

c(13, 23, 39, 86),

c(5, 7, 20, 34, 50),

c(5, 7, 9, 20, 100),

c(15, 53, 299, 300),

c(34, 56, 100, 200, 204, 309)

, compress = FALSE)
DF$intensity <- IRanges::NumericList(1:6, 1:4, 1:5, 1:5, 1:4, 1:6,
compress = FALSE)

sps <- Spectra(DF, backend = MsBackendDataFrame())

Calculate neutral loss spectra for all MS2 spectra, keeping MS1 and MS3
spectra unchanged.

sps_nl <- neutralloss(sps, PrecursorMzParam(msLevel = 2L))

mz (sps)

mz(sps_nl)

Calculate neutral loss spectra for MS2 and MS3 spectra, removing peaks
with an m/z >= precursorMz
sps_nl <- neutralloss(sps, PrecursorMzParam(
filterPeaks = "abovePrecursor”, msLevel = 2:3))
mz(sps_nl)
This removed also the peak with m/z 39 from the second spectrum

https://doi.org/10.1021/jasms.1c00343

80 plotMzDelta

Removing all fragment peaks matching the precursor m/z with a tolerance
of 1 and ppm 10
sps_nl <- neutralloss(sps, PrecursorMzParam(

filterPeaks = "removePrecursor”, tolerance = 1, ppm = 10, msLevel = 2:3))
mz(sps_nl)

Empty spectra are returned for MS 2 spectra with undefined precursor m/z.
sps$precursorMz <- NA_real_

sps_nl <- neutrallLoss(sps, PrecursorMzParam())

mz(sps_nl)

plotMzDelta MZ delta Quality Control

Description

The M/Z delta plot illustrates the suitability of MS2 spectra for identification by plotting the M/Z
differences of the most intense peaks. The resulting histogram should optimally show modes at
amino acid residu masses. The plots have been described in Foster et al. 2011.

Only a certain percentage of most intense MS2 peaks are taken into account to use the most sig-
nificant signal. Default value is 20% (see percentage argument). The difference between peaks is
then computed for all individual spectra and their distribution is plotted as a histogram. Delta M/Z
between 40 and 200 are plotted by default, to encompass the residue masses of all amino acids and
several common contaminants, although this can be changes with the mzRange argument.

In addition to the processing described above, isobaric reporter tag peaks and the precursor peak
can also be removed from the MS2 spectrum, to avoid interence with the fragment peaks.

Note that figures in Foster et al. 2011 have been produced and optimised for centroided data. While
running the function on profile mode is likely fine, it is recommended to use centroided data.

A ggplot2 based function called ggMzDeltaPlot () to visualise the M/Z delta distributions is avail-
able at https://gist.github.com/lgatto/c72b1ff5a4116118dbb34d9d2bc3470a.

Usage

computeMzDeltas(
object,
percentage = 0.2,
mzRange = c(40, 200),
BPPARAM = BiocParallel: :bpparam()

plotMzDelta(x, aalLabels = TRUE)

Arguments
object An instance of class Spectra().
percentage numeric(1) between 0 and 1 indicating the percentage of the most intense peaks

in each MS2 spectrum to include in the calculation. Default is 0.2.

https://gist.github.com/lgatto/c72b1ff5a4116118dbb34d9d2bc3470a

precursorPurity 81

mzRange numeric(2) with the upper and lower M/Z to be used to the MZ deltas. Default
is c(40, 200).
BPPARAM An optional BiocParallelParam instance determining the parallel back-end to

be used during evaluation. Default is to use BiocParallel: :bpparam(). See
?BiocParallel: :bpparam for details.

X A list of M/Z delta values, as returned by computeMzDeltas().
aalabels logical(1) defining whether the amino acids should be labelled on the his-

togram. Default is TRUE.
Value
computeMzDeltas() returns a 1ist of numeric vectors. plotMzDelta() is used to visualise of
M/Z delta distributions.
Author(s)

Laurent Gatto with contributions (to MSnbase) of Guangchuang Yu.

References

Foster JM, Degroeve S, Gatto L, Visser M, Wang R, Griss J, et al. A posteriori quality con-
trol for the curation and reuse of public proteomics data. Proteomics. 2011;11: 2182-2194.
http://dx.doi.org/10.1002/pmic.201000602

Examples

library(msdata)
f <- proteomics(pattern = "TMT.+20141210.mzML.gz", full.names = TRUE)
sp <- Spectra(f)

d <- computeMzDeltas(sp[1:1000])
plotMzDelta(d)

precursorPurity Calculating Precursor Purity for MS2 spectra

Description

MS instruments generally collect precursor ions in a discrete m/z isolation window before fragment-
ing them and recording the respective fragment (MS2) spectrum. Ideally, only a single ion species
is fragmented, depending also on the size of the isolation window, different ions (with slightly dif-
ferent m/z) might be fragmented. The resulting MS2 spectrum might thus contain fragments from
different ions and hence be less pure.

The precursorPurity() function calculates the precursor purity of MS2 (fragment) spectra ex-
pressed as the ratio between the itensity of the highest signal in the isolation window to the sum of
intensities of all MS1 peaks in the isolation window. This is similar to the calculation performed in
the msPurity Bioconductor package.

https://www.bioconductor.org/packages/release/bioc/html/msPurity.html

82 precursorPurity

The peak intensities within the isolation window is extracted from the last MS1 spectrum before
the respective MS2 spectrum. The spectra are thus expected to be ordered by retention time. For
the isolation window either the isolation window reported in the Spectra object is used, or it is
calculated based on the MS2 spectra’s precursor m/z. By default, the isolation window is calculated
based on the precursor m/z and parameters tolerance and ppm: precursorMz +/- (tolerance +
ppm(precursorMz, ppm)). If the actually used precursor isolation window is defined and available
in the Spectra object, it can be used instead by setting useReportedIsolationWindow = TRUE
(default is useReportedIsolationWindow = FALSE). Note that parameters tolerance and ppm are
ignored for useReportedIsolationWindow = TRUE.

Usage
precursorPurity(
object,
tolerance = 0.05,
ppm = @,

useReportedIsolationWindow = FALSE,
BPPARAM = SerialParam()

)
Arguments

object Spectra() object with LC-MS/MS data.

tolerance numeric(1) defining an absolute value (in Da) to be used to define the isolation
window. For the precursor purity calculation of an MS2 spectrum, all MS1
peaks from the previous MS1 scan with an m/z between the fragment spectrum’s
precursorMz +/- (tolerance + ppm(precursorMz, ppm)) are considered.

ppm numeric(1) defining the m/z dependent acceptable difference in m/z. See doc-

umentation of parameter tolerance for more information.

useReportedIsolationWindow
logical (1) whether the reported isolation window, defined by spectra variables
isolationWindowLowerMz and isolationWindowUpperMz in the input Spectra
object, should be used instead of calculating the isolation window from the re-
ported precursor m/z and parameters tolerance and ppm. Only few manufactur-
ers report the isolation window with the spectra variables isolationWindowLowerMz
and isolationWindowTargetMz, thus the default for this parameter is FALSE.

BPPARAM parallel processing setup. Defaults to BPPARAM = SerialParam(). See BiocParallel: :SerialParam()
for more information.

Value

numeric vector of length equal to the number of spectra in object, with values representing the
calculated precursor purity for each spectrum. For MS1 spectra, NA_real_ is returned. For MS2
spectra, the purity is defined as the proportion of maximum signal to the total ion current within
the isolation window that is attributable to the selected precursor ion. If no matching MS1 scan is
found or the precursor peak is missing, NA_real_ is returned.

processingChunkSize,Spectra-method 83

Note

This approach is applicable only when fragment spectra are obtained through data-dependent ac-
quisition (DDA), as it assumes that the peak with the highest intensity within the given isolation
m/z window (from the previous MS1 spectrum) corresponds to the precursor ion.

The spectra in object have to be ordered by their retention time.

Author(s)

Ahlam Mentag, Johannes Rainer

See Also

addProcessing() for other data analysis and manipulation functions.

Examples

Load a test DDA file

library(msdata)

fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML",
package = "msdata")

sps_dda <- Spectra(fl)

Define the isolation window based on the MS2 spectra's precursor m/z
and parameter “tolerance™: isolation window with size 1Da:
pp <- precursorPurity(sps_dda, tolerance = 0.5)

values for MS1 spectra are NA
head(ppLmsLevel(sps_dda) == 1])

head(pp[msLevel (sps_dda) == 2])

Use the reported isolation window (if defined in the ~Spectra™):
filterMsLevel(sps_dda, 2L) |>

isolationWindowLowerMz() |>

head()
filterMsLevel(sps_dda, 2L) |>

isolationWindowUpperMz() |>

head()

pp_2 <- precursorPurity(sps_dda, useReportedIsolationWindow = TRUE)

head(pp_2[msLevel(sps_dda) == 2])

processingChunkSize, Spectra-method
Parallel and chunk-wise processing of Spectra

84 processingChunkSize,Spectra-method

Description

Many operations on Spectra objects, specifically those working with the actual MS data (peaks
data), allow a chunk-wise processing in which the Spectra is splitted into smaller parts (chunks)
that are iteratively processed. This enables parallel processing of the data (by data chunk) and also
reduces the memory demand since only the MS data of the currently processed subset is loaded into
memory and processed. This chunk-wise processing, which is by default disabled, can be enabled
by setting the processing chunk size of a Spectra with the processingChunkSize () function to a
value which is smaller than the length of the Spectra object. Setting processingChunkSize(sps)
<- 1000 will cause any data manipulation operation on the sps, such as filterIntensity() or
bin(), to be performed eventually in parallel for sets of 1000 spectra in each iteration.

Such chunk-wise processing is specifically useful for Spectra objects using an on-disk backend
or for very large experiments. For small data sets or Spectra using an in-memory backend, a
direct processing might however be more efficient. Setting the chunk size to Inf will disable the
chunk-wise processing.

For some backends a certain type of splitting and chunk-wise processing might be preferable. The
MsBackendMzR backend for example needs to load the MS data from the original (mzML) files,
hence chunk-wise processing on a per-file basis would be ideal. The backendParallelFactor ()
function for MsBackend allows backends to suggest a preferred splitting of the data by returning
a factor defining the respective data chunks. The MsBackendMzR returns for example a factor
based on the dataStorage spectra variable. A factor of length O is returned if no particular
preferred splitting should be performed. The suggested chunk definition will be used if no finite
processingChunkSize() is defined. Setting the processingChunkSize overrides backendParallelFactor.

See the Large-scale data handling and processing with Spectra for more information and examples.
Functions to configure parallel or chunk-wise processing:
* processingChunkSize(): allows to get or set the size of the chunks for parallel processing

or chunk-wise processing of a Spectra in general. With a value of Inf (the default) no chunk-
wise processing will be performed.

* processingChunkFactor(): returns a factor defining the chunks into which a Spectra will
be split for chunk-wise (parallel) processing. A factor of length O indicates that no chunk-
wise processing will be performed.

Usage

S4 method for signature 'Spectra’
processingChunkSize(object)

S4 replacement method for signature 'Spectra'
processingChunkSize(object) <- value

S4 method for signature 'Spectra’
processingChunkFactor(object)

S4 method for signature 'Spectra’
backendBpparam(object, BPPARAM = bpparam())

processingLog 85

Arguments
object Spectra object.
value integer (1) defining the chunk size.
BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation.
Value

processingChunkSize() returns the currently defined processing chunk size (or Inf if it is not
defined). processingChunkFactor() returns a factor defining the chunks into which x will be
split for (parallel) chunk-wise processing or a factor of length O if no splitting is defined.

Note

Some backends might not support parallel processing at all. For these, the backendBpparam()
function will always return a SerialParam() independently on how parallel processing was de-
fined.

Author(s)

Johannes Rainer

processinglog Data manipulation and analysis methods

Description

Various data analysis functions are available for Spectra objects. These can be categorized into
functions that either return a Spectra object (with the manipulated data) and functions that directly
return the result from the calculation. For the former category, the data manipulations are cached
in the result object’s processing queue and only exectuted on-the-fly when the respective data gets
extracted from the Spectra (see section The processing queue for more information).

For the second category, the calculations are directly executed and the result, usually one value per
spectrum, returned. Generally, to reduce memory demand, a chunk-wise processing of the data is

performed.
Usage
processinglLog(x)
scalePeaks(x, by = sum, msLevel. = uniqueMsLevels(x))

S4 method for signature 'Spectra’
addProcessing(object, FUN, ..., spectraVariables = character())

S4 method for signature 'Spectra’

86

applyProcessing(
object,
f = processingChunkFactor(object),
BPPARAM = bpparam(),

)
S4 method for signature 'Spectra'
bin(

X,

binSize = 1L,

breaks = NULL,

msLevel. = uniqueMsLevels(x),

FUN = sum,

zero.rm = TRUE
)
S4 method for signature 'Spectra’
containsMz(

object,

mz = numeric(),
tolerance = 0,
ppm = 20,
which = c("any”, "all"),
BPPARAM = bpparam()

)

S4 method for signature 'Spectra
containsNeutralloss(

object,

neutrallLoss = 0,

tolerance = 0,

ppm = 20,

BPPARAM = bpparam()
)

S4 method for signature 'Spectra
entropy(object, normalized = TRUE)

S4 method for signature 'ANY'
entropy(object, ...)
S4 method for signature 'Spectra’
pickPeaks(
object,
halfWindowSize = 2L,
method = c("MAD", "SuperSmoother”),
snr = 0,

processingLog

processingLog 87

k = oL,

descending = FALSE,

threshold = 0,

msLevel. = uniqueMsLevels(object),

)

S4 method for signature 'Spectra’
replacelntensitiesBelow(

object,

threshold = min,

value = 0,

msLevel. = uniqueMsLevels(object)

)

S4 method for signature 'Spectra’
reset(object, ...)

S4 method for signature 'Spectra’
smooth(
X,
halfWindowSize = 2L,
method = c(”"MovingAverage"”, "WeightedMovingAverage"”, "SavitzkyGolay"),

msLevel. = uniqueMsLevels(x),
)
S4 method for signature 'Spectra’
spectrapply(

object,

FUN,

L

chunkSize = integer(),

f = factor(),
BPPARAM = SerialParam()
)
Arguments
X A Spectra.
by For scalePeaks(): function to calculate a single numeric from intensity val-
ues of a spectrum by which all intensities (of that spectrum) should be divided
by. The default by = sum will divide intensities of each spectrum by the sum of
intensities of that spectrum.
msLevel. integer defining the MS level(s) of the spectra to which the function should be

applied (defaults to all MS levels of object.
object A Spectra object.

processingLog

FUN For addProcessing(): function to be applied to the peak matrix of each spec-
trum in object. For bin(): function to aggregate intensity values of peaks
falling into the same bin. Defaults to FUN = sum thus summing up intensities.
For spectrapply() and chunkapply(): function to be applied to each individ-
ual or each chunk of Spectra.

.. Additional arguments passed to internal and downstream functions.

spectraVariables
For addProcessing(): character with additional spectra variables that should
be passed along to the function defined with FUN. See function description for
details.

f For spectrapply() and applyProcessing(): factor defining how object
should be splitted for eventual parallel processing. Defaults to factor() for
spectrapply () hence the object is not splitted while it defaults to f = processingChunkSize(object)
for applyProcessing() splitting thus the object by default into chunks depend-
ing on processingChunkSize().

BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation. This is passed directly to the backendInitialize() method of the
MsBackend. See also processingChunkSize() for additional information on
parallel processing.

binSize For bin(): numeric(1) defining the size for the m/z bins. Defaults to binSize
=1.

breaks For bin(): numeric defining the m/z breakpoints between bins.

zero.rm For bin(): logical (1) indicating whether to remove bins with zero intensity.

Defaults to TRUE, meaning the function will discard bins created with an inten-
sity of 0 to enhance memory efficiency.

mz For containsMz(): numeric with the m/z value(s) of the mass peaks to check.

tolerance For containsMz() and neutrallLoss(): numeric(1) allowing to define a con-
stant maximal accepted difference between m/z values for peaks to be matched.

ppm For containsMz() and neutrallLoss(): numeric(1) defining a relative, m/z-
dependent, maximal accepted difference between m/z values for peaks to be
matched.

which For containsMz(): either "any” or "all” defining whether any (the default) or

all provided mz have to be present in the spectrum.

neutrallLoss for containsNeutralloss(): numeric(1) defining the value which should be
subtracted from the spectrum’s precursor m/z.

normalized for entropy(): logical(1) whether the normalized entropy should be calcu-
lated (default). See also MsCoreUtils: :nentropy() for details.

halfWindowSize For pickPeaks(): integer (1), used in the identification of the mass peaks: a
local maximum has to be the maximum in the window from (i - halfWindowSize): (i
+halfWindowSize). For smooth(): integer (1), used in the smoothing algo-
rithm, the window reaches from (i - halfWindowSize): (i + halfWindowSize).

method For pickPeaks(): character(1), the noise estimators that should be used,
currently the the Median Absolute Deviation (method = "MAD") and Friedman’s
Super Smoother (method = "SuperSmoother"”) are supported. For smooth():

processingLog 89

character (1), the smoothing function that should be used, currently, the Moving-
Average- (method = "MovingAverage"), Weighted-Moving-Average- (method = "WeightedMovingAver
Savitzky-Golay-Smoothing (method = "SavitzkyGolay") are supported.

snr For pickPeaks(): double(1) defining the Signal-to-Noise-Ratio. The intensity
of alocal maximum has to be higher than snr * noise to be considered as peak.

k For pickPeaks(): integer (1), number of values left and right of the peak that
should be considered in the weighted mean calculation.

descending For pickPeaks(): logical, if TRUE just values betwee the nearest valleys
around the peak centroids are used.

threshold For pickPeaks(): a numeric(1) defining the proportion of the maximal peak
intensity. Only values above the threshold are used for the weighted mean calcu-
lation. For replaceIntensitiesBelow(): a numeric(1) defining the thresh-
old or a function to calculate the threshold for each spectrum on its intensity
values. Defaults to threshold = min.

value For replaceIntensitiesBelow(): numeric(1) defining the value with which
intensities should be replaced with.

chunkSize For spectrapply(): size of the chunks into which the Spectra should be split.
This parameter overrides parameters f and BPPARAM.

Value

See the documentation of the individual functions for a description of the return value.

Data analysis methods returning a Spectra

The methods listed here return a Spectra object as a result.

* addProcessing(): adds an arbitrary function that should be applied to the peaks matrix of ev-
ery spectrum in object. The function (can be passed with parameter FUN) is expected to take
a peaks matrix as input and to return a peaks matrix. A peaks matrix is a numeric matrix with
two columns, the first containing the m/z values of the peaks and the second the corresponding
intensities. The function has to have . . . in its definition. Additional arguments can be passed
with With parameter spectraVariables it is possible to define additional spectra vari-
ables from object that should be passed to the function FUN. These will be passed by their
name (e.g. specifying spectraVariables = "precursorMz” will pass the spectra’s precursor
m/z as a parameter named precursorMz to the function. The only exception is the spectra’s
MS level, these will be passed to the function as a parameter called spectrumMsLevel (i.e.
with spectraVariables = "msLevel” the MS levels of each spectrum will be submitted to
the function as a parameter called spectrumMsLevel). Examples are provided in the package
vignette.

* bin(): aggregates individual spectra into discrete (m/z) bins. Binning is performed only on
spectra of the specified MS level(s) (parameter msLevel, by default all MS levels of x). The
bins can be defined with parameter breaks which by default are equally sized bins, with size
being defined by parameter binSize, from the minimal to the maximal m/z of all spectra (of
MS level msLevel) within x. The same bins are used for all spectra in x. All intensity values
for peaks falling into the same bin are aggregated using the function provided with parameter
FUN (defaults to FUN = sum, i.e. all intensities are summed up). Note that the binning operation

90 processingLog

is applied to the peak data on-the-fly upon data access and it is possible to revert the operation
with the reset () function (see description of reset () below).

e countIdentifications: counts the number of identifications each scan has led to. See
countIdentifications() for more details.

* pickPeaks(): picks peaks on individual spectra using a moving window-based approach
(window size = 2 x halfWindowSize). For noisy spectra there are currently two different
noise estimators available, the Median Absolute Deviation (method = "MAD") and Friedman’s
Super Smoother (method = "SuperSmoother"), as implemented in the MsCoreUtils: :noise().
The method supports also to optionally refine the m/z value of the identified centroids by con-
sidering data points that belong (most likely) to the same mass peak. Therefore the m/z value
is calculated as an intensity weighted average of the m/z values within the peak region. The
peak region is defined as the m/z values (and their respective intensities) of the 2 * k closest
signals to the centroid or the closest valleys (descending = TRUE) in the 2 x k region. For
the latter the k has to be chosen general larger. See MsCoreUtils: :refineCentroids() for
details. If the ratio of the signal to the highest intensity of the peak is below threshold it will
be ignored for the weighted average.

* replacelntensitiesBelow(): replaces intensities below a specified threshold with the pro-
vided value. Parameter threshold can be either a single numeric value or a function which
is applied to all non-NA intensities of each spectrum to determine a threshold value for each
spectrum. The default is threshold = min which replaces all values which are <= the mini-
mum intensity in a spectrum with value (the default for value is @). Note that the function
specified with threshold is expected to have a parameter na.rm since na.rm = TRUE will be
passed to the function. If the spectrum is in profile mode, ranges of successive non-0 peaks
<= threshold are set to 0. Parameter msLevel. allows to apply this to only spectra of certain
MS level(s).

* scalePeaks(): scales intensities of peaks within each spectrum depending on parameter by.
With by = sum (the default) peak intensities are divided by the sum of peak intensities within
each spectrum. The sum of intensities is thus 1 for each spectrum after scaling. Parameter
msLevel. allows to apply the scaling of spectra of a certain MS level. By default (msLevel.
=uniqueMsLevels(x)) intensities for all spectra will be scaled.

* smooth(): smooths individual spectra using a moving window-based approach (window
size = 2 * halfWindowSize). Currently, the Moving-Average- (method = "MovingAverage"),
Weighted-Moving-Average- (method = "WeightedMovingAverage"), weights depending on
the distance of the center and calculated 1/2*(-halfWindowSize:halfWindowSize)) and
Savitzky-Golay-Smoothing (method = "SavitzkyGolay") are supported. For details how to
choose the correct halfWindowSize please see MsCoreUtils: :smooth().

Data analysis methods returning the result from the calculation

The functions listed in this section return immediately the result from the calculation. To reduce
memory demand (and allow parallel processing) the calculations a chunk-wise processing is gener-
ally performed.

e chunkapply(): apply an arbitrary function to chunks of spectra. See chunkapply() for
details and examples.

» containsMz(): checks for each of the spectra whether they contain mass peaks with an m/z
equal to mz (given acceptable difference as defined by parameters tolerance and ppm - see

processingLog 91

MsCoreUtils: :common() for details). Parameter which allows to define whether any (which
= "any", the default) or all (which = "all") of the mz have to match. The function returns NA
if mz is of length O or is NA.

* containsNeutrallLoss(): checks for each spectrum in object if it has a peak with an m/z
value equal to its precursor m/z - neutralloss (given acceptable difference as defined by
parameters tolerance and ppm). Returns NA for MS1 spectra (or spectra without a precursor
m/z).

* entropy(): calculates the entropy of each spectra based on the metrics suggested by Li et al.
(https://doi.org/10.1038/s41592-021-01331-z). See also MsCoreUtils: :nentropy() in the
MsCoreUtils package for details.

* estimatePrecursorIntensity(): defines the precursor intensities for MS2 spectra using
the intensity of the matching MS1 peak from the closest MS1 spectrum (i.e. the last MS1
spectrum measured before the respective MS2 spectrum). With method = "interpolation”
it is also possible to calculate the precursor intensity based on an interpolation of intensity
values (and retention times) of the matching MS1 peaks from the previous and next MS1
spectrum. See estimatePrecursorIntensity() for examples and more details.

* estimatePrecursorMz(): for DDA data: allows to estimate a fragment spectra’s precursor
m/z based on the reported precursor m/z and the data from the previous MS1 spectrum. See
estimatePrecursorMz() for details.

* neutralloss(): calculates neutral loss spectra for fragment spectra. See neutrallLoss() for
detailed documentation.

* spectrapply(): applies a given function to each individual spectrum or sets of a Spectra
object. By default, the Spectra is split into individual spectra (i.e. Spectra of length 1)
and the function FUN is applied to each of them. An alternative splitting can be defined with
parameter f. Parameters for FUN can be passed using The returned result and its or-
der depend on the function FUN and how object is split (hence on f, if provided). Parallel
processing is supported and can be configured with parameter BPPARAM, is however only sug-
gested for computational intense FUN. As an alternative to the (eventual parallel) processing of
the full Spectra, spectrapply() supports also a chunk-wise processing. For this, parameter
chunkSize needs to be specified. object is then split into chunks of size chunkSize which
are then (stepwise) processed by FUN. This guarantees a lower memory demand (especially for
on-disk backends) since only the data for one chunk needs to be loaded into memory in each
iteration. Note that by specifying chunkSize, parameters f and BPPARAM will be ignored. See
also chunkapply () above or examples below for details on chunk-wise processing.

The processing queue

Operations that modify mass peak data, i.e. the m/z and intensity values of a Spectra are generally
not applied immediately to the data but are cached within the object’s processing queue. These
operations are then applied to the data only upon request, for example when m/z and/or intensity
values are extracted. This lazy execution guarantees that the same functionality can be applied
to any Spectra object, regardless of the type of backend that is used. Thus, data manipulation
operations can also be applied to data that is read only. As a side effect, this enables also to undo
operations using the reset () function.

Functions related to the processing queue are:

* applyProcessing(): for Spectra objects that use a writeable backend only: apply all steps
from the lazy processing queue to the peak data and write it back to the data storage. Parameter

92 processingLog

f allows to specify how object should be split for parallel processing. This should either be
equal to the dataStorage, or f =rep(1, length(object)) to disable parallel processing
alltogether. Other partitionings might result in errors (especially if a MsBackendHdf5Peaks
backend is used).

* processinglog(): returns a character vector with the processing log messages.

* reset(): restores the data to its original state (as much as possible): removes any processing
steps from the lazy processing queue and calls reset() on the backend which, depending
on the backend, can also undo e.g. data filtering operations. Note that a reset=*(call after
applyProcessing() will not have any effect. See examples below for more information.

Author(s)
Sebastian Gibb, Johannes Rainer, Laurent Gatto, Philippine Louail, Nir Shahaf, Mar Garcia-Aloy

See Also

* compareSpectra() for calculation of spectra similarity scores.
e processingChunkSize() for information on parallel and chunk-wise data processing.

» Spectra for a general description of the Spectra object.

Examples

Load a ~Spectra” object with LC-MS/MS data.

fl <- system.file("TripleTOF-SWATH", "PestMix1_DDA.mzML",
package = "msdata")

sps_dda <- Spectra(fl)

sps_dda

- FUNCTIONS RETURNING A SPECTRA --------

Replace peak intensities below 40 with a value of 1
sps_mod <- replacelntensitiesBelow(sps_dda, threshold = 20, value = 1)
sps_mod

Get the intensities of the first spectrum before and after the
operation

intensity(sps_dda[1])

intensity(sps_mod[1])

Remove all peaks with an intensity below 5.
sps_mod <- filterIntensity(sps_dda, intensity = c(5, Inf))

intensity(sps_mod)

In addition it is possible to pass a function to “filterIntensity()~: in
the example below we want to keep only peaks that have an intensity which
is larger than one third of the maximal peak intensity in that spectrum.
keep_peaks <- function(x, prop = 3) {

x > max(x, na.rm = TRUE) / prop

processingLog

}
sps_mod <- filterIntensity(sps_dda, intensity = keep_peaks)
intensity(sps_mod)

We can also change the proportion by simply passing the “prop™ parameter
to the function. To keep only peaks that have an intensity which is

larger than half of the maximum intensity:

sps_mod <- filterIntensity(sps_dda, intensity = keep_peaks, prop = 2)
intensity(sps_mod)

With the “scalePeaks()” function we can alternatively scale the

intensities of mass peaks per spectrum to relative intensities. This
is specifically useful for fragment (MS2) spectra. We below thus

scale the intensities per spectrum by the total sum of intensities
(such that the sum of all intensities per spectrum is 1).

Below we scale the intensities of all MS2 spectra in our data set.
sps_mod <- scalePeaks(sps_dda, msLevel = 2L)

MS1 spectra were not affected
sps_mod |>
filterMsLevel(1L) |>
intensity()

Intensities of MS2 spectra were scaled
sps_mod |>

filterMsLevel(2L) |>

intensity()

Since data manipulation operations are by default not directly applied to
the data but only cached in the internal processing queue, it is also

possible to remove these data manipulations with the “reset()” function:
tmp <- reset(sps_mod)

tmp

lengths(sps_dda) |> head()

lengths(sps_mod) |> head()

lengths(tmp) |> head()

Data manipulation operations cached in the processing queue can also be
applied to the mass peaks data with the ~applyProcessing()” function, if
the ~Spectra” uses a backend that supports that (i.e. allows replacing
the mass peaks data). Below we first change the backend to a

~MsBackendMemory ()~ and then use the ~applyProcessing()” to modify the
mass peaks data

sps_dda <- setBackend(sps_dda, MsBackendMemory())

sps_mod <- filterIntensity(sps_dda, intensity = c(5, Inf))

sps_mod <- applyProcessing(sps_mod)

sps_mod

While we can't *undo* this filtering operation now using the “reset()"

function, accessing the data would now be faster, because the operation
does no longer to be applied to the original data before returning to the
user.

93

94

Spectra

##H - FUNCTIONS RETURNING THE RESULT --------

With the “spectrapply()” function it is possible to apply an

arbitrary function to each spectrum in a Spectra.

In the example below we calculate the mean intensity for each spectrum
in a subset of the sciex_im data. Note that we can access all variables
of each individual spectrum either with the “$° operator or the

corresponding method.

res <- spectrapply(sps_dda[1:20], FUN = function(x) mean(x$intensity[[1]]1))
head(res)

As an alternative, applying a function “FUN™ to a ~Spectra™ can be

performed *chunk-wisex. The advantage of this is, that only the data for
one chunk at a time needs to be loaded into memory reducing the memory
demand. This type of processing can be performed by specifying the size
of the chunks (i.e. number of spectra per chunk) with the ~chunkSize~

parameter

spectrapply(sps_dda[1:20], lengths, chunkSize = 5L)

Precursor intensity estimation. Some manufacturers don't report the
precursor intensity for MS2 spectra:

sps_dda |>
filterMsLevel(2L) |>
precursorIntensity()

This intensity can however be estimated from the previously measured
MS1 scan with the “estimatePrecursorIntensity()™ function:
pi <- estimatePrecursorIntensity(sps_dda)

This function returned the result as a “numeric™ vector with one
value per spectrum:
pi

We can replace the precursor intensity values of the originating
object:
sps_dda$precursorIntensity <- pi

sps_dda |>
filterMsLevel(2L) |>
precursorIntensity()
Spectra The Spectra class to manage and access MS data
Description

The Spectra class encapsules spectral mass spectrometry (MS) data and related metadata. The MS
data is represented by a backend extending the virual MsBackend class which provides the data
to the Spectra object. The Spectra class implements only data accessor, filtering and analysis

Spectra 95

methods for the MS data and relies on its backend to provide the MS data. This allows to change
data representations of a Spectra object depending on the user’s needs and properties of the data.
Different backends and their properties are explained in the MsBackend documentation.

Documentation on other topics and functionality of Spectracan be found in:

* spectraData() for accessing and using MS data through Spectra objects.

* filterMsLevel() to subset and filter Spectra objects.

* plotSpectra() for visualization of Spectra objects.

* processingChunkSize() for information on parallel and chunk-wise data processing.
» combineSpectra() for merging, aggregating and splitting of Spectra objects.

» combinePeaks () for merging and aggregating Spectra’s mass peaks data.

* addProcessing() for data analysis functions.

» compareSpectra() for spectra similarity calculations.

Usage

S4 method for signature 'missing'’
Spectra(

object,

processingQueue = list(),

metadata = list(),

backend = MsBackendMemory(),
BPPARAM = bpparam()
)

S4 method for signature 'MsBackend'
Spectra(object, processingQueue = list(), metadata = list(), ...)

S4 method for signature 'character'
Spectra(

object,

processingQueue = list(),

metadata = list(),

source = MsBackendMzR(),

backend = source,

BPPARAM = bpparam()
)

S4 method for signature 'ANY'
Spectra(
object,
processingQueue = list(),
metadata = list(),
source = MsBackendMemory(),
backend = source,

96

Spectra

BPPARAM = bpparam()

)

S4 method for signature 'Spectra,MsBackend'’

setBackend(
object,
backend,

f = processingChunkFactor(object),

BPPARAM = bpparam()

)

S4 method for signature 'Spectra’
export(object, backend, ...)

S4 method for signature 'Spectra’
dataStorageBasePath(object)

S4 replacement method for signature 'Spectra’
dataStorageBasePath(object) <- value

Arguments

object

processingQueue

metadata

backend

BPPARAM

source

For Spectra(): an object to instantiate the Spectra object and initialize the
with data.. See section on creation of Spectra objects for details. For all other
methods a Spectra object.

For Spectra(): optional 1ist of ProtGenerics::ProcessingStep objects.
For Spectra(): optional 1ist with metadata information.
Additional arguments.

For Spectra(): MsBackend to be used as backend. See section on creation of
Spectra objects for details. For setBackend(): instance of MsBackend that
supports setBackend() (i.e. for which supportsSetBackend() returns TRUE).
Such backends have a parameter data in their backendInitialize() function
that support passing the full spectra data to the initialize method. See section on
creation of Spectra objects for details. For export(): MsBackend to be used
to export the data.

Parallel setup configuration. See BiocParallel: :bpparam() for more infor-
mation. This is passed directly to the backendInitialize() method of the
MsBackend.

For Spectra(): instance of MsBackend that can be used to import spectrum
data from the provided files. See section Creation of objects for more details.

For setBackend(): factor defining how to split the data for parallelized copy-
ing of the spectra data to the new backend. For some backends changing this
parameter can lead to errors. Defaults to processingChunkFactor().

Spectra 97

value For dataStorageBasePath(): A character vector that defines the base direc-
tory where the data storage files can be found.

Details

The Spectra class uses by default a lazy data manipulation strategy, i.e. data manipulations such as
performed with replaceIntensitiesBelow() are not applied immediately to the data, but applied
on-the-fly to the spectrum data once it is retrieved. This enables data manipulation operations also
for read only data representations. For some backends that allow to write data back to the data
storage (such as the MsBackendMemory (), MsBackendDataFrame () and MsBackendHdf5Peaks())
it is possible to apply to queue with the applyProcessing() function (see the applyProcessing()
function for details).

Clarifications regarding scan/acquisition numbers and indices:

* A spectrumId (or spectrumID) is a vendor specific field in the mzML file that contains some
information about the run/spectrum, e.g.: controllerType=0 controllerNumber=1 scan=5281 file=2

* acquisitionNum is a more a less sanitize spectrum id generated from the spectrumId field
by mzR (see here).

* scanIndex is the mzR generated sequence number of the spectrum in the raw file (which
doesn’t have to be the same as the acquisitionNum)

See also this issue.

Data stored in a Spectra object

The Spectra object is a container for MS data that includes mass peak data (m/z and related in-
tensity values, also referred to as peaks data in the context of Spectra) and metadata of individual
spectra (so called spectra variables). While a core set of spectra variables (the coreSpectraVariables())
are guaranteed to be provided by a Spectra, it is possible to add arbitrary additional spectra vari-

ables to a Spectra object.

The Spectra object is designed to contain MS data of a (large) set of mass spectra. The data is
organized linearly and can be thought of a list of mass spectra, i.e. each element in the Spectra is
one spectrum.

Creation of objects

Spectra classes can be created with the Spectra() constructor function which supports the fol-
lowing formats:

* parameter object is a data. frame or DataFrame containing the full spectrum data (spectra
variables in columns as well as columns with the individual MS peak data, m/z and intensity).
The provided backend (by default a MsBackendMemory) will be initialized with that data.

» parameter object is a MsBackend (assumed to be already initialized).

» parameter object is missing, in which case it is supposed that the data is provided by the
MsBackend class passed along with the backend argument.

» parameter object is of type character and is expected to be the file names(s) from which
spectra should be imported. Parameter source allows to define a MsBackend that is able to im-
port the data from the provided source files. The default value for source is MsBackendMzR ()
which allows to import spectra data from mzML, mzXML or CDF files.

https://github.com/sneumann/mzR/blob/master/src/pwiz/data/msdata/MSData.cpp#L552-L580
https://github.com/lgatto/MSnbase/issues/525

98 Spectra

With ... additional arguments can be passed to the backend’s backendInitialize() method.
Parameter backend allows to specify which MsBackend should be used for data representation and
storage.

Data representation of a Spectra

The MS data which can be accessed through the Spectra object is represented by its backend,
which means that this backend defines how and where the data is stored (e.g. in memory or on
disk). The Spectra object relies on the backend to provide the MS data whenever it needs it for
data processing. Different backends with different properties, such as minimal memory requirement
or fast data access, are defined in the Spectra package or one of the MsBackend* packages. More
information on backends and their properties is provided in the documentation of MsBackend.

On-disk backends keep only a limited amount of data in memory retrieving most of the data (usually
the MS peak data) upon request on-the-fly from their on-disk data representations. Moving the on-
disk data storage of such a backend or a serialized object to a different location in the file system
will cause data corruption. The dataStorageBasePath() and dataStorageBasePath<- functions
allow in such cases (and if thebackend classes support this operation), to get or change the base path
to the directory of the backend’s data storage. In-memory backends such as MsBackendMemory or
MsBackendDataFrame keeping all MS data in memory don’t support, and need, this function, but
for MsBackendMzR this function can be used to update/adapt the path to the directory containing
the original data files. Thus, for Spectra objects (using this backend) that were moved to another
file system or computer, these functions allow to adjust/adapt the base file path.

Changing data representation of a Spectra

The data representation, i.e. the backend of a Spectra object can be changed with the setBackend ()
method that takes an instance of the new backend as second parameter backend. A call to setBackend(sps,
backend = MsBackendDataFrame()) would for example change the backend of sps to the in-
memory MsBackendDataFrame. Changing to a backend is only supported if that backend has a

data parameter in its backendInitialize() method and if supportsSetBackend() returns TRUE

for that backend. setBackend() will transfer the full spectra data from the originating backend as

a DataFrame to the new backend.

Generally, it is not possible to change to a read-only backend such as the MsBackendMzR () backend.
The definition of the function is: setBackend(object, backend, ..., f =dataStorage(object),
BPPARAM = bpparam()) and its parameters are:

* object: the Spectra object.

* backend: an instance of the new backend, e.g. [MsBackendMemory ()].

* f: factor allowing to parallelize the change of the backends. By default the process of copying
the spectra data from the original to the new backend is performed separately (and in parallel)
for each file. Users are advised to use the default setting.

e ...: optional additional arguments passed to the backendInitialize() method of the new
backend.

BPPARAM: setup for the parallel processing. See BiocParallel: :bpparam() for details.

Spectra 99

Exporting data from a Spectra object

Data from a Spectra object can be exported to a file with the export () function. The actual export
of the data is performed by the export method of the MsBackend class defined with the mandatory
parameter backend which defines also the format in which the data is exported. Note however that
not all backend classes support export of data. From the MsBackend classes in the Spectra package
currently only the MsBackendMzR backend supports data export (to mzML/mzXML file(s)); see the
help page of the MsBackend for information on its arguments or the examples below or the vignette
for examples.

The definition of the function is export(object, backend, ...) and its parameters are:

* object: the Spectra object to be exported.

* backend: instance of a class extending MsBackend which supports export of the data (i.e.
which has a defined export method).

 ...: additional parameters specific for the MsBackend passed with parameter backend.

Author(s)

Sebastian Gibb, Johannes Rainer, Laurent Gatto, Philippine Louail

Examples

#H - CREATION OF SPECTRA OBJECTS --------
Create a Spectra providing a “DataFrame™ containing the spectrum data.

spd <- DataFrame(msLevel = c(1L, 2L), rtime = c(1.1, 1.2))
spd$mz <- list(c(100, 103.2, 104.3, 106.5), c(45.6, 120.4, 190.2))
spd$intensity <- list(c(200, 400, 34.2, 17), c(12.3, 15.2, 6.8))

data <- Spectra(spd)
data

Create a Spectra from mzML files and use the “MsBackendMzR™ on-disk
backend.
sciex_file <- dir(system.file("sciex", package = "msdata"),
full.names = TRUE)
sciex <- Spectra(sciex_file, backend = MsBackendMzR())
sciex

- CHANGING DATA REPRESENTATIONS --------

The MS data is on disk and will be read into memory on-demand. We can
however change the backend to a MsBackendMemory backend which will

keep all of the data in memory.

sciex_im <- setBackend(sciex, MsBackendMemory())

sciex_im

The ~MsBackendMemory()™ supports the ~setBackend()~ method:
supportsSetBackend(MsBackendMemory())

100 Spectra

Thus, it is possible to change to that backend with ~setBackend()”. Most
read-only backends however don't support that, such as the

~MsBackendMzR™ and ~setBackend()~ would fail to change to that backend.
supportsSetBackend(MsBackendMzR())

The on-disk object “sciex™ is light-weight, because it does not keep the
MS peak data in memory. The “sciex_im™ object in contrast keeps all the
data in memory and its size is thus much larger.

object.size(sciex)

object.size(sciex_im)

The spectra variable “dataStorage™ returns for each spectrum the location
where the data is stored. For in-memory objects:
head(dataStorage(sciex_im))

While objects that use an on-disk backend will list the files where the
data is stored.
head(dataStorage(sciex))

The spectra variable ~dataOrigin” returns for each spectrum the *originx
of the data. If the data is read from e.g. mzML files, this will be the
original mzML file name:

head(dataOrigin(sciex))

head(dataOrigin(sciex_im))

I DATA EXPORT --------

Some “MsBackend™ classes provide an “export()” method to export the data
to the file format supported by the backend.

The ~MsBackendMzR™ for example allows to export MS data to mzML or

mzXML file(s), the “MsBackendMgf™ (defined in the MsBackendMgf R package)
would allow to export the data in mgf file format.

Below we export the MS data in “data™. We call the “export()" method on
this object, specify the backend that should be used to export the data
(and which also defines the output format) and provide a file name.

fl <- tempfile()

export(data, MsBackendMzR(), file = f1)

This exported our data in mzML format. Below we read the first 6 lines
from that file.
readLines(fl, n = 6)

If only a single file name is provided, all spectra are exported to that
file. To export data with the “MsBackendMzR™ backend to different files, a
file name for each individual spectrum has to be provided.

Below we export each spectrum to its own file.

fls <- c(tempfile(), tempfile())

export(data, MsBackendMzR(), file = fls)

Reading the data from the first file
res <- Spectra(backendInitialize(MsBackendMzR(), fls[11))

spectra-plotting 101

mz(res)
mz (data)

spectra-plotting Plotting Spectra

Description
Spectra() can be plotted with one of the following functions
* plotSpectra(): plots each spectrum in its separate plot by splitting the plot area into as many
panels as there are spectra.
* plotSpectraOverlay(): plots all spectra in x into the same plot (as an overlay).

* plotSpectraMirror(): plots a pair of spectra as a mirror plot. Parameters x and y both have
to be a Spectra of length 1. Matching peaks (considering ppm and tolerance) are high-
lighted. See MsCoreUtils: :common() for details on peak matching. Parameters matchCol,
matchLty, matchLwd and matchPch allow to customize how matching peaks are indicated.

Usage
plotSpectra(
X’
xlab = "m/z",
ylab = "intensity",
type = ”h”)

xlim = numeric(),
ylim = numeric(),
main = character(),
col = "#00000080",
labels = list(),

labelCex = 1,
labelSrt = 0,
labelAdj = NULL,

labelPos = NULL,
labelOffset = 0.5,
labelCol = "#00000080",

asp = 1,

)

plotSpectralverlay(
X)
xlab = "m/z",
ylab = "intensity”,
type = IIhII,

xlim = numeric(),

102

ylim = numeric(),

spectra-plotting

main = paste(length(x), "spectra”),

col = "#00000080",
labels = list(),
labelCex = 1,

labelSrt = 0,

labelAdj = NULL,
labelPos = NULL,
labelOffset = 0.5,
labelCol = "#00000080",
axes = TRUE,

frame.plot = axes,

)

S4 method for signature 'Spectra’
plotSpectraMirror(

X!

Y,

xlab = "m/z",

ylab = "intensity",
type = "h",

xlim = numeric(),
ylim = numeric(),
main = character(),
col = "#00000080",
labels = list(),

labelCex = 1,
labelSrt = 0,
labelAdj = NULL,

labelPos = NULL,
labelOffset = 0.5,
labelCol = "#00000080",
axes = TRUE,

frame.plot = axes,

ppm = 20,

tolerance = 0,

matchCol = "#80B1D3",

matchLwd = 1,
matchLty = 1,
matchPch = 16,
)
Arguments
X a Spectra() object

2.

. For plotSpectraMirror() it has to be an object of length

spectra-plotting 103

x1lab character (1) with the label for the x-axis (by default x1ab = "m/z").

ylab character (1) with the label for the y-axis (by default ylab = "intensity").

type character (1) specifying the type of plot. See plot.default() for details.
Defaults to type = "h" which draws each peak as a line.

x1lim numeric(2) defining the x-axis limits. The range of m/z values are used by
default.

ylim numeric(2) defining the y-axis limits. The range of intensity values are used
by default.

main character (1) with the title for the plot. By default the spectrum’s MS level

and retention time (in seconds) is used.

col color to be used to draw the peaks. Should be either of length 1, or equal to the
number of spectra (to plot each spectrum in a different color) or be a 1list with
colors for each individual peak in each spectrum.

labels allows to specify a label for each peak. Needs to be a 1ist () with length equal
to the number of spectra (each element of the list being a character () with
length equal to the number of peaks for that spectrum), or, ideally, a function
that uses one of the Spectra’s variables (see examples below). plotSpectraMirror()
supports only labels of type function.

labelCex numeric(1) giving the amount by which the text should be magnified relative
to the default. See parameter cex in par ().

labelSrt numeric(1) defining the rotation of the label. See parameter srt in text().

labelAdj see parameter adj in text().

labelPos see parameter pos in text().

labelOffset see parameter of fset in text().

labelCol color for the label(s).

asp for plotSpectra(): the target ratio (columns / rows) when plotting mutliple

spectra (e.g. for 20 spectra use asp = 4/5 for 4 columns and 5 rows or asp =
5/4 for 5 columns and 4 rows; see grDevices: :n2mfrow() for details).

additional parameters to be passed to the plot.default() function.

axes logical (1) whether (x and y) axes should be drawn.

frame.plot logical (1) whether a box should be drawn around the plotting area.

y for plotSpectraMirror(): Spectra object of length 1 against which x should
be plotted against.

ppm for plotSpectraMirror(): m/z relative acceptable difference (in ppm) for
peaks to be considered matching (see MsCoreUtils: :common() for more de-
tails).

tolerance for plotSpectraMirror(): absolute acceptable difference of m/z values for
peaks to be considered matching (see MsCoreUtils: :common() for more de-
tails).

matchCol for plotSpectraMirror(): color for matching peaks.

matchLwd for plotSpectraMirror(): line width (1lwd) to draw matching peaks. See

par () for more details.

104 spectra-plotting

matchLty for plotSpectraMirror(): line type (1ty) to draw matching peaks. See par()
for more details.
matchPch for plotSpectraMirror(): point character (pch) to label matching peaks. De-
faults to matchPch = 16, set to matchPch = NA to disable. See par() for more
details.
Value

These functions create a plot.

Author(s)

Johannes Rainer, Sebastian Gibb, Laurent Gatto, Guillaume Deflandre

Examples

ints <- list(c(4.3412, 12, 8, 34, 23.4),
c(8, 25, 16, 32))

mzs <- list(c(13.453421, 43.433122, 46.6653553, 129.111212, 322.24432),
c(13.452, 43.5122, 129.112, 322.245))

df <- DataFrame(msLevel = c(1L, 1L), rtime = c(123.12, 124))
df$mz <- mzs

df$intensity <- ints

sp <- Spectra(df)

#it plotSpectra #it

Plot one spectrum.
plotSpectra(sp[1])

Plot both spectra.
plotSpectra(sp)

Define a color for each peak in each spectrum.
plotSpectra(sp, col = list(c(1, 2, 3, 4, 5), 1:4))

Color peaks from each spectrum in different colors.
plotSpectra(sp, col = c("green”, "blue"))

Label each peak with its m/z.
plotSpectra(sp, labels = function(z) lapply(mz(z), format, digits = 4))

Rotate the labels.
plotSpectra(sp, labels = function(z) lapply(mz(z), format, digits
labelPos = 2, labelOffset = ©.1, labelSrt = -30)

4)’

Add a custom annotation for each peak.
sp$labe1 <_ list(C(”", HAH’ HBH’ ”C”, HD”)’
c("Frodo”, "Bilbo"”, "Peregrin”, "Samwise"))

spectra-plotting 105

Plot each peak in a different color
plotSpectra(sp, labels = sp$label,
col = list(1:5, 1:4))

Plot a single spectrum specifying the label.
plotSpectra(spl[2], labels = list(c("A", "B", "C", "D")))

#i# plotSpectraOverlay ##

Plot both spectra overlaying.
plotSpectraOverlay(sp)

Use a different color for each spectrum.
plotSpectraOverlay(sp, col = c("#ff000080", "#0000ff80"))

Label also the peaks with their m/z if their intensity is above 15.
plotSpectraOverlay(sp, col = c("#ff000080", "#0000ff80"),
labels = function(z) {
lapply(seg_along(mz(z)), function(i) {
1lbls <- format(mz(z)[[il], digits = 4)
1bls[intensity(z)[[i]] <= 15] <= ""
1bls
b))
»
abline(h = 15, 1ty = 2)

Use different asp values
plotSpectra(sp, asp = 1/2)
plotSpectra(sp, asp = 2/1)

plotSpectraMirror

Plot two spectra against each other.
plotSpectraMirror(spl[1]1, sp[21)

Label the peaks with their m/z

plotSpectraMirror(sp[1], spl[2],
labels = function(z) list(format(mz(z)[[1L]], digits = 3)),
labelSrt = -30, labelPos = 2, labelOffset = 0.2)

grid()

The same plot with a tolerance of 0.1 and using a different color to

highlight matching peaks

plotSpectraMirror(sp[1], spl[21],
labels = function(z) list(format(mz(z)[[1L]], digits = 3)),
labelSrt = -30, labelPos = 2, labelOffset = 0.2, tolerance = 0.1,
matchCol = "#ff000080", matchLwd = 2)

grid()

106 spectraData

spectraData Accessing mass spectrometry data

Description

As detailed in the documentation of the Spectra class, a Spectra object is a container for mass
spectrometry (MS) data that includes both the mass peaks data (or peaks data, generally m/z and
intensity values) as well as spectra metadata (so called spectra variables). Spectra variables gen-
erally define one value per spectrum, while for peaks variables one value per mass peak is defined
and hence multiple values per spectrum (depending on the number of mass peaks of a spectrum).

Data can be extracted from a Spectra object using dedicated accessor functions or also using the $
operator. Depending on the backend class used by the Spectra to represent the data, data can also
be added or replaced (again, using dedicated functions or using $<-).

Usage

asDataFrame(
object,
i = seqg_along(object),
spectraVars = spectraVariables(object)

)

S4 method for signature 'Spectra’
acquisitionNum(object)

S4 method for signature 'Spectra’
centroided(object)

S4 replacement method for signature 'Spectra’
centroided(object) <- value

S4 method for signature 'Spectra’
collisionEnergy(object)

S4 replacement method for signature 'Spectra’
collisionEnergy(object) <- value

coreSpectraVariables()

S4 method for signature 'Spectra’
dataOrigin(object)

S4 replacement method for signature 'Spectra'’
dataOrigin(object) <- value

S4 method for signature 'Spectra’

spectraData 107

dataStorage(object)

S4 method for signature 'Spectra’
intensity(object, f = processingChunkFactor(object), ...)

S4 method for signature 'Spectra’
ionCount(object)

S4 method for signature 'Spectra’
isCentroided(object, ...)

S4 method for signature 'Spectra’
isEmpty(x)

S4 method for signature 'Spectra’
isolationWindowLowerMz(object)

S4 replacement method for signature 'Spectra'’
isolationWindowLowerMz(object) <- value

S4 method for signature 'Spectra’
isolationWindowTargetMz(object)

S4 replacement method for signature 'Spectra’
isolationWindowTargetMz(object) <- value

S4 method for signature 'Spectra’
isolationWindowUpperMz(object)

S4 replacement method for signature 'Spectra’
isolationWindowUpperMz(object) <- value

S4 method for signature 'Spectra’
length(x)

S4 method for signature 'Spectra’
lengths(x, use.names = FALSE)

S4 method for signature 'Spectra’
longForm(
object,
columns = union(spectraVariables(object), peaksVariables(object))

)

S4 method for signature 'Spectra’
msLevel (object)

S4 method for signature 'Spectra’

108

mz(object, f = processingChunkFactor(object),

S4 method for signature 'Spectra’
peaksData(
object,
columns = c("mz", "intensity"),
f = processingChunkFactor(object),
return.type = c("SimpleList”, "list"),

BPPARAM = bpparam()
)

S4 method for signature 'Spectra’
peaksVariables(object)

S4 method for signature 'Spectra’
polarity(object)

S4 replacement method for signature 'Spectra'
polarity(object) <- value

S4 method for signature 'Spectra’
precScanNum(object)

S4 method for signature 'Spectra’
precursorCharge(object)

S4 method for signature 'Spectra’
precursorIntensity(object)

S4 method for signature 'Spectra’
precursorMz(object)

S4 replacement method for signature 'Spectra'’
precursorMz(object, ...) <- value

S4 method for signature 'Spectra’
rtime(object)

S4 replacement method for signature 'Spectra’
rtime(object) <- value

S4 method for signature 'Spectra’
scanIndex(object)

S4 method for signature 'Spectra’
smoothed(object)

spectraData

spectraData 109

S4 replacement method for signature 'Spectra’
smoothed(object) <- value

S4 method for signature 'Spectra’
spectraData(object, columns = spectraVariables(object))

S4 replacement method for signature 'Spectra'’
spectraData(object) <- value

S4 method for signature 'Spectra’
spectraNames(object)

S4 replacement method for signature 'Spectra’
spectraNames(object) <- value

S4 method for signature 'Spectra’
spectraVariables(object)

S4 method for signature 'Spectra’
tic(object, initial = TRUE)

S4 method for signature 'Spectra’
uniqueMsLevels(object, ...)

S4 method for signature 'Spectra’
x$name

S4 replacement method for signature 'Spectra'’
x$name <- value

S4 method for signature 'Spectra’

x[[i, j, ...]1]
S4 replacement method for signature 'Spectra'’
x[C[i, j, ...1] <= value
Arguments
object A Spectra object.
i For asDataFrame(): A numeric indicating which scans to coerce to a DataFrame

(default is seq_along(object)).

spectraVars character() indicating what spectra variables to add to the DataFrame. De-
fault is spectraVariables(object), i.e. all available variables.

value A vector with values to replace the respective spectra variable. Needs to be of
the correct data type for the spectra variable.

f For intensity(), mz() and peaksData(): factor defining how data should be
chunk-wise loaded an processed. Defaults to processingChunkFactor().

110

X

spectraData

Additional arguments.

A Spectra object.

use.names For lengths(): ignored.

columns For spectraData() accessor: optional character with column names (spec-

tra variables) that should be included in the returned DataFrame. By default,
all columns are returned. For peaksData() accessor: optional character with
requested columns in the individual matrix of the returned list. Defaults to
c("mz", "value™) but any values returned by peaksVariables(object) with
object being the Spectra object are supported. For longForm(): character
with the spectra and peaks variables to include in the returned data. frame. De-
faults to union(spectraVariables(object), peaksVariables(object)).

return. type For peaksData(): character (1) allowing to specify if the results should be re-

turned as a SimplelList orasalist. Defaultsto return.type = "SimpleList".

BPPARAM Parallel setup configuration. See BiocParallel: :bpparam() for more infor-

mation. See also processingChunkSize() for more information on parallel
processing.

initial For tic(): logical(1) whether the initially reported total ion current should be

name

reported, or whether the total ion current should be (re)calculated on the actual
data (initial = FALSE, same as ionCount()).

For $ and $<-: the name of the spectra variable to return or set.

For [: not supported.

Spectra variables

A common set of core spectra variables are defined for Spectra. These have a pre-defined data
type and each Spectra will return a value for these if requested. If no value for a spectra variable
is defined, a missing value (of the correct data type) is returned. The list of core spectra variables
and their respective data type is:

acquisitionNum integer (1): the index of acquisition of a spectrum during an MS run.
centroided logical (1): whether the spectrum is in profile or centroid mode.
collisionEnergy numeric(1): collision energy used to create an MSn spectrum.

dataOrigin character (1): the origin of the spectrum’s data, e.g. the mzML file from which
it was read.

dataStorage character(1): the (current) storage location of the spectrum data. This value
depends on the backend used to handle and provide the data. For an in-memory backend
like the MsBackendDataFrame this will be "<memory>", for an on-disk backend such as the
MsBackendHdf5Peaks it will be the name of the HDFS5 file where the spectrum’s peak data is
stored.

isolationWindowLowerMz numeric(1): lower m/z for the isolation window in which the
(MSn) spectrum was measured.

isolationWindowTargetMz numeric(1): the target m/z for the isolation window in which the
(MSn) spectrum was measured.

isolationWindowUpperMz numeric(1): upper m/z for the isolation window in which the
(MSn) spectrum was measured.

spectraData 111

* msLevel integer(1): the MS level of the spectrum.

* polarity integer (1): the polarity of the spectrum (@ and 1 representing negative and positive
polarity, respectively).

» precScanNum integer (1): the scan (acquisition) number of the precursor for an MSn spec-
trum.

* precursorCharge integer(1): the charge of the precursor of an MSn spectrum.

e precursorintensity numeric(1): the intensity of the precursor of an MSn spectrum.

 precursorMz numeric(1): the m/z of the precursor of an MSn spectrum.

* rtime numeric(1): the retention time of a spectrum.

* scanindex integer(1): the index of a spectrum within a (raw) file.

» smoothed logical(1): whether the spectrum was smoothed.
For each of these spectra variable a dedicated accessor function is defined (such as msLevel()
or rtime()) that allows to extract the values of that spectra variable for all spectra in a Spectra
object. Also, replacement functions are defined, but not all backends might support replacing values

for spectra variables. As described above, additional spectra variables can be defined or added. The
spectraVariables() function can be used to

Values for multiple spectra variables, or all spectra vartiables* can be extracted with the spectraData()
function.

Peaks variables

Spectra also provide mass peak data with the m/z and intensity values being the core peaks vari-
ables:

* intensity numeric: intensity values for the spectrum’s peaks.

* mz numeric: the m/z values for the spectrum’s peaks.

Values for these can be extracted with the mz() and intensity() functions, or the peaksData()
function. The former functions return a NumericList with the respective values, while the latter
returns a List with numeric two-column matrices. The list of peaks matrices can also be extracted
using as(x, "list") or as(x, "SimpleList") with x being a Spectra object.

Some Spectra/backends provide also values for additional peaks variables. The set of available
peaks variables can be extracted with the peaksVariables() function.

Functions to access MS data

The set of available functions to extract data from, or set data in, a Spectra object are (in alpha-
betical order) listed below. Note that there are also other functions to extract information from a
Spectra object documented in addProcessing().

* $, $<-: gets (or sets) a spectra variable for all spectra in object. See examples for details.
Note that replacing values of a peaks variable is not supported with a non-empty processing
queue, i.e. if any filtering or data manipulations on the peaks data was performed. In these
cases applyProcessing() needs to be called first to apply all cached data operations.

e [[, [[<-: access or set/add a single spectrum variable (column) in the backend.

112 spectraData

e acquisitionNum(): returns the acquisition number of each spectrum. Returns an integer of
length equal to the number of spectra (with NA_integer_ if not available).

* asDataFrame(): converts the Spectra to a DataFrame (in long format) contining all data.
Returns a DataFrame. See also longForm() for a potentially more efficient implementation
that returns a data. frame in long form.

e centroided(), centroided<-: gets or sets the centroiding information of the spectra. centroided()
returns a logical vector of length equal to the number of spectra with TRUE if a spectrum is
centroided, FALSE if it is in profile mode and NA if it is undefined. See also isCentroided()
for estimating from the spectrum data whether the spectrum is centroided. value for centroided<-
is either a single logical or a logical of length equal to the number of spectra in object.

e collisionEnergy(), collisionEnergy<-: gets or sets the collision energy for all spectra in
object. collisionEnergy() returns a numeric with length equal to the number of spectra
(NA_real_ if not present/defined), collisionEnergy<- takes a numeric of length equal to
the number of spectra in object.

* coreSpectraVariables(): returns the core spectra variables along with their expected data
type.

* dataOrigin(), dataOrigin<-: gets or sets the data origin for each spectrum. dataOrigin()
returns a character vector (same length than object) with the origin of the spectra. dataOrigin<-
expects a character vector (same length than object) with the replacement values for the
data origin of each spectrum.

* dataStorage(): returns a character vector (same length than object) with the data storage
location of each spectrum.

e intensity(): gets the intensity values from the spectra. Returns a IRanges: :NumericList ()
of numeric vectors (intensity values for each spectrum). The length of the list is equal to the
number of spectra in object.

* ionCount(): returns a numeric with the sum of intensities for each spectrum. If the spectrum
is empty (see isEmpty()), NA_real_ is returned.

* isCentroided(): a heuristic approach assessing if the spectra in object are in profile or
centroided mode. The function takes the qtlth quantile top peaks, then calculates the differ-
ence between adjacent m/z value and returns TRUE if the first quartile is greater than k. (See
Spectra:::.isCentroided() for the code.)

» isEmpty(): checks whether a spectrum in object is empty (i.e. does not contain any peaks).
Returns a logical vector of length equal number of spectra.

* isolationWindowLowerMz(), isolationWindowLowerMz<-: gets or sets the lower m/z bound-
ary of the isolation window.

* isolationWindowTargetMz(), isolationWindowTargetMz<-: gets or sets the target m/z of
the isolation window.

* isolationWindowUpperMz(), isolationWindowUpperMz<-: gets or sets the upper m/z bound-
ary of the isolation window.

* length(): gets the number of spectra in the object.

* lengths(): gets the number of peaks (m/z-intensity values) per spectrum. Returns an integer
vector (length equal to the number of spectra). For empty spectra, 0 is returned.

spectraData 113

e longForm(): extract the MS data as a data. frame in long form with columns being spectra
and peaks variables and one row per mass peak. Parameter columns allows to define the spec-
tra and peaks variables that should be included in the returned data. frame (with the default
being columns = union(spectraVariables(object), peaksVariables(object))).

* msLevel(): gets the spectra’s MS level. Returns an integer vector (names being spectrum
names, length equal to the number of spectra) with the MS level for each spectrum.

* mz(): gets the mass-to-charge ratios (m/z) from the spectra. Returns a IRanges: :NumericList()
or length equal to the number of spectra, each element a numeric vector with the m/z values
of one spectrum.

* peaksData(): gets the peaks data for all spectra in object. Peaks data consist of the m/z
and intensity values as well as possible additional annotations (variables) of all peaks of
each spectrum. The function returns a S4Vectors::SimpleList() of two dimensional ar-
rays (either matrix or data.frame), with each array providing the values for the requested
peak variables (by default "mz" and "intensity"). Optional parameter columns is passed to
the backend’s peaksData() function to allow the selection of specific (or additional) peaks
variables (columns) that should be extracted (if available). Importantly, it is not guaranteed
that each backend supports this parameter (while each backend must support extraction of
"mz" and "intensity"” columns). Parameter columns defaults to c("mz", "intensity")
but any value returned by peaksVariables(object) is supported. Note also that it is pos-
sible to extract the peak data with as(x, "list") and as(x, "SimpleList") as a list and
Simplelist, respectively. Note however that, in contrast to peaksData(), as() does not
support the parameter columns.

* peaksVariables(): lists the available variables for mass peaks provided by the backend.
Default peak variables are "mz" and "intensity"” (which all backends need to support and
provide), but some backends might provide additional variables. These variables correspond
to the column names of the peak data array returned by peaksData().

* polarity(), polarity<-: gets or sets the polarity for each spectrum. polarity() returns
an integer vector (length equal to the number of spectra), with @ and 1 representing negative
and positive polarities, respectively. polarity<- expects an integer vector of length 1 or
equal to the number of spectra.

* precursorCharge(), precursorIntensity(), precursorMz(), precScanNum(), precAcquisitionNum():
gets the charge (integer), intensity (numeric), m/z (numeric), scan index (integer) and
acquisition number (interger) of the precursor for MS level > 2 spectra from the object. Re-
turns a vector of length equal to the number of spectra in object. NA are reported for MS1
spectra of if no precursor information is available.

e rtime(), rtime<-: gets or sets the retention times (in seconds) for each spectrum. rtime()
returns a numeric vector (length equal to the number of spectra) with the retention time for
each spectrum. rtime<- expects a numeric vector with length equal to the number of spectra.

* scanIndex(): returns an integer vector with the scan index for each spectrum. This rep-
resents the relative index of the spectrum within each file. Note that this can be different
to the acquisitionNum of the spectrum which represents the index of the spectrum during
acquisition/measurement (as reported in the mzML file).

* smoothed(),smoothed<-: gets or sets whether a spectrum is smoothed. smoothed() returns a
logical vector of length equal to the number of spectra. smoothed<- takes a logical vector
of length 1 or equal to the number of spectra in object.

114 spectraData

* spectraData(): gets general spectrum metadata (annotation, also called header). spectraData()
returns a DataFrame. Note that this method does by default not return m/z or intensity values.

* spectraData<-: replaces the full spectra data of the Spectra object with the one provided
with value. The spectraData<- function expects a DataFrame to be passed as value with
the same number of rows as there a spectra in object. Note that replacing values of peaks
variables is not supported with a non-empty processing queue, i.e. if any filtering or data
manipulations on the peaks data was performed. In these cases applyProcessing() needs to
be called first to apply all cached data operations and empty the processing queue.

* spectraNames(), spectraNames<-: gets or sets the spectra names.

* spectraVariables(): returns a character vector with the available spectra variables (columns,
fields or attributes of each spectrum) available in object. Note that spectraVariables()
does not list the peak variables ("mz", "intensity"” and eventual additional annotations for
each MS peak). Peak variables are returned by peaksVariables().

e tic(): gets the total ion current/count (sum of signal of a spectrum) for all spectra in object.
By default, the value reported in the original raw data file is returned. For an empty spectrum,
0 is returned.

* uniqueMsLevels(): get the unique MS levels available in object. This function is supposed
to be more efficient than unique (msLevel (object)).

Author(s)

Sebastian Gibb, Johannes Rainer, Laurent Gatto, Philippine Louail

See Also

* addProcessing() for functions to analyze Spectra.

 Spectra for a general description of the Spectra object.

Examples

Create a Spectra from mzML files and use the “MsBackendMzR™ on-disk
backend.
sciex_file <- dir(system.file("sciex"”, package = "msdata"),
full.names = TRUE)
sciex <- Spectra(sciex_file, backend = MsBackendMzR())
sciex

Get the number of spectra in the data set
length(sciex)

Get the number of mass peaks per spectrum - limit to the first 6
lengths(sciex) |> head()

Get the MS level for each spectrum - limit to the first 6 spectra
msLevel (sciex) |> head()

Alternatively, we could also use $ to access a specific spectra variable.
This could also be used to add additional spectra variables to the
object (see further below).

spectraData 115

sciex$msLevel |> head()

Get the intensity and m/z values.
intensity(sciex)
mz(sciex)

Convert a subset of the Spectra object to a long DataFrame.
asDataFrame(sciex, i = 1:3, spectraVars = c("rtime”, "msLevel”))

Create a Spectra providing a “DataFrame™ containing the spectrum data.

spd <- DataFrame(msLevel = c(1L, 2L), rtime = c(1.1, 1.2))
spd$mz <- list(c(100, 103.2, 104.3, 106.5), c(45.6, 120.4, 190.2))
spd$intensity <- list(c(200, 400, 34.2, 17), c(12.3, 15.2, 6.8))

s <- Spectra(spd)
s

List all available spectra variables (i.e. spectrum data and metadata).
spectraVariables(s)

For all *corex spectrum variables accessor functions are available. These
return NA if the variable was not set.

centroided(s)

dataStorage(s)

rtime(s)

precursorMz(s)

The core spectra variables are:
coreSpectraVariables()

Add an additional metadata column.
s$spectrum_id <- c("sp_1", "sp_2")

List spectra variables, "spectrum_id” is now also listed
spectraVariables(s)

Get the values for the new spectra variable
s$spectrum_id

Extract specific spectra variables.
spectraData(s, columns = c("spectrum_id"”, "msLevel”))

- PEAKS VARIABLES AND DATA --------

Get the peak data (m/z and intensity values).
pks <- peaksData(s)

pks

pks[[11]

pks[[2]]

Note that we could get the same resulb by coercing the ~Spectra™ to

116 spectraVariableMapping

a “list™ or ~SimplelList™:
as(s, "list")
as(s, "SimplelList")

Or use "mz()~ and “intensity()~ to extract the m/z and intensity values
separately

mz(s)

intensity(s)

Some ~MsBackend™ classes provide support for arbitrary peaks variables
(in addition to the mandatory ~"mz"" and ~"intensity"~ values. Below

we create a simple data frame with an additional peak variable "~ "pk_ann""
and create a “Spectra® with a “MsBackendMemory™ for that data.

Importantly the number of values (per spectrum) need to be the same

for all peak variables.

"~

tmp <- data.frame(msLevel = c(2L, 2L), rtime = c(123.2, 123.5))
tmp$mz <- list(c(103.1, 110.4, 303.1), c(343.2, 453.1))
tmp$intensity <- list(c(130.1, 543.1, 40), c(0.9, 0.45))
tmp$pk_ann <- list(c(NA_character_, "A", "P"), c("B", "P"))

Create the Spectra. With parameter ~peaksVariables™ we can define
the columns in ~tmp~ that contain peaks variables.
sps <- Spectra(tmp, source = MsBackendMemory(),

peaksVariables = c("mz", "intensity"”, "pk_ann"))
peaksVariables(sps)

Extract just the m/z and intensity values
peaksData(sps)[[1L]]

Extract the full peaks data
peaksData(sps, columns = peaksVariables(sps))[[1L]]

Access just the pk_ann variable
sps$pk_ann

spectraVariableMapping
Mapping between spectra variables and data file fields

Description

The spectraVariableMapping function provides the mapping between spectra variables of a
Spectra() object with data fields from a data file. Such name mapping is expected to enable
an easier import of data files with specific dialects, e.g. files in MGF format that use a different
naming convention for core spectra variables.

MsBackend () implementations are expected to implement this function (if needed) to enable import
of data from file formats with non-standardized data fields.

spectraVariableMapping 117

Usage
spectraVariableMapping(object, ...)
spectraVariableMapping(object, ...) <- value

S4 method for signature 'MsBackend'
spectraVariableMapping(object)

S4 replacement method for signature 'MsBackend'
spectraVariableMapping(object) <- value

S4 replacement method for signature 'Spectra'
spectraVariableMapping(object) <- value

S4 method for signature 'Spectra’
spectraVariableMapping(object)

Arguments
object An instance of an object extending MsBackend ().
Optional parameters.
value For spectraVariableMapping<-: a named character vector.
Value

A named character with names being spectra variable names (use spectraVariables() for a list
of supported names) and values being the data field names.

Author(s)

Johannes Rainer

Index

* internal
hidden_aliases, 40
* peak matrix combining functions
combinePeaksData, 6
[,MsBackend-method (MsBackend), 53
[,MsBackendCached-method
(MsBackendCached), 72
[,MsBackendDataFrame-method
(hidden_aliases), 40
[,MsBackendHdf5Peaks-method
(hidden_aliases), 40
[,MsBackendMemory-method
(hidden_aliases), 40
[,Spectra-method (deisotopeSpectra), 19
[[,MsBackend-method (MsBackend), 53
[[,Spectra-method (spectraData), 106
[[<-,MsBackend-method (MsBackend), 53
[[<-,Spectra-method (spectraData), 106
$,MsBackend-method (MsBackend), 53
$,MsBackendCached-method
(MsBackendCached), 72
$,MsBackendDataFrame-method
(hidden_aliases), 40
$,MsBackendMemory-method
(hidden_aliases), 40
$,Spectra-method (spectraData), 106
$<-,MsBackend-method (MsBackend), 53
$<-,MsBackendCached-method
(MsBackendCached), 72
$<-,MsBackendDataFrame-method
(hidden_aliases), 40
$<-,MsBackendHdf5Peaks-method
(hidden_aliases), 40
$<-,MsBackendMemory-method
(hidden_aliases), 40
$<-,MsBackendMzR-method
(hidden_aliases), 40
$<-,Spectra-method (spectrabData), 106

acquisitionNum (spectraData), 106

118

acquisitionNum,MsBackend-method
(MsBackend), 53
acquisitionNum,MsBackendDataFrame-method
(hidden_aliases), 40
acquisitionNum,MsBackendMemory-method
(hidden_aliases), 40
acquisitionNum, Spectra-method
(spectrabData), 106
addProcessing (processinglog), 85
addProcessing(), 18, 33,79,83,95,111, 114
addProcessing, Spectra-method
(processinglog), 85
applyProcessing (processinglog), 85
applyProcessing(), 12, 13,97,111, 114
applyProcessing, Spectra-method
(processinglog), 85
asDataFrame (spectraData), 106

backendBpparam (MsBackend), 53
backendBpparam,MsBackend-method
(MsBackend), 53
backendBpparam, Spectra-method
(processingChunkSize, Spectra-method),
83
backendInitialize (MsBackend), 53
backendInitialize(), 14, 32, 88, 96, 98
backendInitialize,MsBackend-method
(MsBackend), 53
backendInitialize,MsBackendCached-method
(MsBackendCached), 72
backendInitialize,MsBackendDataFrame-method
(MsBackend), 53
backendInitialize,MsBackendHdf5Peaks-method
(hidden_aliases), 40
backendInitialize,MsBackendMemory-method
(MsBackend), 53
backendInitialize,MsBackendMzR-method
(hidden_aliases), 40
backendMerge,list-method (MsBackend), 53

INDEX

backendMerge ,MsBackend-method
(MsBackend), 53
backendMerge ,MsBackendDataFrame-method
(hidden_aliases), 40
backendMerge ,MsBackendHdf5Peaks-method
(hidden_aliases), 40
backendMerge,MsBackendMemory-method
(hidden_aliases), 40
backendParallelFactor (MsBackend), 53
backendParallelFactor(), 84
backendParallelFactor,MsBackend-method
(MsBackend), 53

119

centroided,MsBackend-method
(MsBackend), 53
centroided,MsBackendDataFrame-method
(hidden_aliases), 40
centroided,MsBackendMemory-method
(hidden_aliases), 40
centroided, Spectra-method
(spectrabData), 106
centroided<-,MsBackend-method
(MsBackend), 53
centroided<-,MsBackendDataFrame-method
(hidden_aliases), 40

backendParallelFactor,MsBackendHdf5Peaks-methggntroided<-,MsBackendMemory-method

(MsBackend), 53

backendParallelFactor,MsBackendMzR-method

(MsBackend), 53
backendRequiredSpectraVariables
(MsBackend), 53

(hidden_aliases), 40
centroided<-,Spectra-method

(spectrabData), 106
chunkapply, 3
chunkapply(), 90

backendRequiredSpectraVariables,MsBackend—metngss:MsBackend(MsBackend) 53

(MsBackend), 53

collisionEnergy (spectraData), 106

backendRequiredSpectraVariables,MsBackendDatagngf§T8$@nggy MsBackend-method

(hidden_aliases), 40

backendRequiredSpectraVariables,MsBackendenggf§§§T8%ERgrgy MsBackendDataFrame-method

(hidden_aliases), 40

backendRequiredSpectraVariables,MsBackendMemoggIT%

(hidden_aliases), 40

backendRequiredSpectraVariables,MsBackenszR—@ngod

(hidden_aliases), 40
base::split(), /4
bin (processinglog), 85
bin,numeric-method (hidden_aliases), 40
bin,Spectra-method (processinglog), 85
BiocParallel: :bpparam(), 14, 17, 32, 59,

85, 88, 96, 98, 110
BiocParallel::SerialParam(), 33, 82
BiocParallel: :SnowParam(), 64

c,Spectra-method (concatenateSpectra),
12
cbind2 (concatenateSpectra), 12

(MsBackend), 53

(hidden_aliases), 40
gyggEnergy,MsBackendMemory-method
(hidden_aliases), 40
IsionEnergy, Spectra-method
(spectrabData), 106
collisionEnergy<-,MsBackend-method
(MsBackend), 53

collisionEnergy<-,MsBackendDataFrame-method

(hidden_aliases), 40

collisionEnergy<-,MsBackendMemory-method

(hidden_aliases), 40
collisionEnergy<-,Spectra-method
(spectrabData), 106

combinePeaks, 4
combinePeaks(), 15, 27, 28, 95
combinePeaks,list-method

cbind2,MsBackend, dataframeOrDataFrameOrmatrix-method (hidden_aliases), 40

(MsBackend), 53

combinePeaks, Spectra-method

cbind2,MsBackendDataFrame, dataframeOrDataF rameOrmatritcombtingPeaks), 4

(hidden_aliases), 40

combinePeaksData, 6

cbind2,MsBackendMemory, dataframeOrDataF rameOré@ipiRefeaksdata(), 5, 13, 14

(hidden_aliases), 40

combineSpectra (concatenateSpectra), 12

cbind2,Spectra,dataframeOrDataFrameOrmatrix-medhbineSpectra(), 4, 5, 28, 95

(concatenateSpectra), 12
centroided (spectraData), 106

compareSpectra, 9
compareSpectra(), 50, 52, 92, 95

120

compareSpectra, Spectra,missing-method
(compareSpectra), 9
compareSpectra, Spectra, Spectra-method
(compareSpectra), 9
computeMzDeltas (plotMzDelta), 80
concatenateSpectra, 12
containsMz (processinglog), 85
containsMz,Spectra-method
(processinglLog), 85
containsNeutralloss (processinglog), 85
containsNeutrallLoss, Spectra-method
(processinglLog), 85
coreSpectraVariables (spectraData), 106
coreSpectraVariables(), 26, 34
countIdentifications, 17
countIdentifications(), 90

datalrigin (spectraData), 106
dataOrigin,MsBackend-method
(MsBackend), 53
dataOrigin,MsBackendDataFrame-method
(hidden_aliases), 40
dataOrigin,MsBackendMemory-method
(hidden_aliases), 40
dataOrigin, Spectra-method
(spectrabData), 106
dataOrigin<-,MsBackend-method
(MsBackend), 53
datalOrigin<-,MsBackendDataFrame-method
(hidden_aliases), 40
dataOrigin<-,MsBackendMemory-method
(hidden_aliases), 40
dataOrigin<-,Spectra-method
(spectraData), 106
dataStorage (spectrabData), 106
dataStorage,MsBackend-method
(MsBackend), 53
dataStorage,MsBackendCached-method
(MsBackendCached), 72
dataStorage,MsBackendDataFrame-method
(hidden_aliases), 40
dataStorage,MsBackendMemory-method
(hidden_aliases), 40
dataStorage, Spectra-method
(spectraData), 106
dataStorage<-,MsBackend-method
(MsBackend), 53
dataStorage<-,MsBackendDataFrame-method
(hidden_aliases), 40

INDEX

dataStorage<-,MsBackendMemory-method
(hidden_aliases), 40
dataStorageBasePath (MsBackend), 53
dataStorageBasePath,MsBackend-method
(MsBackend), 53
dataStorageBasePath,MsBackendMzR-method
(MsBackend), 53
dataStorageBasePath, Spectra-method
(Spectra), 94
dataStorageBasePath<- (MsBackend), 53
dataStorageBasePath<-,MsBackend-method
(MsBackend), 53

dataStorageBasePath<-,MsBackendMzR-method

(MsBackend), 53
dataStorageBasePath<-,Spectra-method
(Spectra), 94
deisotopeSpectra, 19
dropNaSpectraVariables
(deisotopeSpectra), 19
dropNaSpectraVariables,MsBackend-method
(MsBackend), 53
dropNaSpectraVariables, Spectra-method
(deisotopeSpectra), 19

entropy (processinglog), 85

entropy, ANY-method (processinglog), 85

entropy, Spectra-method (processinglLog),
85

estimatePrecursorIntensity

(estimatePrecursorIntensity, Spectra-method),

31
estimatePrecursorIntensity(), 25, 91

estimatePrecursorlIntensity,Spectra-method,

31
estimatePrecursorMz, 32
estimatePrecursorMz(), 91
export (Spectra), 94
export,MsBackend-method (MsBackend), 53
export,MsBackendMzR-method
(hidden_aliases), 40
export,Spectra-method (Spectra), 94
extractByIndex (MsBackend), 53
extractByIndex,MsBackend, ANY-method
(MsBackend), 53
extractByIndex,MsBackend,missing-method
(MsBackend), 53

extractByIndex,MsBackendCached, ANY-method

(MsBackendCached), 72

INDEX

121

extractByIndex,MsBackendDataFrame, ANY-method filterIsolationWindow, Spectra-method

(hidden_aliases), 40

(deisotopeSpectra), 19

extractByIndex,MsBackendHdf5Peaks,ANY-method filterMsLevel (deisotopeSpectra), 19

(hidden_aliases), 40

extractByIndex,MsBackendMemory, ANY-method

(hidden_aliases), 40

fft_spectrum

(filterFourierTransformArtefacts),

35
fillCoreSpectraVariables, 34
fillCoreSpectraVariables(), 67
filterAcquisitionNum

(deisotopeSpectra), 19
filterAcquisitionNum,MsBackend-method

(MsBackend), 53

filterAcquisitionNum,MsBackendDataFrame-meth

(hidden_aliases), 40

filterAcquisitionNum,MsBackendMemory-method

(hidden_aliases), 40
filterAcquisitionNum, Spectra-method
(deisotopeSpectra), 19
filterDataOrigin (deisotopeSpectra), 19

filterDataOrigin,MsBackend-method
(MsBackend), 53
filterDataOrigin, Spectra-method
(deisotopeSpectra), 19
filterDataStorage (deisotopeSpectra), 19
filterDataStorage,MsBackend-method
(MsBackend), 53
filterDataStorage, Spectra-method
(deisotopeSpectra), 19
filterEmptySpectra (deisotopeSpectra),
19
filterEmptySpectra,MsBackend-method
(MsBackend), 53
filterEmptySpectra, Spectra-method
(deisotopeSpectra), 19
filterFourierTransformArtefacts, 35
filterFourierTransformArtefacts(), 27

filterMsLevel(), 95
filterMsLevel ,MsBackend-method
(MsBackend), 53
filterMsLevel, Spectra-method
(deisotopeSpectra), 19
filterMzRange (deisotopeSpectra), 19
filterMzRange, Spectra-method
(deisotopeSpectra), 19
filterMzValues (deisotopeSpectra), 19
filterMzValues, Spectra-method
(deisotopeSpectra), 19
filterPeaksRanges, 36
filterPeaksRanges(), 27

0gilterPolarity(deisotopeSpectra),19

filterPolarity,MsBackend-method
(MsBackend), 53
filterPolarity, Spectra-method
(deisotopeSpectra), 19
filterPrecursorCharge
(deisotopeSpectra), 19
filterPrecursorCharge,MsBackend-method
(MsBackend), 53
filterPrecursorCharge, Spectra-method
(deisotopeSpectra), 19
filterPrecursorIsotopes
(deisotopeSpectra), 19
filterPrecursorMaxIntensity
(deisotopeSpectra), 19
filterPrecursorMz,MsBackend-method
(MsBackend), 53
filterPrecursorMz,Spectra-method
(deisotopeSpectra), 19
filterPrecursorMzRange
(deisotopeSpectra), 19
filterPrecursorMzRange ,MsBackend-method
(MsBackend), 53

filterFourierTransformArtefacts,Spectra-methofliilterPrecursorMzRange, Spectra-method

(deisotopeSpectra), 19
filterIntensity (deisotopeSpectra), 19
filterIntensity,Spectra-method

(deisotopeSpectra), 19
filterIsolationWindow

(deisotopeSpectra), 19
filterIsolationWindow,MsBackend-method

(MsBackend), 53

(deisotopeSpectra), 19
filterPrecursorMzValues
(deisotopeSpectra), 19
filterPrecursorMzValues,MsBackend-method
(MsBackend), 53
filterPrecursorMzValues, Spectra-method
(deisotopeSpectra), 19
filterPrecursorPeaks

122

(deisotopeSpectra), 19
filterPrecursorScan (deisotopeSpectra),
19
filterPrecursorScan(), 39
filterPrecursorScan,MsBackend-method
(MsBackend), 53
filterPrecursorScan, Spectra-method
(deisotopeSpectra), 19
filterRanges (deisotopeSpectra), 19
filterRanges,MsBackend-method
(MsBackend), 53
filterRanges, Spectra-method
(deisotopeSpectra), 19
filterRt (deisotopeSpectra), 19
filterRt,MsBackend-method (MsBackend),
53
filterRt,Spectra-method
(deisotopeSpectra), 19
filterValues (deisotopeSpectra), 19
filterValues,MsBackend-method
(MsBackend), 53
filterValues, Spectra-method
(deisotopeSpectra), 19
fragmentGroupIndex, 38
fragmentGroupIndex(), 25

grDevices: :n2mfrow(), 103
hidden_aliases, 40

intensity (spectraData), 106
intensity,MsBackend-method (MsBackend),
53
intensity,MsBackendCached-method
(MsBackendCached), 72
intensity,MsBackendDataFrame-method
(hidden_aliases), 40
intensity,MsBackendHdf5Peaks-method
(hidden_aliases), 40
intensity,MsBackendMemory-method
(hidden_aliases), 40
intensity,MsBackendMzR-method
(hidden_aliases), 40
intensity, Spectra-method (spectraData),
106
intensity<-,MsBackend-method
(MsBackend), 53
intensity<-,MsBackendDataFrame-method
(hidden_aliases), 40

INDEX

intensity<-,MsBackendHdf5Peaks-method
(hidden_aliases), 40

intensity<-,MsBackendMemory-method
(hidden_aliases), 40

intensity<-,MsBackendMzR-method
(hidden_aliases), 40

ionCount (spectraData), 106

ionCount,MsBackend-method (MsBackend),
53

ionCount,MsBackendCached-method
(MsBackendCached), 72

ionCount,MsBackendHdf5Peaks-method
(hidden_aliases), 40

ionCount,MsBackendMemory-method
(hidden_aliases), 40

ionCount,MsBackendMzR-method
(hidden_aliases), 40

ionCount, Spectra-method (spectraData),
106

IRanges: :NumericList(), 65, 66, 69, 76,
112,113

isCentroided (spectraData), 106

isCentroided,MsBackend-method
(MsBackend), 53

isCentroided,MsBackendHdf5Peaks-method
(hidden_aliases), 40

isCentroided,MsBackendMzR-method
(hidden_aliases), 40

isCentroided, Spectra-method
(spectraData), 106

isEmpty (spectraData), 106

isEmpty,MsBackend-method (MsBackend), 53

isEmpty,MsBackendDataFrame-method
(hidden_aliases), 40

isEmpty, Spectra-method (spectraData),
106

isolationWindowLowerMz (spectraData),
106

isolationWindowLowerMz,MsBackend-method
(MsBackend), 53

isolationWindowLowerMz, MsBackendDataFrame-method

(hidden_aliases), 40

isolationWindowLowerMz,MsBackendMemory-method

(hidden_aliases), 40
isolationWindowLowerMz, Spectra-method
(spectraData), 106

isolationWindowLowerMz<-,MsBackend-method

(MsBackend), 53

INDEX

123

isolationWindowlLowerMz<-, 6 MsBackendDataFrame-mgtholleaksNone (joinPeaks), 50

(hidden_aliases), 40

joinSpectraData (concatenateSpectra), 12

isolationWindowLowerMz<-,MsBackendMemory-method

(hidden_aliases), 40
isolationWindowlLowerMz<-, Spectra-method
(spectraData), 106
isolationWindowTargetMz (spectrabData),
106
isolationWindowTargetMz,MsBackend-method
(MsBackend), 53

length,MsBackend-method (MsBackend), 53
length,MsBackendCached-method
(MsBackendCached), 72
length,MsBackendDataFrame-method
(hidden_aliases), 40
length,MsBackendMemory-method
(hidden_aliases), 40

isolationWindowTargetMz,MsBackendDataFrame-met@ogth, Spectra-method (spectraData), 106

(hidden_aliases), 40

lengths (spectraData), 106

isolationWindowTargetMz,MsBackendMemory-methobiengths,MsBackend-method (MsBackend), 53

(hidden_aliases), 40
isolationWindowTargetMz, Spectra-method
(spectraData), 106

isolationWindowTargetMz<-,MsBackend-method

(MsBackend), 53

lengths,MsBackendCached-method
(hidden_aliases), 40

lengths,MsBackendDataFrame-method
(hidden_aliases), 40

lengths, Spectra-method (spectraData),

isolationWindowTargetMz<-,MsBackendDataFrame-method 106

(hidden_aliases), 40

longForm,MsBackend-method (MsBackend),

isolationWindowTargetMz<-,MsBackendMemory-method 53

(hidden_aliases), 40
isolationWindowTargetMz<-,Spectra-method

(spectraData), 106
isolationWindowUpperMz (spectraData),

106
isolationWindowUpperMz,MsBackend-method

(MsBackend), 53

longForm,MsBackendMemory-method
(hidden_aliases), 40

longForm, Spectra-method (spectraData),
106

merge(), 13
MetaboCoreUtils::isotopicSubstitutionMatrix(),

isolationWindowUpperMz,MsBackendDataFrame-method 22

(hidden_aliases), 40

isolationWindowUpperMz,MsBackendMemory-method

(hidden_aliases), 40
isolationWindowUpperMz,Spectra-method
(spectraData), 106
isolationWindowUpperMz<-,MsBackend-method
(MsBackend), 53

MetaboCoreUtils: :isotopologues(), 22,
23,26, 27

MsBackend, 14, 32, 53, 64, 73, 77, 88, 94-99

MsBackend(), 116, 117

MsBackend-class (MsBackend), 53

MsBackendCached, 72

MsBackendCached(), 62

isolationWindowUpperMz<-,MsBackendDataF rame-mé¢BagkendCached-class

(hidden_aliases), 40

(MsBackendCached), 72

isolationWindowUpperMz<-,MsBackendMemory-meth¥sBackendDataFrame, 98

(hidden_aliases), 40
isolationWindowUpperMz<-, Spectra-method
(spectraData), 106
isReadOnly,MsBackend-method
(MsBackend), 53

joinPeaks, 50
joinPeaks(), 10, 11, 50
joinPeaksGnps (joinPeaks), 50
joinPeaksGnps(), 10

MsBackendDataFrame (MsBackend), 53
MsBackendDataFrame(), 63, 97
MsBackendDataFrame-class (MsBackend), 53
MsBackendHdf5Peaks (MsBackend), 53
MsBackendHdf5Peaks (), 97
MsBackendMemory, 97, 98

MsBackendMemory (MsBackend), 53
MsBackendMemory (), 13, 97
MsBackendMemory-class (MsBackend), 53
MsBackendMzR, 98

124

MsBackendMzR (MsBackend), 53

MsBackendMzR(), 13, 97, 98

MsBackendMzR-class (MsBackend), 53

MsCoreUtils: :closest(), 60

MsCoreUtils: :common(), 91, 101, 103

MsCoreUtils: :gnps(), 50, 52

MsCoreUtils: :group(), 4, 6,27

MsCoreUtils::join(), 51

MsCoreUtils: :ndotproduct(), 9, 11

MsCoreUtils: :nentropy(), 88, 91

MsCoreUtils: :noise(), 90

MsCoreUtils: :refineCentroids(), 90

MsCoreUtils: :smooth(), 90

msLevel (spectraData), 106

msLevel ,MsBackend-method (MsBackend), 53

msLevel ,MsBackendDataFrame-method
(hidden_aliases), 40

msLevel ,MsBackendMemory-method
(hidden_aliases), 40

msLevel, Spectra-method (spectraData),
106

msLevel<-,MsBackend-method (MsBackend),
53

msLevel<-,MsBackend-method (MsBackend),
53

msLevel<-,MsBackendDataFrame-method
(hidden_aliases), 40

msLevel<-,MsBackendMemory-method
(hidden_aliases), 40

mz (spectraData), 106

mz ,MsBackend-method (MsBackend), 53

mz ,MsBackendCached-method
(MsBackendCached), 72

mz ,MsBackendDataFrame-method
(hidden_aliases), 40

mz ,MsBackendHdf5Peaks-method
(hidden_aliases), 40

mz ,MsBackendMemory-method
(hidden_aliases), 40

mz ,MsBackendMzR-method
(hidden_aliases), 40

mz, Spectra-method (spectraData), 106

mz<-,MsBackend-method (MsBackend), 53

mz<-,MsBackendDataFrame-method
(hidden_aliases), 40

mz<-,MsBackendHdf5Peaks-method
(hidden_aliases), 40

mz<-,MsBackendMemory-method

INDEX

(hidden_aliases), 40
mz<-,MsBackendMzR-method
(hidden_aliases), 40

neutralloss, 77

neutralloss(), 91

neutralloss, Spectra,PrecursorMzParam-method
(neutralloss), 77

par(), 103, 104
peaksData (spectraData), 106
peaksData,MsBackend-method (MsBackend),
53
peaksData,MsBackendDataFrame-method
(hidden_aliases), 40
peaksData,MsBackendHdf5Peaks-method
(hidden_aliases), 40
peaksData,MsBackendMemory-method
(hidden_aliases), 40
peaksData,MsBackendMzR-method
(hidden_aliases), 40
peaksData, Spectra-method (spectraData),
106
peaksData<-,MsBackend-method
(MsBackend), 53
peaksData<-,MsBackendDataFrame-method
(hidden_aliases), 40
peaksData<-,MsBackendHdf5Peaks-method
(hidden_aliases), 40
peaksData<-,MsBackendMemory-method
(hidden_aliases), 40
peaksVariables (spectraData), 106
peaksVariables,MsBackend-method
(MsBackend), 53
peaksVariables,MsBackendDataFrame-method
(hidden_aliases), 40
peaksVariables,MsBackendMemory-method
(hidden_aliases), 40
peaksVariables, Spectra-method
(spectraData), 106
pickPeaks (processinglog), 85
pickPeaks, Spectra-method
(processinglog), 85
plot.default(), 103
plotMzDelta, 80
plotSpectra (spectra-plotting), 101
plotSpectra(), 95
plotSpectraMirror (spectra-plotting),
101

INDEX

plotSpectraMirror, Spectra-method
(spectra-plotting), 101
plotSpectraOverlay (spectra-plotting),
101
polarity (spectraData), 106
polarity,MsBackend-method (MsBackend),
53
polarity,MsBackendDataFrame-method
(hidden_aliases), 40
polarity,MsBackendMemory-method
(hidden_aliases), 40
polarity,Spectra-method (spectraData),
106
polarity<-,MsBackend-method
(MsBackend), 53
polarity<-,MsBackendDataFrame-method
(hidden_aliases), 40
polarity<-,MsBackendMemory-method
(hidden_aliases), 40
polarity<-,Spectra-method
(spectraData), 106
ppm (hidden_aliases), 40
precScanNum,MsBackend-method
(MsBackend), 53
precScanNum,MsBackendDataFrame-method
(hidden_aliases), 40
precScanNum,MsBackendMemory-method
(hidden_aliases), 40
precScanNum, Spectra-method
(spectraData), 106
precursorCharge (spectraData), 106
precursorCharge,MsBackend-method
(MsBackend), 53
precursorCharge,MsBackendDataFrame-method
(hidden_aliases), 40
precursorCharge,MsBackendMemory-method
(hidden_aliases), 40
precursorCharge, Spectra-method
(spectraData), 106
precursorIntensity (spectraData), 106
precursorlntensity,MsBackend-method
(MsBackend), 53
precursorIntensity,MsBackendDataFrame-method
(hidden_aliases), 40
precursorIntensity,MsBackendMemory-method
(hidden_aliases), 40
precursorlntensity,Spectra-method
(spectraData), 106

125

precursorMz (spectraData), 106
precursorMz,MsBackend-method
(MsBackend), 53
precursorMz,MsBackendDataFrame-method
(hidden_aliases), 40
precursorMz,MsBackendMemory-method
(hidden_aliases), 40
precursorMz, Spectra-method
(spectraData), 106
precursorMz<-,MsBackend-method
(MsBackend), 53
precursorMz<-,Spectra-method
(spectraData), 106
PrecursorMzParam (neutralloss), 77
precursorPurity, 81
processingChunkFactor
(processingChunkSize, Spectra-method),
83
processingChunkFactor(), 96, 109
processingChunkFactor, Spectra-method
(processingChunkSize, Spectra-method),
83
processingChunkSize
(processingChunkSize, Spectra-method),
83
processingChunkSize(), 88, 92, 95, 110
processingChunkSize, Spectra-method, 83
processingChunkSize<-
(processingChunkSize, Spectra-method),
83
processingChunkSize<-,Spectra-method
(processingChunkSize, Spectra-method),
83
processinglLog, 85
ProtGenerics: :ProcessingStep, 96

reduceSpectra (deisotopeSpectra), 19
reduceSpectra(),4, 5
replacelntensitiesBelow
(processinglog), 85
replacelntensitiesBelow, Spectra-method
(processinglog), 85
reset (processinglLog), 85
reset,MsBackend-method (MsBackend), 53
reset,Spectra-method (processinglog), 85
rtime (spectraData), 106
rtime,MsBackend-method (MsBackend), 53
rtime,MsBackendDataFrame-method
(hidden_aliases), 40

126

rtime,MsBackendMemory-method
(hidden_aliases), 40

rtime, Spectra-method (spectraData), 106

rtime<-,MsBackend-method (MsBackend), 53

rtime<-,MsBackendDataFrame-method
(hidden_aliases), 40

rtime<-,MsBackendMemory-method
(hidden_aliases), 40

rtime<-,Spectra-method (spectraData),
106

S4Vectors::SimpleList(), 113

scalePeaks (processinglog), 85

scanIndex (spectraData), 106

scanIndex,MsBackend-method (MsBackend),
53

scanIndex,MsBackendDataFrame-method
(hidden_aliases), 40

scanIndex,MsBackendMemory-method
(hidden_aliases), 40

scanlndex, Spectra-method (spectraData),
106

selectSpectraVariables
(deisotopeSpectra), 19

selectSpectraVariables,MsBackend-method
(MsBackend), 53

selectSpectraVariables,MsBackendCached-method

(MsBackendCached), 72

selectSpectraVariables,MsBackendDataFrame—metﬁ

(hidden_aliases), 40

INDEX

smooth (processinglLog), 85

smooth, Spectra-method (processinglLog),
85

smoothed (spectraData), 106

smoothed,MsBackend-method (MsBackend),
53

smoothed,MsBackendDataFrame-method
(hidden_aliases), 40

smoothed,MsBackendMemory-method
(hidden_aliases), 40

smoothed, Spectra-method (spectraData),
106

smoothed<-,MsBackend-method
(MsBackend), 53

smoothed<-,MsBackendDataFrame-method
(hidden_aliases), 40

smoothed<-,MsBackendMemory-method
(hidden_aliases), 40

smoothed<-,Spectra-method
(spectraData), 106

Spectra, 5, 15, 36, 37, 70, 82, 92,94, 106, 114

Spectra(), 18, 33, 35,70, 78, 82, 101, 102,
116

Spectra, ANY-method (Spectra), 94

Spectra, character-method (Spectra), 94

Spectra,missing-method (Spectra), 94

Spectra,MsBackend-method (Spectra), 94

B%ctra—class(Spectra),94

spectra-plotting, 101

selectSpectravariables,MsBackendMemory-methodSPectrabata, 106

(hidden_aliases), 40
selectSpectraVariables, Spectra-method
(deisotopeSpectra), 19

setBackend (Spectra), 94

setBackend(), 12, 13,63

setBackend, Spectra,MsBackend-method
(Spectra), 94

show,MsBackendCached-method
(MsBackendCached), 72

show,MsBackendDataFrame-method
(hidden_aliases), 40

show,MsBackendHdf5Peaks-method
(hidden_aliases), 40

show, MsBackendMemory-method
(hidden_aliases), 40

show,MsBackendMzR-method
(hidden_aliases), 40

show, Spectra-method (hidden_aliases), 40

spectraData(), 95
spectraData,MsBackend-method
(MsBackend), 53
spectraData,MsBackendCached-method
(MsBackendCached), 72
spectraData,MsBackendDataFrame-method
(hidden_aliases), 40
spectraData,MsBackendHdf5Peaks-method
(hidden_aliases), 40
spectraData,MsBackendMemory-method
(hidden_aliases), 40
spectraData,MsBackendMzR-method
(hidden_aliases), 40
spectraData, Spectra-method
(spectraData), 106
spectraData<-,MsBackend-method
(MsBackend), 53
spectraData<-,MsBackendCached-method

INDEX

(MsBackendCached), 72
spectraData<-,MsBackendDataFrame-method
(hidden_aliases), 40
spectraData<-,MsBackendHdf5Peaks-method
(hidden_aliases), 40
spectraData<-,MsBackendMemory-method
(hidden_aliases), 40
spectraData<-,MsBackendMzR-method
(hidden_aliases), 40
spectraData<-,Spectra-method
(spectraData), 106
spectraNames (spectraData), 106
spectraNames,MsBackend-method
(MsBackend), 53
spectraNames,MsBackendDataFrame-method
(hidden_aliases), 40
spectraNames,MsBackendMemory-method
(hidden_aliases), 40
spectraNames,MsBackendMzR-method
(hidden_aliases), 40
spectraNames, Spectra-method
(spectraData), 106
spectraNames<-,MsBackend-method
(MsBackend), 53
spectraNames<-,MsBackendDataFrame-method
(hidden_aliases), 40
spectraNames<-,MsBackendMemory-method
(hidden_aliases), 40
spectraNames<-,MsBackendMzR-method
(hidden_aliases), 40
spectraNames<-,Spectra-method
(spectraData), 106
spectrapply (processinglLog), 85
spectrapply, Spectra-method
(processinglog), 85
spectraVariableMapping, 116
spectraVariableMapping,MsBackend-method
(spectraVariableMapping), 116
spectraVariableMapping, Spectra-method
(spectraVariableMapping), 116
spectraVariableMapping<-
(spectraVariableMapping), 116

spectraVariableMapping<-,MsBackend-method

(spectraVariableMapping), 116
spectraVariableMapping<-,Spectra-method

(spectraVariableMapping), 116
spectraVariables (spectraData), 106
spectraVariables(), 117

127

spectraVariables,MsBackend-method
(MsBackend), 53

spectraVariables,MsBackendCached-method
(MsBackendCached), 72

spectraVariables,MsBackendDataFrame-method

(hidden_aliases), 40
spectraVariables,MsBackendMemory-method
(hidden_aliases), 40
spectraVariables,MsBackendMzR-method
(hidden_aliases), 40
spectraVariables, Spectra-method
(spectraData), 106
split (concatenateSpectra), 12
split(), 60
split,MsBackend, ANY-method (MsBackend),
53
split,MsBackendDataFrame, ANY-method
(hidden_aliases), 40
split,MsBackendMemory, ANY-method
(hidden_aliases), 40
split,Spectra,ANY-method
(concatenateSpectra), 12
split.default(), 68
supportsSetBackend (MsBackend), 53
supportsSetBackend,MsBackend-method
(MsBackend), 53

text(), 103

tic (spectrabData), 106

tic,MsBackend-method (MsBackend), 53

tic,MsBackendDataFrame-method
(hidden_aliases), 40

tic,MsBackendMemory-method
(hidden_aliases), 40

tic,Spectra-method (spectrabata), 106

uniqueMsLevels (spectraData), 106

uniqueMsLevels,MsBackend-method
(MsBackend), 53

uniqueMslLevels, Spectra-method
(spectrabData), 106

	chunkapply
	combinePeaks
	combinePeaksData
	compareSpectra
	concatenateSpectra
	countIdentifications
	deisotopeSpectra
	estimatePrecursorIntensity,Spectra-method
	estimatePrecursorMz
	fillCoreSpectraVariables
	filterFourierTransformArtefacts
	filterPeaksRanges
	fragmentGroupIndex
	hidden_aliases
	joinPeaks
	MsBackend
	MsBackendCached
	neutralLoss
	plotMzDelta
	precursorPurity
	processingChunkSize,Spectra-method
	processingLog
	Spectra
	spectra-plotting
	spectraData
	spectraVariableMapping
	Index

