Package ‘MetNet’

November 6, 2025
Type Package

Title Inferring metabolic networks from untargeted high-resolution
mass spectrometry data

Version 1.29.0
Date 2025-10-24
VignetteBuilder knitr

Depends R (>=4.1), S4Vectors (>= 0.28.1), SummarizedExperiment (>=
1.20.0)

Imports bnlearn (>= 4.3), BiocParallel (>= 1.12.0), corpcor (>=
1.6.10), dplyr (>=1.0.3), ggplot2 (>= 3.3.3), GeneNet (>=
1.2.15), GENIE3 (>= 1.7.0), methods (>= 4.1), parmigene (>=
1.0.2), psych (>= 2.1.6), rlang (>= 0.4.10), stabs (>= 0.6),
stats (>=4.1), tibble (>= 3.0.5), tidyr (>=1.1.2)

Suggests BiocGenerics (>= 0.24.0), BiocStyle (>= 2.6.1), glmnet (>=
4.1-1), igraph (>= 1.1.2), knitr (>= 1.11), rmarkdown (>=
1.15), testthat (>=2.2.1), Spectra (>= 1.4.1), MsCoreUltils (>=
1.6.0)

biocViews ImmunoOncology, Metabolomics, MassSpectrometry, Network,
Regression

Description MetNet contains functionality to infer metabolic network topologies from
quantitative data and high-resolution mass/charge information. Using statistical models
(including correlation, mutual information, regression and Bayes statistics) and
quantitative data (intensity values of features) adjacency matrices are inferred that
can be combined to a consensus matrix. Mass differences calculated between mass/charge
values of features will be matched against a data frame of supplied mass/charge
differences referring to transformations of enzymatic activities. In a third step,
the two levels of information are combined to form a adjacency matrix inferred
from both quantitative and structure information.

License GPL (>=3)

Encoding UTF-8

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/MetNet

1

2 Contents

git_branch devel
git_last_commit e4fd4ac
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2025-11-05

Author Thomas Naake [aut, cre],
Liesa Salzer [ctb],
Elva Maria Novoa-del-Toro [ctb] (ORCID:
<https://orcid.org/0000-0002-6135-5839>)

Maintainer Thomas Naake <thomasnaake@googlemail.com>

Contents
MetNet-package i e e e e e 3
AdjacencyMatrix ... L L e e e e e e 4
.assays_have_identical_colnames_rownames 4
.assays_have_identical_dimnames 5
addSpectralSimilarity 6
addToList e e e e e 7
AdjacencyMatrixl 8
AdjacencyMatrix-class 9
ANIGENEriCS o e e e e e 11
ATACTIC v v v e e e e e e e e e e e e e e 11
bayes e 12
Clr . e e e 13
combine e 14
correlation L L e e e 16
getlinks e e 17
[aSSO e e 18
Mat_test e e e e e e 19
MAt_teSE_Z o e e e e e e e e e 19
MS2_LESE . . . o e e e e e e e e e e e e e e e e e e e 20
MZ_SUMMATY .« . v v v v v e 20
MZ_VIS . o v v v e 22
partialCorrelation e e 23
peaklist L e e e 24
randomForest L 24
rtCorrection e e 25
SPECIIa_MALIIX . . & v v v vt v e 27
statistical L L e e e e 28
structural L L e e e 29
threshold e e 30
topKnet 33
X_annotation e e e e e e e e 34

X_EESE o o s, 35

https://orcid.org/0000-0002-6135-5839

MetNet-package 3

Index 38

MetNet-package Inferring metabolic networks from untargeted high-resolution mass
spectrometry data

Description

Inferring metabolic networks from untargeted high-resolution mass spectrometry data.

Details

The package infers network topologies from quantitative data (intensity values) and structural data
(m/z values of mass features). MetNet combines these two data sources to a consensus matrix.

Author(s)

Author: Thomas Naake [aut, cre], Liesa Salzer [ctb], Elva Maria Novoa-del-Toro [ctb] (ORCID:
<https://orcid.org/0000-0002-6135-5839>) Maintainer: Thomas Naake <thomasnaake @ googlemail.com>

References

Breitling, R. et al. Ab initio prediction of metabolic networks using Fourier transform mass spec-
trometry data. 2006. Metabolomics 2: 155-164. 10.1007/s11306-006-0029-z

Examples

data("x_test"”, package = "MetNet")

x_test <- as.matrix(x_test)

functional_groups <- rbind(
c("Hydroxylation (-H)", "0", "15.9949146221"),
c("Malonyl group (-H20)", "C3H203", "86.0003939305"),
c("C6H1006", "C6H1Q06", "178.0477380536"),
c("D-ribose (-H20) (ribosylation)"”, "C5H804", "132.0422587452"),
c("Disaccharide (-H20)", "C12H20011", "340.1005614851"),
c("Glucuronic acid (-H20)", "C6H806", "176.0320879894"),
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945"))

functional_groups <- data.frame(group = functional_groups[,1],
formula = functional_groups[, 2],
mass = as.numeric(functional_groups[,3]))

struct_adj <- structural(x_test, functional_groups, ppm = 5)

stat_adj_l1 <- statistical(x_test,
model = c("pearson”, "spearman”,"bayes"))
args_topl <- list(n = 10)
stat_adj <- threshold(stat_adj_1, type = "top2", args = args_topl)
cons_adj <- combine(struct_adj, stat_adj)

4 .assays_have_identical_colnames_rownames

.AdjacencyMatrix Create S4 class AdjacencyMatrix

Description

The class ‘AdjacencyMatrix‘ extends the ‘SummarizedExperiment® class. It will add the slots
‘type‘, ‘directed, and ‘thresholded‘.

Details

o o

The slot ‘type‘ is of type ‘"character"‘, storing the type of the ‘"AdjacencyMatrix"*, i.e. ‘"struc-
tural"‘, “"statistical"‘, or ‘"combined"‘. The slot ‘directed‘ is of type ‘"logical"‘, storing if the
adjacency matrix is directed or not. The slot ‘thresholded" is of type ‘"logical"‘, storing if the ad-
jacency matrix was thresholded, e.g. if the functions ‘rtCorrection® or ‘threshold‘ were applied on
the ‘structural’ or ‘statistical® ‘AdjacencyMatrix‘ objects.

If any of the ‘AdjacencyMatrix‘ objects passed to the ‘combine‘ function was ‘directed = TRUE®
or ‘thresholded = TRUEs® the ‘combine‘ ‘AdjacencyMatrix‘ object will be ‘directed = TRUE® or
‘thresholded = TRUE".

Value

class generator function for class ‘AdjacencyMatrix

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

.assays_have_identical_colnames_rownames

Check if all the assays in the ‘AdjacencyMatrix‘ object have identical
colnames and rownames

Description
The function will check if all the assays in the ‘AdjacencyMatrix‘ object have identical colnames
and rownames.

Usage

.assays_have_identical_colnames_rownames(object)

Arguments

object ‘AdjacencyMatrix‘ object

.assays_have_identical_dimnames

Details

Helper function for validity check of ‘AdjacencyMatrix‘ objects.

Value

‘logical® of length 1

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

.assays_have_identical_dimnames
Check if the assays in the ‘AdjacencyMatrix‘ object have identical
dimnames

Description

The function will check if the assays in the ‘AdjacencyMatrix‘ object have identical dimnames.

Usage

.assays_have_identical_dimnames(object)

Arguments

object ‘AdjacencyMatrix‘ object

Details

Helper function for validity check of ‘AdjacencyMatrix‘ objects.

Value

‘logical‘ of length 1

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

6 addSpectralSimilarity

addSpectralSimilarity Adding a spectral similarity matrix to the "structural” ‘AdjacencyMa-
trix*

Description

The function ‘addSpectralSimilarity‘ adds adjacency matrices from spectral similarity into the
"structural” ‘AdjacencyMatrix‘ object. One or multiple spectral similarity matrices can be added to
the "structural” ‘AdjacencyMatrix‘ object.

Usage

addSpectralSimilarity(am_structural, ms2_similarity = list())

Arguments

am_structural ‘AdjacencyMatrix‘ of type "structural” that was created using matching MS1
data of the same data set. The respective spectral similarity matrices will be
added into ‘am_structural®

ms2_similarity ‘list‘ containing spectral similarity adjacency matrices with matching row-/colnames
of the structural ‘AdjacencyMatrix‘. The name of the list entries should refer-
ence to the similarity calcululation method (e.g. "ndotproduct™)

Details

The function ‘addSpectralSimilarity‘ includes functionality to add spectral adjacency matrices e.g.
that were created by functionality from the ‘RforMassSpectrometry‘ infrastructure. ‘addSpectral-
Similarity* iterates through a ‘list* with named spectral similarity matrices and adds them to the
"structural” ‘AdjacencyMatrix‘. Matching between spectral similarity and "structural" ‘Adjacen-
cyMatrix* is performed via rownames/colnames. Thus, it is important that the spectral similarity
matrices have row/colnames matching to the respective MS1 data. ‘addSpectralSimilarity‘ will
add the adjacency matrices and will return the "structural" ‘AdjacencyMatrix‘ containing the added
weighted adjacency matrices in the ‘assays* slot.

Value

‘AdjacencyMatrix‘ of type "structural" containing the respective adjacency matrices in the ‘assay‘
slot as specified by ‘methods*

Author(s)

Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>

addToList 7

Examples

data("x_test"”, package = "MetNet")
transformation <- rbind(
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315"),
c("Disaccharide (-H20)", "C12H20011", "340.1005614851"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945"))
transformation <- data.frame(group = transformation[, 1],
formula = transformation[, 27,
mass = as.numeric(transformation[, 3]))
am_struct <- structural(x_test, transformation, var = c("group”, "mass"),
ppm = 10, directed = TRUE)

load the file containing MS2 similarities
f <- system.file("spectra_matrix/spectra_matrix.RDS", package = "MetNet")
adj_spec <- readRDS(f)

run the addSpectralSimilarity function
spect_adj <- addSpectralSimilarity(am_structural = am_struct,
ms2_similarity = list(”ndotproduct” = adj_spec))

addToList Add adjacency matrix to list

Description
This helper function used in the function ‘statistical* adds an adjacency matrix to a ‘list* of adja-
cency matrices.

Usage

addToList(l, name, object)

Arguments
1 ‘list® of adjacency matrices
name ‘character‘, name of added entry
object ‘matrix ‘ that will be added
Details

The function ‘addToList* is a helper function used internally in ‘statistical®.

Value

‘list* containing the existing matrices and the added matrix

8 AdjacencyMatrix

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")

x <- x_test[1:10, 3:ncol(x_test)]

X <- as.matrix(x)

cor_pearson <- correlation(x, method = "pearson”)
cor_spearman <- correlation(x, method = "spearman”)

1 <- list(pearson = cor_pearson)

MetNet:::addToList(1l, "spearman_coef”, cor_spearman$r)

AdjacencyMatrix Wrapper to create an instance of S4 class AdjacencyMatrix

Description

The function ‘AdjacencyMatrix * will create an object of type ‘AdjacencyMatrix ‘.

Usage

AdjacencyMatrix(
adj_1,
rowData,
type = c("structural”, "statistical”, "combine"),
directed = c(TRUE, FALSE),
thresholded = c(TRUE, FALSE)

)
Arguments
adj_1 ‘list® of adjacency matrices
rowData ‘data.frame’, containing information on the features
type ‘character’, either ‘"structural"‘, ‘"statistical"‘, or ‘"combine"*
directed ‘logical’, if the adjacency matrix underlying the graph is directed or undirected
thresholded ‘logical’, if the functions ‘rtCorrection‘ or ‘threshold* were applied on the ‘struc-
tural® or ‘statistical‘ ‘AdjacencyMatrix‘ objects
Details

‘adj_l° is a list of adjacency matrices. The adjacency matrices have identical dimensions and ‘dim-
names‘ and each adjacency matrix has the same number of columns and rows and identical ‘row-
names‘ and ‘colnames‘. ‘rowData‘ will be also used for the ‘colData‘ slot (since the ‘rownames*
and ‘colnames* are identical).

AdjacencyMatrix-class 9

Value

object of S4 class ‘AdjacencyMatrix*

Accessors

- The ‘AdjacencyMatrix‘ class extends the [SummarizedExperiment::SummarizedExperiment] class
and inherits all its accessors and replacement methods.

Al

- The ‘type‘ accessor returns the ‘type‘ (‘"structural"‘, ‘"statistical"*, ‘"combine") slot.

- The ‘directed‘ accessor returns the ‘directed‘ (‘logical of length 1) slot.

- The ‘thresholded‘ accessor returns the ‘thresholded* (‘logical® of length 1) slot.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

binary <- matrix(@, ncol = 10, nrow = 10)
transformation <- matrix("", ncol = 10, nrow = 10)
mass_difference <- matrix("", ncol = 10, nrow = 10)

rownames(binary) <- rownames(transformation) <- rownames(mass_difference) <- paste("feature”, 1:10)
colnames(binary) <- rownames(transformation) <- rownames(mass_difference) <- paste(”feature”, 1:10)

binary[5, 4] <- 1
transformation[5, 4] <- "glucose addition”
mass_difference[5, 4] <- "162"

create adj_l and rowData

adj_l <- list(binary = binary, transformation = transformation,
mass_difference = mass_difference)

rowData <- DataFrame(features = rownames(binary),
row.names = rownames(binary))

AdjacencyMatrix(adj_1 = adj_l, rowData = rowData, type = "structural”,
directed = TRUE, thresholded = FALSE)

AdjacencyMatrix-class Methods for ‘AdjacencyMatrix‘ objects

Description

‘length‘ returns the length of an ‘AdjacencyMatrix‘ object (number of rows of an assay). ‘length*
returns a ‘numeric of length 1.

‘dim‘ returns the length of an ‘AdjacencyMatrix‘ object (number of rows of an assay, number of
cols of an assay). ‘dim‘ returns a ‘numeric‘ of length 2.

10 AdjacencyMatrix-class

‘type‘ will return the type of an ‘AdjacencyMatrix* (‘statistical, ‘structural‘ or ‘combine‘). ‘type*
returns a ‘character’ of length 1

‘directed’ returns the information on directed of an ‘AdjacencyMatrix°, i.e. if the underlying graph
is directed or undirected. ‘directed returns ‘logical‘ of length 1.

‘thresholded’ returns the information if the adjacency matrix is thresholded, i.e. if the function
‘rtCorrection or ‘threshold‘ was applied to the ‘AdjacencyMatrix‘ object. ‘thresholded‘ returns a
‘logical® of length 1.

‘show* prints summary information on an object of class ‘AdjacencyMatrix ‘.

‘as.data.frame’ returns the adjacency matrices (stored in the ‘assays‘ slot) and returns information
on the nodes and the associated information on edges as a data frame. ‘as.data.frame‘ returns a
‘data.frame’.

Usage

S4 method for signature 'AdjacencyMatrix'
length(x)

S4 method for signature 'AdjacencyMatrix'
dim(x)

S4 method for signature 'AdjacencyMatrix'
type(x)

S4 method for signature 'AdjacencyMatrix'
directed(object)

S4 method for signature 'AdjacencyMatrix'
thresholded(object)

S4 method for signature 'AdjacencyMatrix'
show(object)

S4 method for signature 'AdjacencyMatrix'
as.data.frame(x)

Arguments
X instance of class ‘AdjacencyMatrix "
object instance of class ‘AdjacencyMatrix’
Author(s)

Thomas Naake, <thomasnaake@googlemail .com>

AllGenerics

11
AllGenerics Placeholder for generics functions documentation
Description
Placeholder for generics functions documentation
aracne Create an adjacency matrix based on algorithm for the reconstruction

of accurate cellular networks

Description

‘aracne‘ infers an adjacency matrix using the algorithm for the reconstruction of accurate cellular
networks using the ‘aracne.a‘ function from the ‘parmigene‘ package. The function ‘aracne‘ will
return the weighted adjacency matrix of the inferred network after applying ‘aracne.a‘.

Usage
aracne(mi, eps = 0.05, ...)
Arguments
mi matrix, where columns are the samples and the rows are features (metabolites),
cell entries are mutual information values between the features. As input, the
mutual information (e.g. raw MI estimates) from the ‘knnmi.all* function of the
‘parmigene‘ package can be used.
eps numeric, used to remove the weakest edge of each triple of nodes
not used here
Details

For more details on the ‘aracne.a‘ function, refer to ‘?parmigene::aracne.a‘. ‘aracne.a‘ considers
each triple of edges independently and removes the weakest one if M I(3,j) < M1(j, k) — eps and
MI(i,j) < MI(i, k) — eps. See Margolin et al. (2006) for further information.

Value

matrix, matrix with edges inferred from Reconstruction of accurate cellular networks algorithm
3 3
aracne.a

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

12 bayes

References

Margolin et al. (2006): ARACNE : An algorithm for the reconstruction of gene regulatory net-
works in a mammalian cellular context. BMC Bioinformatics, S7, doi: [10.1186/1471-2105-7-S1-
S7](https://doi.org/10.1186/1471-2105-7-S1-S7)

Examples

data("x_test"”, package = "MetNet")

x <- x_test[1:10, 3:ncol(x_test)]

X <- as.matrix(x)

x_z <- apply(x, 1, function(y) (y - mean(y)) / sd(y))
mi_x_z <- parmigene::knnmi.all(x_z)

aracne(mi_x_z, eps = 0.05)

bayes Create an adjacency matrix based on score-based structure learning
algorithm

Description

‘bayes‘ infers an adjacency matrix using score-based structure learning algorithm ‘boot.strength*

from the ‘bnlearn package. ‘bayes extracts then the reported connections from running the ‘boot.strength*
function and assigns the strengths of the arcs of the Bayesian connections to an adjacency matrix.
‘bayes‘ returns this weighted adjacency matrix.

Usage
bayes(x, algorithm = "tabu”, R = 100, ...)
Arguments
X ‘matrix‘ where columns are the samples and the rows are features (metabolites),
cell entries are intensity values
algorithm ‘character’, structure learning to be applied to the bootstrap replicates (default
is “"tabu"®)
R ‘numeric‘, number of bootstrap replicates
parameters passed to ‘boot.strength’
Details

‘boot.strength‘ measures the strength of the probabilistic relationships by the arcs of a Bayesian
network, as learned from bootstrapped data. By default ‘bayes‘ uses the Tabu greedy search.

For use of the parameters used in the ‘boot.strength function, refer to ‘?bnlearn::boot.strength‘. For
further information see also Friedman et al. (1999) and Scutari and Nagarajan (2001).

clr 13

Value

‘matrix * with edges inferred from score-based structure learning algorithm ‘boot.strength*

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

References

Friedman et al. (1999): Data Analysis with Bayesian Networks: A Bootstrap Approach. Proceed-
ings of the 15th Annual Conference on Uncertainty in Artificial Intelligence, 196-201.

Scutari and Nagarajan (2011): On Identifying Significant Edges in Graphical Models. Proceedings
of the Workshop Probabilistic Problem Solving in Biomedicine of the 13th Artificial Intelligence in
Medicine Conference, 15-27.

Examples

data("x_test"”, package = "MetNet")

x <- x_test[1:10, 3:ncol(x_test)]

X <- as.matrix(x)

bayes(x, algorithm = "tabu”, R = 100)

clr Create an adjacency matrix based on context likelihood or relatedness
network

Description

‘clr® infers an adjacency matrix using context likelihood/relatedness network using the ‘clr® func-
tion from the ‘parmigene‘ package. ‘clr will return the adjacency matrix containing the Context
Likelihood of Relatedness Network-adjusted scores of Mutual Information values.

Usage

clr(mi, ...)

Arguments

mi matrix, where columns are samples and the rows are features (metabolites), cell
entries are mutual information values between the features. As input, the mu-
tual information (e.g. raw MI estimates) from the ‘knnmi.all® function of the
‘parmigene‘ package can be used.

not used here

14 combine

Details

For more details on the ‘clr function, refer to ‘?parmigene::clr‘. CLR computes the score sqrt(z2 +

27) for each pair of variables i, j, where z; = max (0, (I(X;, X;)—mean(X;))/sd(X;)). mean(X;)
and sd(X;) are the mean and standard deviation of the mutual information values I(X;, X}) for all

k =1, ...,n. For more information on the CLR algorithm see Faith et al. (2007).

Value

matrix, matrix with edges inferred from Context Likelihood of Relatedness Network algorithm ‘clr*

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

References

Faith et al. (2007): Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regula-
tion from a Compendium of Expression Profiles. PLoS Biology, 8, doi: [10.1371/journal.pbio.0050008](
https://doi.org/10.1371/journal.pbio.0050008)

Examples

data("x_test"”, package = "MetNet")

x <- x_test[1:10, 3:ncol(x_test)]

X <- as.matrix(x)

x_z <- apply(x, 1, function(y) (y - mean(y)) / sd(y))
mi_x_z <- parmigene::knnmi.all(x_z)

clr(mi_x_z)

combine Combine structural and statistical ‘AdjacencyMatrix‘ objects

Description

The function ‘combine’ takes as input the structural and statistical ‘AdjacencyMatrix‘ objects, cre-
ated in former steps. It will access the assays ‘binary‘ and ‘consensus‘, adds them together and will
report a connection between metabolites if the edge is present in both matrices.

‘combine‘ returns an ‘AdjacencyMatrix‘ containing this consensus matrix supported by the struc-
tural and statistical adjacency matrices (assay ‘combine_binary‘). The ‘AdjacencyMatrix‘ object
furthermore contains the assays from the statistical ‘AdjacencyMatrix‘ and the combined assays
from the structural ‘AdjacencyMatrix‘, e.g. if the structural ‘AdjacencyMatrix‘ has the assays
‘group‘ and ‘mass‘, the combine ‘AdjacencyMatrix ‘ object will contain the assays ‘combine_group*
and ‘combine_mass‘ that have support from the structural and statistical ‘AdjacencyMatrix‘ object.

Usage

combine(am_structural, am_statistical)

combine 15

Arguments

am_structural ‘AdjacencyMatrix‘ containing the ‘numeric* structural adjacency matrix (assay
‘binary‘) and other ‘character® or ‘numeric‘ structural and spectral similarity
adjacency matrices (e.g. ‘group, ‘mass* or spectral similarity as ‘ndotprodcut*).

am_statistical ‘AdjacencyMatrix‘ containing the assay ‘consensus‘ and other ‘numeric* adja-
cency matrices depending on the chosen statistical models

Details

The matrices from the assays ‘binary‘ and ‘consensus‘ will be added and an unweighted connection
will be reported when the edges are respectively present in both ‘binary‘ and ‘consensus’.

Value

‘AdjacencyMatrix‘ object containing the assays ‘combine_binary* (‘numeric‘ adjacency matrix),
and the combined matrices derived from the structural ‘AdjacencyMatrix‘ (‘character‘ adjacency
matrices).

The ‘AdjacencyMatrix‘ object will also contain all other assays contained in ‘am_structural‘ and
‘am_statistical‘.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")

x_test <- as.matrix(x_test)

transformation <- rbind(
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315"),
c("Disaccharide (-H20)", "C12H20011", "340.1005614851"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945"))

transformation <- data.frame(group = transformation[, 1],
formula = transformation[, 27,
mass = as.numeric(transformation[, 31))

create AdjacencyMatrix object of type structural
am_struct <- structural(x_test, transformation, var = c("group”, "mass"),

ppm = 10)

create AdjacencyMatrix object of type statistical

x_test_cut <- as.matrix(x_test[, -c(1:2)])

am_stat <- statistical(x_test_cut, model = c("pearson”, "spearman”),
adjust = "bonferroni")

am_stat <- threshold(am_stat, type = "top2", args = list(n = 10))

combine
combine(am_structural = am_struct, am_statistical = am_stat)

16 correlation

correlation Create an adjacency matrix based on correlation

Description

‘correlation infers an adjacency matrix using correlation using the ‘corr.test* function (from the
‘psych‘ package) or ‘partialCorrelation‘. ‘correlation® extracts the reported pair-wise correlation
coefficients from the function ‘corr.test‘ and ‘partialCorrelation‘ and will return the weighted adja-
cency matrix of the correlation coefficients, together with the associated p-values.

Usage
correlation(x, method = "pearson", p.adjust = "none", ...)
Arguments
X ‘matrix ‘, where columns are the samples and the rows are features (metabolites),
cell entries are intensity values
method ‘character®, either "pearson", "spearman", "pearson_partial", "spearman_partial",
or "ggm".
p.adjust ‘character‘, method of p-value adjustment passed to ‘p.adjust*
additional arguments passed to ‘corr.test‘ or ‘partialCorrelation®
Details

If “"pearson"* or ‘"spearman"* is used as a ‘method°, the function ‘corr.test’ from ‘psych‘ will be
employed.

If “"ggm"* is used as a ‘method°, the function ‘ggm.estimate.pcor® from ‘GeneNet‘ will be em-
ployed.

If “"pearson_partial"‘ or “"spearman_partial"‘ is used as a ‘method‘ the function ‘partialCorrelation*
will be employed.

‘method* will be passed to argument ‘method* in ‘corr.test’ (in the case of ‘"pearson"‘ or ‘"spear-

man"‘) or to ‘method* in ‘partialCorrelation‘ (‘"pearson” and ‘"spearman"‘ for ‘"pearson_partial"*
and ‘"spearman_partial", respectively).

Value

‘list* containing two matrices, the first matrix contains correlation coefficients and the second matrix
contains the corresponding p-values as obtained from the correlation algorithms ‘corr.test or “par-
tialCorrelation‘ (depending on the chosen ‘method*) and optionally the adjusted p.values (argument
‘p-adjust’)

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>, Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>

getLinks 17

Examples

data("x_test"”, package = "MetNet")
X <- x_test[1:10, 3:ncol(x_test)]
X <- as.matrix(x)

correlation(x, method = "pearson")
getLinks Write an adjacency matrix to a ‘data.frame
Description

‘getLinks‘ vectorizes a numerical square ‘matrix‘ and writes the values and their corresponding
ranks to a ‘data.frame*.

Usage
getlLinks(mat, exclude = "== 1", decreasing = TRUE)
Arguments
mat matrix containing the values of confidence for a link
exclude ‘character’, logical statement as ‘character‘ to set “TRUE* values to NaN in
‘mat‘, will be omitted if ‘exclude = NULL*
decreasing ‘logical®, if ‘TRUE®, the highest confidence value will get the first rank, if
‘FALSE"’, the lowest confidence value will get the first rank
Details

‘getLinks‘ is a helper function used in the function ‘threshold*.

Value

‘data.frame* with entries ‘row*, ‘col’, ‘confidence‘ and ‘rank*

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

mat <- matrix(0:8, ncol = 3, nrow = 3)
MetNet:::getLinks(mat, exclude = "== 0", decreasing = TRUE)

18 lasso

lasso Create an adjacency matrix based on LASSO

Description

‘lasso* infers a adjacency matrix using LASSO using the ‘stabsel.matrix‘ function from the ‘stabs*
package. ‘lasso‘ extracts the predictors from the function ‘stabsel.matrix ‘ and writes the coefficients
to an adjacency matrix.

Usage
lasso(x, parallel = FALSE, ...)
Arguments
X matrix, where columns are the samples and the rows are features (metabolites),
cell entries are intensity values
parallel logical, should computation be parallelized? If ‘parallel = TRUE® the ‘bplapply*
will be applied if ‘parallel = FALSE* the ‘lapply‘ function will be applied.
parameters passed to ‘stabsel.matrix*
Details

For use of the parameters used in the ‘stabsel.matrix‘ function, refer to ‘?stabs::stabsel.matrix".

Value

matrix, matrix with edges inferred from LASSO algorithm ‘stabsel.matrix*

Author(s)

Thomas Naake, <thomasnaake@googlemail .com>

Examples

data("x_test"”, package = "MetNet")

X <- x_test[1:10, 3:ncol(x_test)]

X <- as.matrix(x)

x_z <= t(apply(x, 1, function(y) (y - mean(y)) / sd(y)))
Not run: lasso(x = x_z, PFER = 0.95, cutoff = 0.95)

mat_test 19

mat_test Example data for MetNet: unit tests

Description
mat_test contains 7 toy features that were derived from rnorm. It will be used as an example data
set in unit tests.

Format

matrix

Value

matrix

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

set.seed(1) random_numbers <- rnorm(140, mean = 10, sd = 2) mat_test <- matrix(random_numbers,
nrow = 7) mat_test[1:3,] <- t(apply(mat_test[1:3,], 1, sort)) mat_test[5:7,] <- t(apply(mat_test[5:7,
], 1, sort, decreasing = TRUE)) rownames(mat_test) <- paste("x", 1:7, sep="")

mat_test_z Example data for MetNet: unit tests

Description
mat_test_z contains 7 toy features that were derived from rnorm. It will be used as an example
data set in unit tests.

Format

matrix

Value

matrix

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

20 mz_summary

Source

set.seed(1) random_numbers <- rnorm(140, mean = 10, sd =2) mat_test <- matrix(random_numbers,
nrow = 7) mat_test[1:3,] <- t(apply(mat_test[1:3,], 1, sort)) mat_test[5:7,] <- t(apply(mat_test[5:7,
1, 1, sort, decreasing = TRUE)) rownames(mat_test) <- paste("x", 1:7, sep = "") mat_test_z <- ap-
ply(mat_test, 1, function(x) (x - mean(x, na.rm = TRUE))/sd(x, na.rm = TRUE))

ms2_test Spectra data to test addSpectralSimilarity

Description
ms2_test contains a subset of a Spectra object. It will be used as an example annotation in the
vignette to show the functionality of the package.

Format

Spectra

Value

Spectra

Author(s)

Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>

mz_summary Create a summary from adjacency list containing mass differences

Description

The function ‘mz_summary‘ creates a summary from the ‘AdjacencyMatrix‘, containing mass dif-
ferences. Individual mass differences are counted over all features. The input may be an ‘Adja-
cencyMatrix ‘ object originating from the function ‘structural®, or ‘combine‘. The parameter ‘filter
will define if data will be filtered above a certain threshold or not.

Usage

mz_summary(am, var = c("group”, "formula"), filter = 0)

mz_summary 21

Arguments
am ‘AdjacencyMatrix‘, a formal class of ‘AdjacencyMatrix‘ containing the mass
differences, that have previously been generated by the function ‘structural ‘or
‘combine*
var ‘character‘ vector corresponding to ‘assayNames(am)‘, the counts will be grouped
according to ‘var®
filter ‘numeric‘, leave empty or set to ‘0° if unfiltered data are required. Select a
‘numeric® as a threshold on counts of mz differences. May be useful to visualize
big data.
Details

Summarizes the adjacency matrices containing mass difference values, i.e. either adjacency list
from ‘structural ‘or ‘combine‘ may be used. The default is filter = F, so the unfiltered summary will
be returned. If filter is set to a ‘number®, e.g. 1000 only mz differences above this threshold will be

displayed.

The function can be applied for adjacency lists from ‘structural‘ and ‘combine°.

Value

‘data.frame‘ containing the numbers of present mz differences and corresponding name.

Author(s)

Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>and Thomas Naake, <thomasnaake@googlemail .com>

Examples

data("x_test"”, package = "MetNet")
transformation <- rbind(
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315"),
c("Disaccharide (-H20)", "C12H20011", "340.1005614851"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945"))
transformation <- data.frame(group = transformation[, 117,
formula = transformation[, 217,
mass = as.numeric(transformation[, 3]))
am_struct <- structural(x_test, transformation, ppm = 5,
var = c("group”, "mass"”, "formula”), directed = TRUE)
unfiltered mz difference counts
mz_summary (am_struct)
filtered mz difference counts
mz_summary(am_struct, filter = 2)

22 mz_vis

mz_vis Visualize mass difference distribution

Description

The function ‘mz_vis* visualizes the mass difference distribution, which has been summarized by
‘mz_summary ‘.

Usage
mz_vis(df, var = "group")
Arguments
df ‘data.frame’, previously generated by ‘mz_summary‘. Needs to contain the
columns "transformation", "mass_difference" and "counts".
var ‘character(1), the column in ‘df* to visualize on the y-axis
Details

Plots the mass difference distribution, summarized by ‘mz_summary‘. Visualization is performed
using ggplot2

Value

‘ggplot® object and corresponding barplot for visualizations

Author(s)

Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>and Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")
transformation <- rbind(
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315"),
c("Disaccharide (-H20)", "C12H20011", "340.1005614851"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945"))
transformation <- data.frame(group = transformation[, 1],
formula = transformation[, 27,
mass = as.numeric(transformation[, 31))
am_struct <- structural(x_test, transformation,
var = c("group”, "formula”, "mass"), ppm = 5, directed = TRUE)
mz_sum <- mz_summary(am_struct, var = "group")
mz_vis(mz_sum)

partialCorrelation 23

partialCorrelation Calculate the partial correlation and p-values

Description

‘partialCorrelation‘ infers an adjacency matrix of partial correlation values and associated p-values
using using the ‘cor2pcor® function (from the ‘corpcor* package). ‘partialCorrelation® calculates the
p-values from the number of samples (‘n‘) and the number of controlling variables (‘g‘). The func-
tion will return a list containing the weighted adjacency matrix of the correlation values, together
with the associated p-values.

Usage
partialCorrelation(x, method = "pearson”, ...)
Arguments
X ‘matrix ‘, where columns are the features (metabolites) and the rows are samples,
cell entries are intensity values
method ‘character’, either "pearson”, "spearman"
further arguments passed to ‘cor* from ‘base‘ or ‘cor2pcor from ‘corpcor*
Details

The correlation coefficients 7;; 5 are obtained from ‘cor2pcor* (‘corpcor package).

The t-values are calculated via
n—=2—g

1-rs’
variables (number of features - 2).

tijls = Tij|s where n are the number of samples and g the number of controlling

The p-values are calculated as follows p;;|5 = 2 - pt(—abs(t;;|s),df =n —2 —g)

Value

‘list* containing two matrices, the first matrix contains correlation coefficients and the second matrix
contains the corresponding p-values

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")

x <- x_test[, 3:ncol(x_test)]

X <- as.matrix(x)

X <= t(x)

partialCorrelation(x, use = "pairwise"”, method = "pearson")

24 randomForest

peaklist Example data for MetNet: data input

Description
The object peaklist is a data.frame, where rows are features and the columns are samples (start-
ing with X001-180).

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail .com>

Source

Internal peaklist from metabolite profiling of Nicotiana species after W+OS and MeJA treatment.
The data was processed by xcms and CAMERA scripts. All unncessary information is removed, keep-
ing only the columns "mz", "rt" and the respective columns containing the intensity values. All row
entries with retention time < 103 s and > 440 s were removed. Entries with m/z values < 250 and >

1200 were removed as well as entries with m/z values between 510 and 600 to reduce the file size.

randomForest Create an adjacency matrix based on random forest

Description

‘randomForest‘ infers an adjacency matrix using random forest using the ‘GENIE3* function from
the ‘GENIE3* package. ‘randomForest‘ returns the importance of the link between features in the
form of an adjacency matrix.

Usage
randomForest(x, ...)
Arguments
X matrix, where columns are the samples and the rows are features (metabolites),

cell entries are intensity values

parameters passed to ‘GENIE3*

rtCorrection 25

Details

For use of the parameters used in the ‘GENIE3‘ function, refer to ‘?GENIE3::GENIE3‘. The ar-
guments ‘regulators‘ and ‘targets‘ are set to ‘NULL‘. Element w; ; (row i, column j) gives the
importance of the link from i to j.

Value

matrix, matrix with the importance of the links inferred from random forest algorithm implemented
by ‘GENIE3*

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")
x <- x_test[1:10, 3:ncol(x_test)]
X <- as.matrix(x)

randomForest(x)
rtCorrection Correct connections in the structural adjacency matrices by retention
time
Description

The function ‘rtCorrection‘ corrects the adjacency matrix infered from structural data based on
shifts in the retention time. For known chemical modifications (e.g. addition of glycosyl groups)
molecules with the moiety should elute at a different time (in the case of glycosyl groups the
metabolite should elute earlier in a reverse-phase liquid chromatography system). If the connection
for the metabolite does not fit the expected behaviour, the connection will be removed (otherwise

sustained).
Usage
rtCorrection(am, x, transformation, var = "group")
Arguments
am ‘AdjacencyMatrix ¢ object returned by the function ‘structural®. The object con-

"ne

tains the assays ‘"binary
the ‘"binary"* assay is required). The assay ‘"binary
trix with edges inferred by mass differences.

and additional assays with ‘character® matrices (only
"¢ stores the ‘numeric‘ ma-

26

rtCorrection

X ‘matrix ‘, where columns are the samples and the rows are features (metabolites),
cell entries are intensity values, ‘x* contains the columns "‘mz‘" and “"rt"‘ that
has the m/z and rt information (numerical values) for the correction of retention
time shifts between features that have a putative connection assigned based on
m/z value difference.

transformation ‘data.frame’, containing the columns ‘var‘, and ‘"rt"* that will be used for cor-
rection of transformation of (functional) groups based on retention time shifts
derived from ‘x‘

var ‘character(1)‘, the key that is used for matching between the column ‘var‘ in
‘transformation‘ and the assay ‘var‘in ‘am‘

Details

‘rtCorrection” is used to correct the (unweighted) adjacency matrices returned by ‘structural® when
information is available about the retention time and shifts when certain transformation occur (it is
meant to filter out connections that were created by m/z differences that have by chance the same
m/z difference but different/unexpected retention time behaviour).

‘rtCorrection‘ accesses the assay ‘transformation® of ‘am* and matches the elements in the ‘var‘ col-
umn against the character matrix. In case of matches, ‘rtCorrection‘ accesses the ‘"mz"* and “"rt
columns of ‘x‘ and calculates the retention time difference between the features. ‘rtCorrection‘ then
checks if the observed retention time difference matches the expected behaviour (indicated by "+
for a higher retention time of the feature with the putative group, ‘"-"* for a lower retention time of
the feature with the putative group or “"?"‘ when there is no information available or features with
that group should not be checked).

"e

"e

In case several transformation were assigned to a feature/feature pair, the connection will be re-
moved if there is an inconsistency with any of the given transformations.

Value

‘AdjacencyMatrix ‘ containing the slots ‘binary‘ and additional ‘character‘ adjacency matrices. The
slot ‘directed” is inherited from ‘am®.

The assay ‘binary‘ stores the ‘numeric® ‘matrix‘ with edges inferred mass differences corrected by
retention time shifts.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")

rownames (x_test) <- paste(round(x_test[, "mz"], 2),
round(x_test[, "rt"1), sep = "_")

transformation <- rbind(
c("Hydroxylation (-H)", "0", 15.9949146221, "+"),
c("Malonyl group (-H20)", "C3H203", 86.0003939305, "+"),
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315", "-"),
c(”Disaccharide (-H20)", "C12H20011", "340.1005614851", "-"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945", "-"))

spectra_matrix 27

transformation <- data.frame(group = transformation[, 1],
formula = transformation[, 2],
mass = as.numeric(transformation[, 31),
rt = transformation[, 41)
am_struct <- structural(x = x_test, transformation = transformation,
var = c("group”, "mass"), ppm = 10, directed = FALSE)
am_struct_rt <- rtCorrection(am = am_struct, x = x_test,
transformation = transformation)

visualize the adjacency matrices

library(igraph)

g <- graph_from_adjacency_matrix(assay(am_struct, "binary"),
mode = "undirected”)

g_rt <- graph_from_adjacency_matrix(assay(am_struct_rt, "binary"),
mode = "undirected")

plot(g, edge.width = 2, edge.arrow.size = 0.5, vertex.label.cex = 0.7)
plot(g_rt, edge.width = 2, edge.arrow.size = 0.5, vertex.label.cex = 0.7)

spectra_matrix Spectra data to test addSpectralSimilarity

Description

spectra_matrix contains one selected putative annotation of x_test. Missing annotations are
filled with ‘NA“’s. It will be used as an example annotation in the vignette to show the functionality
of the package.

Format

matrix

Value

matrix

Author(s)

Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>

Source
library(MsCoreUtils) library(Spectra)
f <- system.file("spectra_matrix/ms2_test.RDS", package = "MetNet") sps_sub <- readRDS(f)

adj_spec <- Spectra::compareSpectra(sps_sub, FUN = ndotproduct) colnames(adj_spec) <- sps_sub$id
rownames(adj_spec) <- sps_sub$id

28 statistical

statistical Create an ‘AdjacencyMatrix‘ object containing assays of adjacency
matrices from statistical methods

Description

The function ‘statitical® infers adjacency matrix topologies from statistical methods and returns
matrices of these networks in an ‘AdjacencyMatrix‘ object. The function includes functionality
to calculate adjacency matrices based on LASSO (L1 norm)-regression, random forests, context
likelihood of relatedness (CLR), the algorithm for the reconstruction of accurate cellular networks
(ARACNE), Pearson correlation (also partial), Spearman correlation (also partial) and score-based
structure learning (Bayes). The function returns an ‘AdjacencyMatrix object of adjacency matrices
that are defined by ‘model‘.

Usage
statistical(x, model, ...)
Arguments
X ‘matrix‘ that contains intensity values of features/metabolites (rows) per sample
(columns).
model ‘character® vector containing the methods that will be used (‘"lasso"‘, ‘"ran-
domPForest", “"clr"*, “"aracne"*, “"pearson"‘, ‘"pearson_partial"‘, ‘"spearman"*,
“"spearman_partial"‘, ‘ggm*, ‘"bayes" ‘)
parameters passed to the functions ‘lasso‘, ‘randomForest‘, ‘clr‘, ‘aracne’, ‘cor-
relation® and/or ‘bayes*
Details

The function ‘statistical‘ includes functionality to calculate adjacency matrices based on LASSO
(L1 norm)-regression, random forests, context likelihood of relatedness (CLR), the algorithm for the
reconstruction of accurate cellular networks (ARACNE), Pearson correlation (also partial), Spear-
man correlation (also partial) and Constraint-based structure learning (Bayes).

‘statistical‘ calls the function ‘lasso‘, ‘randomForest‘, ‘clr®, ‘aracne’, ‘correlation® (for ‘"pearson”*,
‘"pearson_partial", ‘"spearman"‘, ‘"spearman_partial"‘, ‘"ggm"‘) and/or ‘bayes‘ as specified by
‘model‘. It will create adjacency matrices using the specified methods and will return an ‘Adjacen-

cyMatrix‘ containing the weighted adjacency matrices in the ‘assays* slot.

"ne

Internally ‘x* will be z-scaled and the z-scaled object will be used in ‘lasso®, ‘clr* and/or ‘aracne’.

The slot ‘type‘ is set to ‘statistical‘. The slot ‘directed is set to “TRUE if the methods ‘"lasso"*,
“"randomForest"‘, or ‘"bayes"*‘ were used, otherwise ‘directed" is set to ‘FALSE*. The slot ‘thresh-
old‘ is set to ‘FALSE".

Value

‘AdjacencyMatrix‘ containing the respective adjacency matrices in the ‘assay‘ slot as specified by
‘model*

structural

Author(s)

29

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")

x <- x_test[1:10,
x <- as.matrix(x)

3:ncol(x_test)]

statistical(x = x, model = c("pearson”, "spearman"))
statistical(x = x, model = c("pearson”, "spearman"”), p.adjust = "BH")
structural Create adjacency matrix based on m/z (molecular weight) difference

Description

The function ‘structural‘ infers an unweighted adjacency matrix using differences in m/z values
that are matched against a ‘data.frame‘ (‘transformation® of calculated theoretical differences of
loss/addition of functional groups. ‘structural‘ returns an ‘AdjacencyMatrix‘ object containing the
unweighted ‘numeric‘ ‘matrix‘ (assay ‘binary*), together with one or multiple ‘character® matrices
containing e.g. the type of loss/addition or the mass differences. The creation of the additional
‘character* matrices is controlled by the ‘var‘ argument that specifies the column in ‘transformation*
as the data source for the adjacency matrices.

Usage

structural(x, transformation, var = character(), ppm = 5, directed = FALSE)

Arguments

X

transformation

var

ppm
directed

‘matrix‘ or ‘data.frame‘, where columns are the samples and the rows are fea-
tures (metabolites), cell entries are intensity values. ‘x‘ contains the column
“"mz"‘ that has the m/z information (numerical values) for the calculation of
mass differences between features

o

‘data.frame’, containing the columns ‘"group"‘, and ‘"mass"‘ that will be used

for detection of transformation of (functional) groups
‘character’ corresponding to column names in ‘transformation’
‘numeric(1)‘, mass accuracy of m/z features in parts per million (ppm)

‘logical(1)*, if “TRUE’, absolute values of m/z differences will be taken to query
against ‘transformation‘ (irrespective the sign of ‘mass‘) and undirected adja-
cency matrices will be returned as the respective assays. This means, if there
is a negative mass in ‘transformation[, "mass"]‘, this negative mass will not be
reported. If ‘FALSE‘, directed adjacency matrices will be returned with links
reported that match the transformations defined in ‘transformation® (respecting
the sign of ‘mass‘). The ‘directed" slot of the returned ‘AdjacencyMatrix‘ object
will contain the information on ‘directed".

30 threshold

Details

‘structural‘ accesses the column ‘"mz"‘ of ‘x° to infer structural topologies based on the functional
groups defined by ‘transformation‘. To account for the mass accuracy of the dataset ‘x‘, the user
can specify the accuracy of m/z features in parts per million (ppm) by the ‘ppm* argument. The
m/z values in the “"'mz"‘ column of ‘x‘" will be converted to m/z ranges according to the ‘ppm*
argument (default ‘ppm = 5°).

on

The returned ‘AdjacencyMatrix‘ object contains the assays ‘binary‘ and additional adjacency matri-
ces depending on the ‘var parameter. The assay ‘binary‘ stores the ‘numeric‘ ‘matrix‘ with binary
edges inferred from mass differences. The ‘var‘ parameter has to be set according to the column
names in ‘transformation‘. E.g. if the ‘transformation‘ object contains a ‘"group"* column that
stores the name of the transformation, setting ‘var = "group"‘ will create an assay ‘"group"‘ that
contains the adjacency matrices where the entries correspond to the ‘"group”* information for the

respective feature pairs.

The ‘type‘ slot is set to ‘structural‘. The ‘directed’ slot is set accordingly to the ‘directed argument
of the function ‘structural‘. The ‘thresholded’ slot is set to ‘FALSE".

Value

‘AdjacencyMatrix ‘ object. The object will store the adjacency matrix/matrices in the assay slot/slots.
The numerical (unweighted) adjacency matrix inferred from mass differences is stored as the assay
“"binary"‘. Depending on the ‘var‘ argument, there are additional adjacency matrices stored in the
assay slot.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com> and Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>

Examples

data("x_test"”, package = "MetNet")
transformation <- rbind(
c("Monosaccharide (-H20)", "C6H1005", "162.0528234315"),
c("Disaccharide (-H20)", "C12H20011", "340.1005614851"),
c("Trisaccharide (-H20)", "C18H30015", "486.1584702945"))
transformation <- data.frame(group = transformation[, 1],
formula = transformation[, 27,
mass = as.numeric(transformation[, 31))
am_struct <- structural(x_test, transformation, var = c("group”, "mass"),
ppm = 10, directed = TRUE)

threshold Threshold the statistical adjacency or spectral similarity matrices

threshold 31

Description

The function ‘threshold* takes as input an ‘AdjacencyMatrix‘ object containing adjacency matrices
as returned from the function ‘statistical* OR the ‘AdjacencyMatrix‘ object of the type "structural"
containing spectral similarity adjacency matrices, that were added by ‘addSpectSimil()‘.Depending
on the ‘type‘ argument, ‘threshold® will identify the strongest link that are lower or higher a cer-
tain threshold (‘type = "threshold"*) or identify the top ‘n‘ links (‘type® either ‘"topl"*, "top2"‘ or

mean"‘). It will return this kind of information as a binary matrix in the form of an ‘Adjacency-
Matrix‘ object.

Usage

threshold(
am,
type = c("threshold”, "top1”, "top2", "mean"),
args,
values = c("all”, "min
na.rm = TRUE

n

, nmaxn) ,

Arguments

¢

am ‘AdjacencyMatrix‘ object of ‘type‘ ‘"statistical"‘ as created from the function
‘statistical° OR ‘AdjacencyMatrix‘ object of the type "structural" containing
spectral similarity adjacency matrices, that were added by ‘addSpectSimil()*.
The object will contain the adjacency matrices in the ‘assay* slot.

type ‘character®, either ‘"threshold"‘, ‘"top1"‘, “"top2"‘ or ‘"mean"*

args ‘list‘. Depending on the ‘type‘ arguments the list element will be different.

In the case of ‘type == "threshold"‘, ‘args‘ has the entry ‘filter* (‘character’
of length 1). The character vector will specify the kind of filtering applied to
the adjacency matrices. Elements in ‘filter* will refer to the ‘assayNames", e.g.
‘list(filter = "pearson_coef > 0.8")‘ will retain all edges with Pearson correlation
coefficients > 0.8. ‘list(filter = "pearson_coef > 0.8 & spearman_coef > 0.5")°
will retain all edges with Pearson correlation coefficients > 0.8 AND Spearman
correlation coefficients > 0.5. ‘list(filter = "abs(pearson_coef) > 0.8 & spear-
man_coef > 0.5") will retain all edges with Pearson correlation coefficients >
0.8 or < -0.8 AND Spearman correlation coefficients > 0.5.

ne ¢ 3

In the case of ‘type == "topl"‘, ‘type == "top2"*, or ‘type == "mean"‘, ‘args
has the entry ‘n‘ (‘numeric‘ of length 1), that denotes the number of top ranks
written to the consensus matrix. Optionally, ‘args‘ has the entry ‘abs‘ which will
take absolute values of the coefficients (will default to ‘FALSE® if ‘args$abs* is
not specified).

values ‘character’, take from the adjacency matrix all values ("all"), the minimum
of the pairs ("min"), aj; = min(a;j,a;;), or the maximum ("max"), aj; =
max(ai;, aji)

na.rm ‘logical’, if set to ‘TRUE, the ‘NA‘s in the assay slots will not be taken into
account when creating the ‘"consensus"‘ assay. If set to ‘FALSE®, the ‘NA°s

o ne

will be taken into account and might be passed to the ‘"consensus"‘ assay (or

32 threshold

"e

“"binary"‘ if input was type "structural"). If ‘FALSE® the user can set the filter
e.g. to ‘(ggm_coef > 0 | is.na(ggm_coef))‘, when there are ‘NA‘s in ‘ggm_coef*
to disregard ‘NA‘s.

Details

‘values® has to be set carefully depending on if the ‘AdjacencyMatrix‘ object ‘am* is ‘directed‘ or
not.

In the case of ‘type == "threshold"‘, ‘args® has the entry ‘filter (‘character® of length 1). The
character vector will specify the kind of filtering applied to the adjacency matrices. Elements in
“filter* will refer to the ‘assayNames*, e.g. ‘list(filter = "pearson_coef > 0.8")‘ will retain all edges
with Pearson correlation coefficients > 0.8. ‘list(filter = "pearson_coef > 0.8 & spearman_coef >
0.5")° will retain all edges with Pearson correlation coefficients > 0.8 AND Spearman correlation
coefficients > 0.5. ‘list(filter = "abs(pearson_coef) > 0.8 & spearman_coef > 0.5")‘ will retain all
edges with Pearson correlation coefficients > 0.8 and < -0.8.

o o

If ‘type is equal to “"topl"‘, “"top2"‘ or ‘"mean"‘, then ‘args‘ has to contain a numeric vector
of length 1 that gives the number of top ranks included in the returned adjacency matrix. In this
case values that are O for the models ‘lasso‘, ‘randomForest‘ and ‘bayes* are set to ‘NaN‘; values
from correlation (Pearson and Spearman, including for partial correlation) and ‘clr® and ‘aracne’
are taken as they are.

For ‘type = "top1"*, the best (i.e. lowest) rank in ‘am‘ is taken. For ‘type = "top2"*, the second best
(i.e. second lowest) rank in ‘am‘ is taken. For ‘type = "mean"*, the average rank in ‘am° is taken.
Subsequently the first ‘n‘ unique ranks are returned.

Value

‘AdjacencyMatrix‘ object containing a binary adjacency matrix given the links supported by the

‘type‘ and the ‘args‘ (in the slot ‘"consensus"‘ if the input was type "statistical" or in the slot “"bi-

nary"‘ if it was type "structural”. The object will furthermore contain the supplied data input, i.e.
all assays from ‘am‘. The slot ‘threshold* is set to ‘TRUE".

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("x_test"”, package = "MetNet")

x <- x_test[1:10, 3:ncol(x_test)]

X <- as.matrix(x)

model <- c("pearson”, "spearman")

args <- list()

am_stat <- statistical(x, model = model)

type = "threshold”
args <- list(filter = "pearson_coef > 0.95 & spearman_coef > 0.95")

threshold(am = am_stat, type = "threshold”, args = args)

type = "topl”

topKnet 33

args <- list(n = 10)
threshold(am = am_stat, type = "topl”, args = args)

type = "top2"
threshold(am = am_stat, type = "top2", args = args)

type = "mean”

threshold(am = am_stat, type = "mean”, args = args)
topKnet Return consensus ranks from a matrix containing ranks
Description

‘topKnet* returns consensus ranks depending on the ‘type‘ argument from ‘ranks‘, a matrix con-
taining the ranks per statistical ‘model‘.

Usage

topKnet(ranks, type, na.rm = TRUE)

Arguments
ranks ‘matrix‘ containing the ranks per statistical model (in columns) and per feature
pair (in rows)
type ‘character®, either “"topl1", *"top2"* or ‘"mean"‘
na.rm ‘logical’, if set to “TRUE', the ‘NA‘s in the assay slots will not be taken into
account when creating the ‘"topl"*, “"top2"‘ or “"mean"‘ of ranks. If set to
‘FALSE‘, the ‘NA°‘s will be taken into account when creating the ‘"topl"‘,
“"top2"‘ or ‘"mean"‘ ranks. If ‘FALSE* the resulting aggregations will be ‘NA*
if an ‘NA° is present in the coeffients of one feature pair.
Details

See Hase et al. (2014) for further details.

Value

‘numeric‘ ‘vector* with consensus ranks

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

References

Hase et al. (2014): Harnessing Diversity towards the Reconstructing of Large Scale Gene Regula-
tory Networks. PLoS Computational Biology, 2013, €1003361, doi: [10.1371/journal.pcbi.1003361](https://journals.plos.org

34 X_annotation

Examples

na.rm == TRUE
ranks <- matrix(c(c(1, 2, 3), c(2, 1, 3)), ncol = 2)

type = "topl”
MetNet:::topKnet(ranks = ranks, type = "top1"”, na.rm = TRUE)

type = "top2"
MetNet:::topKnet(ranks = ranks, type = "top2", na.rm = TRUE)

type = "mean”
MetNet:::topKnet(ranks = ranks, type

"mean”, na.rm = TRUE)

na.rm == FALSE
ranks <- matrix(c(c(1, 2, 3), c(2, 1, 3)), ncol = 2)

type = "topl”
MetNet:::topKnet(ranks = ranks, type = "top1”, na.rm = FALSE)

type = "top2"
MetNet:::topKnet(ranks = ranks, type = "top2"”, na.rm = FALSE)

type = "mean”
MetNet:::topKnet(ranks = ranks, type = "mean”, na.rm = FALSE)

na.rm == FALSE
ranks <- matrix(c(c(1, 2, NA), c(2, 1, 3)), ncol = 2)

type = "topl”
MetNet:::topKnet(ranks = ranks, type = "top1”, na.rm = FALSE)

type = "top2"
MetNet:::topKnet(ranks = ranks, type = "top2"”, na.rm = FALSE)

type = "mean”
MetNet:::topKnet(ranks = ranks, type = "mean”, na.rm = FALSE)

x_annotation Example annotation for MetNet: data input

Description

x_annotation contains one selected putative annotation of x_test. Missing annotations are filled
with ‘NA“’s. It will be used as an example annotation in the vignette to show the functionality of
the packages.

Format

matrix

X_test 35

Value

matrix

Author(s)

Liesa Salzer, <liesa.salzer@helmholtz-muenchen.de>

Source

data("x_test", package = "MetNet")
X_annotation <- x_test[,1:2]

X_annotation <- cbind(x_annotation,"database_mz" = NA, "database_identifier" = NA, "chemi-
cal_formula" = NA, "smiles" = NA, "inchi" = NA, "inchikey" = NA, "metabolite_identification"
= NA, "fragmentations" = NA, "modifications" = NA, "charge" = NA, "database" = NA)

x1856 <- cbind(x_annotation["x1856", "mz"], x_annotation["x1856", "rt"], "database_mz" = 308.2,
"database_identifier" = "N-caffeoylspermidine”, "chemical_formula" = "C16H25N303", "smiles"
="C=1(C=C(C(=CC1)0)0)/C=C/C(NCCCNCCCCN)=0", "inchi" = "InChI=1S/C16H25N303/c17-
8-1-2-9-18-10-3-11-19-16(22)7-5-13-4-6-14(20)15(21)12-13/h4-7,12,18,20-21H,1-3,8-11,17H2,(H,19,22)/b7-
5+", "inchikey" = "AZSUJBAOTYNFDE-FNORWQNLSA-N", "metabolite_identification" = NA,
"fragmentations" = NA, "modifications" = NA, "charge" = 1, "database" = NA)

X_annotation[rownames(X_annotation) == "x1856",] <- x1856 x_annotation <- X_annotation[,-c(1:2)]
x_test Example data for MetNet: data input
Description

x_test contains 36 selected metabolic features of peaklist. It will be used as an example data set
in the vignette to show the functionality of the packages.

Format

matrix

Value

matrix

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

36 X_test

Source

data("peaklist_example", package = "MetNet") peaklist[, 3:dim(peaklist)[2]] <- apply(peaklist[,
3:dim(peaklist)[2]], 2, function(x) x / quantile(x, 0.75)) peaklist[, 3:dim(peaklist)[2]] <- log2(peaklist[,
3:dim(peaklist)[2]] + 1)

function to add specific features of x (defined by m/z and retention ## time) to x_test ad-
dTo_x_test <- function(x_test, X, mz, rt) mzX <- X[, "mz"] rtX <- x[, "rt"] new <- x[mzX>(mz-0.01)
& mzX<(mz+0.01) & rtX>(rt-0.01) & rtX<(rt+0.01), | x_test <- rbind(x_test, new) return(x_test)

Nicotianoside IX M+Na+ 739.3515 rt 426.1241 x_test <- peaklist[peaklist[, "mz"] > 739.35 &
peaklist[, "mz"] < 739.36 & peaklist[, "rt"] > 426.18 & peaklist[, "rt"] < 426.2,] ## Lyciumoside

I M+Na+ 653.3497 x_test <- addTo_x_test(x_test, peaklist, mz = 653.3497, rt = 417.46) ## Lyci-
umosidell M+Na+ 815.4043 x_test <- addTo_x_test(x_test, peaklist, mz = 815.40, rt = 383.60)

Nicotianoside X M+Na+ 825.3503 x_test <- addTo_x_test(x_test, peaklist, mz = 825.35, rt

= 434.38) ## Nicotianoside XI M+Na+ 901.39913 x_test <- addTo_x_test(x_test, peaklist, mz =
901.40, rt = 391.15) ## NicotianosideXII M+Na+ 987.4037 x_test <- addTo_x_test(x_test, peaklist,

mz = 987.40, rt = 398.46) ## NicotianosideXIII M+Na+ 1074.4042 x_test <- addTo_x_test(x_test,
peaklist, mz = 1074.40, rt = 404.92) ## Lyciumoside IV M+Na+ 799.4091 x_test <- addTo_x_test(x_test,
peaklist, mz =799.40, rt = 411.23) ## Nicotianoside I M+Na+ 885.4084 x_test <- addTo_x_test(x_test,
peaklist, mz = 885.41, rt =420.12) ## Nicotianoside II M+Na+ 971.4074 x_test <- addTo_x_test(x_test,
peaklist, mz =971.41, rt =428.81) ## Nicotianoside IIl M+Na+ 945.4653 x_test <- addTo_x_test(x_test,
peaklist, mz = 945.46, rt = 402.75) ## Nicotianoside IV M+Na+ 1031.4645 x_test <- addTo_x_test(x_test,
peaklist, mz = 1031.46, rt =412.40) ## Nicotianoside V M+Na+ 1117.4681 x_test <- addTo_x_test(x_test,
peaklist, mz = 1117.46, rt = 422.19) ## Attenoside (or DTG956) M+Na+ 961.4601 x_test <-
addTo_x_test(x_test, peaklist, mz = 961.46, rt = 380.46) ## DTG1042/Nicotianoside VI M+Na+
1047.4525 x_test <- addTo_x_test(x_test, peaklist, mz = 1047.46, rt = 387.28) ## Nicotianoside-
VII M+Na+ 1133.4624 x_test <- addTo_x_test(x_test, peaklist, mz = 1133.46, rt = 394.70) ##
NicotianosideVIII M+Na+ 1219.4619 x_test <- addTo_x_test(x_test, peaklist, mz = 1219.46, rt

= 400.99) ## N-coumaroylputrescine [M+H+]+ 235.143 x_test <- addTo_x_test(x_test, peaklist,

mz = 235.14, rt = 193.85) ## N’ ,N”-coumaroyl,caffeoylspermidine [M+H+]+ 454.23 x_test <- ad-
dTo_x_test(x_test, peaklist, mz = 454.23, rt = 264.43) ## N-caffeoylputrescine isomer 1 [M+H+]+
251.14 x_test <- addTo_x_test(x_test, peaklist, mz = 251.14, rt = 108.34) ## N-caffeoylputrescine
isomer 2 [M+H+]+ 251.14 x_test <- addTo_x_test(x_test, peaklist, mz = 251.14, rt = 143.11) ##
N-caffeoylspermidine [M+H+]+ 308.2 x_test <- addTo_x_test(x_test, peaklist, mz = 308.2, rt =
246.71) ## N-feruloylputrescine [M+H+]+ 265.153 x_test <- addTo_x_test(x_test, peaklist, mz =
265.15, rt = 191.55) ## N-feruloyl-spermidine isol [M+H+]+ 322.212 x_test <- addTo_x_test(x_test,
peaklist, mz = 322.21, rt = 104.13) ## N-feruloyl-spermidine iso2 [M+H+]+ 322.212 x_test <- ad-
dTo_x_test(x_test, peaklist, mz = 322.21, rt = 147.98) ## N’-N"-dicaffeoyl -spermidine [M+H+]+
470.23 x_test <- addTo_x_test(x_test, peaklist, mz = 470.23, rt = 247.15) ## N’-N"-diferuloyl-
spermidine/ ##N#,N$-Coumaroyl,sinapoyl spermidine isomer [M+H+]+ 498.260/498.261 x_test <-
addTo_x_test(x_test, peaklist, mz = 498.26, rt = 289.05) ## N’-N"-dihydrated-diferuloyl-spermidine
[M+H+]+ 502.25 x_test <- addTo_x_test(x_test, peaklist, mz = 502.25, rt = 242.55) ## unknown
conjugate [M+H+]+ 411.2012 x_test <- addTo_x_test(x_test, peaklist, mz =411.20, rt =211.67) ##
N’-N"-caffeoyl,feruloyl spermidine isol [M+H+]+ 484.245 x_test <- addTo_x_test(x_test, peak-
list, mz = 484.24, rt = 264.44) ## N’-N"-caffeoyl,feruloyl spermidine iso2 [M+H+]+ 484.245
x_test <- addTo_x_test(x_test, peaklist, mz = 484.24, rt = 270.65) ## O -Coumaroylquinic acid
isomer 1 [M+H+]+ 339.109 x_test <- addTo_x_test(x_test, peaklist, mz = 339.11, rt = 248.79)

O -Coumaroylquinic acid isomer 1 [M+H+]+ 339.109 x_test <- addTo_x_test(x_test, peaklist,

mz = 339.11, rt = 268.97) ## O-caffeoylquinic acid isomer 1 [M+H+]+ 355.1014 x_test <- ad-

X_test 37

dTo_x_test(x_test, peaklist, mz = 355.10, rt = 175.75) ## O-caffeoylquinic acid isomer 2 [M+H+]+
355.1014 x_test <- addTo_x_test(x_test, peaklist, mz = 355.10, rt = 215.85) ## O-caffeoylquinic
acid isomer 3 [M+H+]+ 355.1014 x_test <- addTo_x_test(x_test, peaklist, mz = 355.10, rt =241.04)

change rownames (that it is accepted by formulas) rownames(x_test) <- pasteO("x", rownames(x_test))

Index

* mass spectrometry, metabolomics
MetNet-package, 3
.AdjacencyMatrix, 4

.assays_have_identical_colnames_rownames

4
.assays_have_identical_dimnames, 5

addSpectralSimilarity, 6

addTolist, 7

AdjacencyMatrix, 8

AdjacencyMatrix-class, 9

AllGenerics, 11

aracne, 11

as.data.frame (AdjacencyMatrix-class), 9

as.data.frame,AdjacencyMatrix-method
(AdjacencyMatrix-class), 9

bayes, 12

clr, 13
combine, 14
correlation, 16

dim (AdjacencyMatrix-class), 9
dim,AdjacencyMatrix-method
(AdjacencyMatrix-class), 9
directed (AdjacencyMatrix-class), 9
directed,AdjacencyMatrix-method
(AdjacencyMatrix-class), 9

getlLinks, 17

lasso, 18
length,AdjacencyMatrix-method
(AdjacencyMatrix-class), 9

mat_test, 19
mat_test_z, 19

MetNet (MetNet-package), 3
MetNet-package, 3
ms2_test, 20

38

mz_summary, 20
mz_vis, 22

partialCorrelation, 23
peaklist, 24

randomForest, 24
rtCorrection, 25

show (AdjacencyMatrix-class), 9

show,AdjacencyMatrix-method
(AdjacencyMatrix-class), 9

spectra_matrix, 27

sps_sub (ms2_test), 20

statistical, 28

structural, 29

threshold, 30

thresholded (AdjacencyMatrix-class), 9

thresholded, AdjacencyMatrix-method
(AdjacencyMatrix-class), 9

topKnet, 33

type (AdjacencyMatrix-class), 9

type,AdjacencyMatrix-method
(AdjacencyMatrix-class), 9

X_annotation, 34
x_test, 35

	MetNet-package
	.AdjacencyMatrix
	.assays_have_identical_colnames_rownames
	.assays_have_identical_dimnames
	addSpectralSimilarity
	addToList
	AdjacencyMatrix
	AdjacencyMatrix-class
	AllGenerics
	aracne
	bayes
	clr
	combine
	correlation
	getLinks
	lasso
	mat_test
	mat_test_z
	ms2_test
	mz_summary
	mz_vis
	partialCorrelation
	peaklist
	randomForest
	rtCorrection
	spectra_matrix
	statistical
	structural
	threshold
	topKnet
	x_annotation
	x_test
	Index

