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Description

The purpose of this package is to identify traits in a dataset that can separate groups. This is
done on two levels. First, clustering is performed, using an implementation of sparse K-means.
Secondly, the generated clusters are used to predict outcomes of groups of individuals based on their
distribution of observations in the different clusters. As certain clusters with separating information
will be identified, and these clusters are defined by a sparse number of variables, this method can
reduce the complexity of data, to only emphasize the data that actually matters.

Details
The package is indirectly clearly dependent on Rtsne for generation of output. See comment on the
github wiki for how to speed Rtsne up.

Author(s)

Maintainer: Jakob Theorell <jakob.theorell@ki.se> (ORCID)
Authors:

¢ Axel Theorell <axel.theorell@gmail.com>

dAllocate Allocation of observations to pre-established cluster centers.

Description
Here, observations of a dataset are allocated to a set of preestablished cluster centers. This is
intended to be used for the test set in train-test dataset situations.

Usage
dAllocate(inDataFrame, depModel)

Arguments
inDataFrame A dataset that should be allocated to a set of cluster centers, for example a richer,
but less representative dataset, with all datapoints from all donors, instead of
only a set number of values from all.
depModel This is the result of the original application of the depeche function on the asso-
ciated, more representative dataset.
Value

A vector with the same length as number of rows in the inDataFrame, where the cluster identity of
each observation is noted.

See Also
depeche
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Examples

# Retrieve some example data

data(testData)

## Not run:

# Now arbitrarily (for the sake of the example) divide the data into a
# training- and a test set.

testDataSample <- sample(1:nrow(testData), size = 10000)

testDataTrain <- testData[testDataSample, ]

testDataTest <- testData[-testDataSample, ]

# Run the depeche function for the train set

depeche_train <- depeche(testDataTrain[, 2:15],
maxIter = 20,
sampleSize = 1000

)

# Allocate the test dataset to the centers of the train dataset
depeche_test <- dAllocate(testDataTest[, 2:15], depeche_train

)

# And finally plot the two groups to see how great the overlap was:
clustVeclList <- list(list("Ids"” =testDataTrain$ids,
"Clusters” = depeche_train$clusterVector),
list("Ids" =testDataTest$ids,
"Clusters” = depeche_test))
tablePerId <- do.call("rbind”, lapply(seq_along(clustVecList), function(x){
locDat <- clustVecList[[x]]
locRes <- apply(as.matrix(table(
locDat$Ids, locDat$Clusters)),
1, function(y) y/sum(y))
locResLong <- reshape2::melt(locRes)
colnames(locResLong) <-

c("Cluster”, "Donor", "Fraction")
locResLong$Group <- x

locResLong

1))

tablePerId$Cluster <- as.factor(tablePerId$Cluster)
tablePerId$Group <- as.factor(tablePerId$Group)

library(ggplot2)
ggplot(data=tablePerId, aes(x=Cluster, y=Fraction,
fill=Group)) + geom_boxplot() + theme_bw()

## End(Not run)

dColorPlot Display third variable as color on a 2D plot




dColorPlot

Description

Function to overlay one variable for a set of observations on a field created by two other variables
known for the same observations. The plot is constructed primarily for displaying variables on
2D-stochastic neighbour embedding fields, but can be used for any sets of (two or) three variables
known for the same observations. As the number of datapoints is often very high, the files would, if
saved as pdf of another vector based file type become extremely big. For this reason, the plots are
saved as jpeg and no axes or anything alike are added, to simplify usage in publications.

Usage

dColorPlot(

colorData,

controlData,

xYData,

colorScale = "rich_colors”,
plotName = "default”,
densContour = TRUE,

title = FALSE,

plotDir = "default”,
truncate = TRUE,

bandColor = "black”,
dotSize = 500/sqrt(nrow(xYData)),

continuous = "default”,
multiCore = "default”,
nCores = "default”,

createOutput = TRUE

A numeric matrix or dataframe or a vector, be it numeric, charater or factor, that
should be used to define the colors on the plot. A pre-made vector of colors is

Optional. A numeric/integer vector or dataframe of values that could be used
to define the range of the colorData. If no control data is present, the function

These variables create the field on which the colorData will be displayed. It
needs to be a matrix or dataframe with two columns and the same number of

This argument controls the colors in the plot. See dColorVector for alterna-

Arguments
colorData
also accepted.
controlData
defaults to using the colorData as control data.
xYData
rows as the colorData object.
colorScale
tives.
plotName

The name(s) for the plot(s). ’default’ returns the column names of the colorData
object in the case this is a dataframe and otherwise returns the somewhat generic
name ’testVariable’. It can be substituted with a string (in the case colorData is
a vector) or vector of strings, as long as it has the same length as the number of
columns in colorData.



densContour

title

plotDir

truncate

bandColor

dotSize

continuous

multiCore

nCores

createOQutput

Value

dColorPlot

If density contours should be created for the plot(s) or not. Defaults to TRUE.
If a density object, as generated by dContours, is included, this will be used
instead.

If there should be a title displayed on the plotting field. As the plotting field is
saved a jpeg, this title cannot be removed as an object afterwards, as it is saved
as coloured pixels. To simplify usage for publication, the default is FALSE, as
the files are still named, eventhough no title appears on the plot.

If different from the current directory. If specified and non-existent, the function
creates it. If "." is specified, the plots will be saved at the current directory. By
default, a new directory is added if the created plots will be more than 1.

If truncation of the most extreme values should be performed for the visual-
izations. Three possible values: TRUE, FALSE, and a vector with two values
indicating the low and high threshold quantiles for truncation.

The color of the contour bands. Defaults to black.

Simply the size of the dots. The default makes the dots maller the more obser-
vations that are included.

Boolean. Is the colorData parameter continuous? If default, then only numeric
vectors with more than 20 values are considered continuous.This only applies
to situations with single vectors. In situations where a dataframe is added as
colorData, all variables are considered continuous.

If the algorithm should be performed on multiple cores. This increases the speed
if the dataset is medium-large (>100000 rows) and has at least 5 columns. De-
fault is TRUE when these above criteria are met and FALSE otherwise.

If multiCore is TRUE, then this sets the number of parallel processes. The de-
fault is currently 87.5 percent with a cap on 10 cores, as no speed increase is
generally seen above 10 cores for normal computers.

For testing purposes. Defaults to TRUE. If FALSE, no plots are generated.

Plots showing the colorData displayed as color on the field created by xYData.

See Also

dDensityPlot, dResidualPlot, dWilcox, dColorVector

Examples

# Load some data
data(testData)
## Not run:

# Load or create

the dimensions that you want to plot the result over.

# uwot::umap recommended due to speed, but tSNE or other method would

# work as fine.
data(testDataSNE)

# Run the function for two of the variables
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dColorPlot(colorData = testData[2:3], xYData = testDataSNE$Y)
# Now each depeche cluster is plotted separately and together.

# Run the clustering function. For more rapid example execution,
# a depeche clustering of the data is included

# testDataDepeche <- depeche(testDatal,2:15])
data(testDataDepeche)

dColorPlot(
colorData = testDataDepeche$clusterVector,
xYData = testDataSNE$Y, plotName = "clusters”

)

## End(Not run)

dColorVector Create a vector of colors of the same length as the data

Description

This function takes a vector x and a shorter ordering vector with all the unique values of the x vector
in the specific order that the colors should be in and returns a vector of RGB colors the same length
as the initial x vector.

Usage
dColorVector(x, colorOrder = unique(x), colorScale = "viridis")
Arguments
X Any vector.
colorOrder The order that the colors should be in in the output vector. Defaults to the order
that the unique values in x occurs.
colorScale The color scale. Inherited from the viridis, gplots and grDevices packages (and
the package-specific *dark_rainbow’). Seven possible scales are pre-made: in-
ferno, magma, plasma, viridis, rich_colors, rainbow and dark_rainbow. User
specified vectors of colors (e.g. cC#FF0033’, *#03AF49’)) are also accepted.
Value

A vector, the same length as x with each unique value substitutet with a color.

See Also

dDensityPlot, dColorPlot, dViolins
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Examples

# Load some data
data(testData)

testColor <- dColorVector(testData$ids, colorScale = "plasma")
# In this case, each of the 97 individual donors in the dataset has gotten

# their own color code:
table(testColor)

dContours Create density contours for two-dimensional data.

Description

Here, contour lines for two-dimensional data are construced. It is primarily thought to be used in
the context of SNE plots in this package. This function is used both internally in other functions
suchas sneFluoroPlot and sneDensityPlot, but also as a standalone function, as it increases speed
greatly to generate the density curves only once per overall analysis.

Usage

dContours(xYData, control, n = 100)

Arguments
xYData A dataframe with two columns containing position information for each obser-
vation in the dataset. Typically, this is the raw result from the SNE analysis.
control A numeric/integer vector or dataframe of values that could be used to define the
range in the internal dScale. If no control data is present, the function defaults
to using the indata as control data.
n The number fo grid points. Default is 100.
Value

A list of three components

X,y The x and y coordinates of the grid points, vectors of length n.

z An n[1] by n[2] matrix of the estimated density: rows correspond to the value of x, columns to
the value of y.

See Also

dColorPlot, dDensityPlot, dResidualPlot, dWilcox
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Examples

# Load the test SNE data
data(testDataSNE)

# Run the function
contour_result <- dContours(testDataSNE$Y)

dDensityPlot Display density on 2D plot

Description

Function to show density for a set of observations on a field created by two variables. The plot is
constructed primarily for displaying density of 2D-stochastic neighbour embedding fields, but can
be used for any sets of two known for the same observations. As the number of datapoints is often
very high, the files would, if saved as pdf of another vector based file type become big. For this
reason, the plots are saved as jpeg and no axes or anything alike are added, to simplify usage in
publications.

Usage

dDensityPlot(
xYData,
colorScale = "default”,
plotName = "All_density”,
idsVector,
densContour = TRUE,
title = FALSE,
plotDir = "default”,
bandColor = "black”,
dotSize = 500/sqrt(nrow(xYData)),
createQutput = TRUE

)
Arguments
xYData A dataframe or matrix with two columns. Each row contains information about
the x and y positition in the field for that observation.
colorScale This gives the specific color for the densest part of the plot(s). It has three

possible values:

A specific color, e.g. ’red’ or #FF0000° If no idsVector provided

A color scale from dColorVector If idsVector provided. See dColorVector
for alternatives.

"default" "One color (blue) if no idsVector is provided, and otherwise the
viridis color scale.
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plotName

idsVector

densContour

title

plotDir

bandColor
dotSize

createOutput

Value

dDensityPlot

A name that is common to all density plots created. It can be the groups name,
e.g. 'Malaria patients’ or *Clusters’. If only one plot is created, the name is still
taken from here.

Optional. Vector with the same length as xYData containing information about
the id of each observation. If provided, density plots for each individual id and
all ids together are produced.

If density contours should be created for the plot(s) or not. Defaults to TRUE. If
a density object, as generated by dContours, is included, this will be used for the
internal scaling of the plot, allowing for density distribution checks of different
subcompartments of the data with the same scaling.

If there should be a title displayed on the plotting field. As the plotting field is
saved as a png, this title cannot be removed as an object afterwards, as it is saved
as coloured pixels. To simplify usage for publication, the default is FALSE, as
the files are still named, eventhough no title appears on the plot.

If different from the current directory. If not "." and non-existent, the function

creates it. Defaultis "." if idsVector is not specified and otherwise pasteO("Density
plots for ", plotName, "s").

The color of the contour bands. Defaults to black.

Simply the size of the dots. The default makes the dots smaller the more obser-
vations that are included.

For testing purposes. Defaults to TRUE. If FALSE, no output is generated.

Plots showing the densities of the specific xYData (subset) displayed as color on the field created
by the same xYData (subset).

See Also

dColorPlot, dResidualPlot, dWilcox, dColorVector

Examples

# Load some data
data(testData)

## Not run:

# Load or create the dimensions that you want to plot the result over.
# uwot::umap recommended due to speed, but tSNE or other method would

# work as fine.
data(testDataSNE)

# Plot all data together
dDensityPlot(xYData = testDataSNE$Y)

# Now each depeche cluster is plotted separately and together.

# Run the clustering function. For more rapid example execution,
# a depeche clustering of the data is included
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# testDataDepeche <- depeche(testDatal,2:15])
data(testDataDepeche)

dDensityPlot(
xYData = testDataSNES$Y,
idsVector = testDataDepeche$clusterVector,
plotName = "cluster”

)

## End(Not run)
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depeche Perform optimization and penalized K-means clustering

Description

This is the central function of the package. As input, only a dataset is required. It starts by perform-
ing optimizations and then performs clustering based on the values identified in the optimization

step.

Usage

depeche(
inDataFrame,
samplingSubset = seq_len(nrow(inDataFrame)),
penalties = 2%seq(@, 5, by = 0.5),

sampleSize = "default”,
selectionSampleSize = "default”,
k = 30,

minARIImprovement = 0.01,
optimARI = 0.95,

maxIter = 100,

log20ff = FALSE,

center = "default”,
scale = TRUE,
nCores = "default”,
plotDir = ".",
createQutput = TRUE

)

Arguments
inDataFrame A dataframe or matrix with the data that will be used to create the clustering.

Cytometry data should be transformed using biexponential, arcsinh transforma-
tion or similar, and day-to-day normalizations should to be performed for all
data if not all data has been acquired on the same run. Scaling, etc, is on the
other hand performed within the function.
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samplingSubset If the dataset is made up of an unequal number of cells from multiple individuals,

penalties

sampleSize

it might be wise to pre-define a subset of the rows, which includes equal or near-
equal numbers of cells from each individual, to avoid a few outliers to dominate
the analysis. This can be done here. Should be a vector of row numbers in the
inDataFrame.

This argument decides whether a single penalty will be used for clustering, or if
multiple penalties will be evaluated to identify the optimal one. A single value, a
vector of values, or possibly a list of two vectors, if dual clustering is performed
can be given here. The suggested default values are empirically defined and
might not be optimal for a specific dataset, but the algorithm will warn if the
most optimal values are on the borders of the range. Note that when the penalty
is 0, there is no penalization, which means that the algorithm runs standard K-
means clustering.

This controls what fraction of the dataset that will be used to run the penalty
optimization. ’default’ results in the full file in files up to 10000 events. In
cases where the sampleSize argument is larger than 10000, default leads to the
generation of a random subset to the same size also for the selectionSampleSize.
A user specified number is also accepted.

selectionSampleSize

The size of the dataset used to find the optimal solution out of the many gener-
ated by the penalty optimization at each sample size. *default’ results in the full
file in files up to 10000 events. In cases where the sampleSize argument is larger
than 10000, default leads to the generation of a random subset to the same size
also for the selectionSampleSize. A user specified number is also accepted.

Number of initial cluster centers. The higher the number, the greater the pre-
cision of the clustering, but the computing time also increases linearly with the
number of starting points. Default is 30. If penalties=0, k-means clustering with
k clusters will be performed.

minARIImprovement

optimARI

maxIter

log20ff

center

This is the stop criterion for the penalty optimization algorithm: the more itera-
tions that are run, the smaller will the improvement of the corrected Rand index
be, and this sets the threshold when the inner iterations stop. Defaults to 0.01.

Above this level of ARI, all solutions are considered equally valid, and the me-
dian solution is selected among them.

The maximal number of iterations that are performed in the penalty optimiza-
tion.

If the automatic detection for high kurtosis, and followingly, the log2 transfor-
mation, should be turned off.

If centering should be performed. Alternatives are ’default’, 'mean’, ’peak’,
FALSE and a vector of numbers with the same length as the number of columns
in the inDataFrame. ’peak’ results in centering around the highest peak in the
data, which is useful in most cytometry situations. “mean’ results in mean cen-
tering. default’ gives different results depending on the data: datasets with 100+
variables are mean centered, and otherwise, peak centering is used. If a numeric
vector is provided, it is used to center the values to the numbers. This is prefer-
able to pre-centering the data and using the FALSE command, as it will lead
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to better internal visualization procedures, etc. FALSE results in no centering,
mainly for testing purposes.

scale If scaling should be performed. If TRUE, the dataset will be divided by the
combined standard deviation of the whole dataset. If a number is provided, the
dataset is divided by this number. This scaling procedure makes the default
penalties fit most datasets with some precision.

nCores If multiCore is TRUE, then this sets the number of parallel processes. The de-
fault is currently 87.5 percent with a cap on 10 cores, as no speed increase is
generally seen above 10 cores for normal computers.

plotDir Where should the diagnostic plots be printed?
createOutput  For testing purposes. Defaults to TRUE. If FALSE, no plots are generated.

Value

A nested list:

clusterVector A vector with the same length as number of rows in the inDataFrame, where the
cluster identity of each observation is noted.

clusterCenters A matrix containing information about where the centers are in all the variables that
contributed to creating the cluster with the given penalty term. An exact zero here indicates
that the variable in question was sparsed out for that cluster. If a variable did not contribute to
the separation of any cluster, it will not be present here.

essenceElementList A per-cluster list of the items that were used to separate that cluster from the
rest, i.e. the items that survived the penalty.

penaltyOptList A list of two dataframes:

penaltyOpt.df A one row dataframe with the settings for the optimal penalty.

meanOptimDf A dataframe with the information about the results with all tested penalty
values.

logCenterScale The values used to center and scale the data and information on if the data was log
transformed. This information is used internally in dAllocate.

Examples

# Load some data
data(testData)

# Here a run with the standard settings
## Not run:
testDataDepecheResult <- depeche(testDatal, 2:15])

# Look at the result
str(testDataDepecheResult)

## End(Not run)
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dResidualPlot

dResidualPlot

Showing the residuals when subtracting the values from one group
from another on a SNE plot

Description

This function is used to visually compare groups of individuals from whom comparable cytometry
or other complex data has been generated, but where the number of individuals does not permit any
statistical comparisons.

Usage

dResidualPlot(

xYData,

groupVector,

clusterVector,

densContour
groupName1

TRUE,

unique(groupVector)[1],

groupName2 = unique(groupVector)[2],
plotName = "default”,

title = FALSE,

maxAbsPlottingValues,

bandColor = "black”,

plotDir =

n o n

’

dotSize = 400/sqrt(nrow(xYData)),
createQOutput = TRUE

Arguments

xYData

groupVector

clusterVector

densContour
groupName1
groupName?2
plotName
title

A dataframe or matrix with two columns. Each row contains information about
the x and y positition in the field for that observation.

Vector with the same length as xYData containing information about the group
identity of each observation.

Vector with the same length as xYData containing information about the cluster
identity of each observation.

If density contours should be created for the plot(s) or not. Defaults to TRUE.
The name for the first group

The name for the second group

The main name for the graph and the analysis.

If there should be a title displayed on the plotting field. As the plotting field is
saved as a png, this title cannot be removed as an object afterwards, as it is saved
as coloured pixels. To simplify usage for publication, the default is FALSE, as
the files are still named, eventhough no title appears on the plot.
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maxAbsPlottingValues
If multiple plots should be compared, it might be useful to define a similar color
scale for all plots, so that the same color always means the same value. Such a
value can be added here. It defaults to the maximum Wilcoxon statistic that is
generated in the analysis.

bandColor The color of the contour bands. Defaults to black.

plotDir If different from the current directory. If specified and non-existent, the function
creates it. If "." is specified, the plots will be saved at the current directory.

dotSize Simply the size of the dots. The default makes the dots smaller the more obser-
vations that are included.

createOutput  For testing purposes. Defaults to TRUE. If FALSE, no plots are generated.

Value

A sne based plot showing which events that belong to a cluster dominated by the first or the second
group.

See Also

dColorPlot, dDensityPlot, dWilcox

Examples

# Load some data

data(testData)

## Not run:

# Load or create the dimensions that you want to plot the result over.
# uwot::umap recommended due to speed, but tSNE or other method would
# work as fine.

data(testDataSNE)

# Run the clustering function. For more rapid example execution,
# a depeche clustering of the data is inluded

# testDataDepeche <- depeche(testDatal,2:15])
data(testDataDepeche)

# And finally run the function

dResidualPlot(
xYData = testDataSNE$Y, groupVector = testDatal, 161,
clusterVector = testDataDepeche$clusterVector

)

## End(Not run)
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dScale Scaling of a vector or a dataframe.

Description

This is a scaling function with a number of alternatives. This method for scaling takes the shape of
the data into somewhat more of a consideration than minMaxScale does, but still gives less influence
of outliers than more conventional scalin alternatives, such as unit variance scaling.

Usage
dScale(
X}
control,
scale = TRUE,
robustVarScale = TRUE,
center = "peak”,

truncate = FALSE,
multiplicationFactor = 1,
returnCenter = FALSE,

nCores = "default”
)
Arguments

X A numeric/integer vector or dataframe

control A numeric/integer vector or dataframe of values that could be used to define the
range. If no control data is present, the function defaults to using the indata as
control data.

scale If scaling should be performed. Three possible values: a vector with two values

indicating the low and high threshold quantiles for the scaling, TRUE, which
equals the vector "c(0.001, 0.999)’, and FALSE.

robustVarScale If the data should be scaled to its standard deviation within the quantiles defined
by the scale values above. If TRUE (the default), the data is unit variance scaled
based on the standard deviation of the data within the range defined by scale.

center If centering should be performed. Alternatives are mean’, *peak’ and FALSE.
"peak’ results in centering around the highest peak in the data, which is useful
in most cytometry situations. mean’ results in mean centering.

truncate If truncation of the most extreme values should be performed. Three possible
values: TRUE, FALSE, and a vector with two values indicating the low and high
threshold quantiles for truncation.

multiplicationFactor
A value that all values will be multiplied with. Useful e.g. if the results pre-
ferrably should be returned as percent.

returnCenter Boolean. If center=TRUE, should the value at the center be returned?
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nCores If the function is run in multicore mode, which it will if the dataset is large
(nrow*ncol>10"6), this decides the number of cores. The default is currently
87.5 percent with a cap on 10 cores, as no speed increase is generally seen
above 10 cores for normal computers to date.

Value

A vector or dataframe with the same size but where all values in the vector or column of the
dataframe have been internally scaled. In addition, if returnCenter=TRUE, a value, or a vector
if X is a matrix or a data frame.

Examples

# Load some data
data(testData)

# Retrieve the first column
x <- testData[, 2]

# The maximum and minimum values are
max (x)
min(x)

# Run the function without mean centering and with the quantiles set to @
# and 1.
y <- dScale(x, scale = c(@, 1), robustVarScale = FALSE, center = FALSE)

# And the data has been scaled to the range between @ and 1.

max(y)
min(y)

# Now run the default function for a dataframe
summary (testDatal, 2:15])

y_df <- dScale(testDatal[, 2:15])

# Here, the data has first been truncated to the default percentiles, then
# scaled to the standard deviation in the remaining interval and finally the
# center has been placed where the highest peak in the data is present.

# NB! Here, no truncation has been performed in the scaling, only to obtain
# the scaling values.

summary (y_df)

dSplsda Sparse partial least squares discriminant analysis with paired and un-
paired data
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Description

dSplsda

This function is used to compare groups of individuals from whom comparable cytometry or other
complex data has been generated. It is superior to just running a Wilcoxon analysis in that it does not
consider each cluster individually, but instead uses a sparse partial least squares discriminant anal-
ysis to first identify which vector thourgh the multidimensional data cloud, created by the cluster-
donor matrix, that optimally separates the groups, and as it is a sparse algorithm, applies a penalty
to exclude the clusters that are orthogonal, or almost orthogonal to the discriminant vector, i.e. that
do not contribute to separating the groups. This is in large a wrapper for the splsda function from
the mixOmics package.

Usage

dSplsda(
xYData,
idsVector,

groupVector,

clusterVector,
displayVector,
testSampleRows,
paired = FALSE,
densContour = TRUE,

plotName =
groupName1
groupName2

"default”,
= unique(groupVector)[1],
unique(groupVector)[2],

thresholdMisclassRate = 0.05,
title = FALSE,

plotDir =

n o n

’

bandColor = "black”,
dotSize = 500/sqrt(nrow(xYData)),

createOutput

Arguments

xYData

idsVector

groupVector

clusterVector

displayVector

= TRUE

A dataframe or matrix with two columns. Each row contains information about
the x and y positition in the field for that observation.

Vector with the same length as xYData containing information about the id of
each observation.

Vector with the same length as xYData containing information about the group
identity of each observation.

Vector with the same length as xYData containing information about the cluster
identity of each observation.

Optionally, if the dataset is very large (>100 000 observations) and hence the
SNE calculation becomes impossible to perform for the full dataset, this vec-
tor can be included. It should contain the set of rows from the data used for
statistics, that has been used to generate the xYData.
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testSampleRows

paired

densContour
plotName
groupName1

groupName?2
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Optionally, if a train-test setup is wanted, the rows specified in this vector are
used to divide the dataset into a training set, used to generate the analysis, and
a test set, where the outcome is predicted based on the outcome of the training
set. All rows that are not labeled as test rows are assumed to be train rows.

Defaults to FALSE, i.e. no assumption of pairing is made and Wilcoxon rank
sum-test is performed. If true, the software will by default pair the first id in the
first group with the firs id in the second group and so forth, so make sure the
order is correct!

If density contours should be created for the plot(s) or not. Defaults to TRUE. a
The main name for the graph and the analysis.
The name for the first group

The name for the second group

thresholdMisclassRate

title

plotDir

bandColor
dotSize

createOQutput

Value

This threshold corresponds to the usefulness of the model in separating the
groups: a misclassification rate of the default 0.05 means that 5 percent of the
individuals are on the wrong side of the theoretical robust middle line between
the groups along the sPLS-DA axis, defined as the middle point between the 3:rd
quartile of the lower group and the 1:st quartile of the higher group.

If there should be a title displayed on the plotting field. As the plotting field is
saved as a png, this title cannot be removed as an object afterwards, as it is saved
as coloured pixels. To simplify usage for publication, the default is FALSE, as
the files are still named, eventhough no title appears on the plot.

If different from the current directory. If specified and non-existent, the function
creates it. If "." is specified, the plots will be saved at the current directory.

The color of the contour bands. Defaults to black.

Simply the size of the dots. The default makes the dots smaller the more obser-
vations that are included.

For testing purposes. Defaults to TRUE. If FALSE, no output is generated.

This function returns the full result of the SPLS-DA. It also returns a SNE based plot showing which
events that belong to a cluster dominated by the first or the second group defined by the sparse partial
least squares loadings of the clusters.

See Also

splsda, dColorPlot, dDensityPlot, dResidualPlot

Examples

# Load some data
data(testData)
## Not run:

# Load or create

the dimensions that you want to plot the result over.

# uwot::umap recommended due to speed, but tSNE or other method would



20 dViolins

# work as fine.
data(testDataSNE)

# Run the clustering function. For more rapid example execution,
# a depeche clustering of the data is inluded

# testDataDepeche <- depeche(testDatal,2:15])
data(testDataDepeche)

# Run the function. This time without pairing.
sPLSDAObject <- dSplsda(
xYData = testDataSNE$Y, idsVector = testData$ids,
groupVector = testData$label,
clusterVector = testDataDepeche$clusterVector

# Here is an example of how the display vector can be used.
subsetVector <- sample(1:nrow(testData), size = 10000)

# Now, the SNE for this displayVector could be created

# testDataSubset <- testData[subsetVector, 2:15]

# testDataSNESubset <- Rtsne(testDataDisplay, pca=FALSE)$Y
# But we will just subset the testDataSNE immediately
testDataSNESubset <- testDataSNE$Y[subsetVector, 1]

# And now, this new SNE can be used for display, although all
# the data is used for the sPLS-DA calculations
sPLSDAObject <- dSplsda(
xYData = testDataSNESubset, idsVector = testData$ids,
groupVector = testData$label, clusterVector =
testDataDepeche$clusterVector,
displayVector = subsetVector

# Finally, an example of a train-test set situation, where a random half the
# dataset is used for training and the second half is used for testing. It
# is naturally more biologically interesting to use two independent datasets
# for training and testing in the real world.
sPLSDAObject <- dSplsda(

xYData = testDataSNE$Y, idsVector = testData$ids,

groupVector = testData$label, clusterVector =

testDataDepeche$clusterVector, testSampleRows = subsetVector

## End(Not run)

dViolins Create violin plots for any variables of choise
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Description

Here, assymetrical violin plots for each cluster vs all other clusters are plotted for variables either
retrieved from a depeche analysis or user-defined.

Usage

dViolins(
clusterVector,
inDataFrame,
plotClusters = unique(clusterVector),
plotElements = "all",
colorOrder = plotClusters,
colorScale = "viridis”,
plotDir = "dViolin_result”,
createOutput = TRUE

Arguments

clusterVector Vector with the same length as inDataFrame containing information about the
cluster identity of each observation.

inDataFrame The data used to generate the depecheObject

plotClusters This vector of numbers define which cluster(s) to plot the violins for. Defaults
to all.

plotElements This provides information on which features to plot. In the typical case, this is
the essenceElementList from a depeche run. Other input formats are however
accepted: if a vector of column names is provided, then these features will be
plotted for all clusters. A custom list of features specific for each cluster is also
accepted. A final alternative is to return "all" (default), in which case all markers
will be plotted for all clusters.If more than a 100 markers are provided, however,
this will return an error.

colorOrder The order of the cluster colors. Defaults to the order that the unique values in
clusterVector occurs.

colorScale The color scale. Options identical to dColorVector.
plotDir The name of the created directory.

createOQutput For testing purposes. Defaults to TRUE. If FALSE, no plots are generated.

Value

One graph is created for each cluster, containing a bean per specified variable.

See Also

dDensityPlot, dColorPlot, dColorVector, depeche
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Examples

# Load some data
data(testData)

# Run the clustering function. For more rapid example execution,
# a depeche clustering of the data is inluded

# testDataDepeche <- depeche(testDatal,2:15])
data(testDataDepeche)

# Create the plots of the variables that contribute to creating cluster 3

## Not run:
dViolins(testDataDepeche$clusterVector,
inDataFrame = testData,
plotClusters = 3, plotElements = testDataDepeche$essenceElementList

)

## End(Not run)

dWilcox Wilcoxon rank-sum or signed rank test comparison of subject groups
in a dClust result

Description

This function is used to compare groups of individuals from whom comparable cytometry or other
complex data has been generated.

Usage

dWilcox(
xYData,
idsVector,
groupVector,
clusterVector,
displayVector,
paired = FALSE,
multipleCorrMethod = "BH",
densContour = TRUE,
plotName = "default”,
groupName1 = unique(groupVector)[1],
groupName2 = unique(groupVector)[2],
title = FALSE,
lowestPlottedP = 0.05,
plotDir = ".",
bandColor = "black”,
dotSize = 500/sqgrt(nrow(xYData)),
createQutput = TRUE
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Arguments

xYData A dataframe or matrix with two columns. Each row contains information about
the x and y positition in the field for that observation.

idsVector Vector with the same length as xYData containing information about the id of
each observation.

groupVector Vector with the same length as xYData containing information about the group
identity of each observation.

clusterVector Vector with the same length as xYData containing information about the cluster
identity of each observation.

displayVector Optionally, if the dataset is very large and the SNE calculation hence becomes
impossible to perform for the full dataset, this vector can be included. It should
contain the set of rows from the data used for statistics, that has been used to
generate the xYData.

paired Defaults to FALSE, i.e. no assumption of pairing is made and Wilcoxon rank
sum-test is performed. If true, the software will by default pair the first id in the
first group with the firs id in hte second group and so forth.

multipleCorrMethod
Which method that should be used for adjustment of multiple comparisons. De-
faults to Benjamini-Hochberg, but all other methods available in p.adjust can
be used.

densContour If density contours should be created for the plot(s) or not. Defaults to TRUE. a

plotName The main name for the graph and the analysis.

groupName1 The name for the first group

groupName2 The name for the second group

title If there should be a title displayed on the plotting field. As the plotting field is
saved as a png, this title cannot be removed as an object afterwards, as it is saved
as coloured pixels. To simplify usage for publication, the default is FALSE, as
the files are still named, eventhough no title appears on the plot.

lowestPlottedP If multiple plots should be compared, it might be useful to define a similar color
scale for all plots, so that the same color always means the same statistical value.
A p-value that determines this can be added here. Default is a p-value of 0.05.
In cases where no datapoints have any lower p-values than this, a Wilcoxon-
statistic corresponding as closely as possible to 0.05 will be identified with it-
erations of datasets with the same size as indicated by hte group vector. If one
value is lowerthan 0.05, the wilcoxon statistic from this comparison is used in-
stead.

plotDir If different from the current directory. If specified and non-existent, the function
creates it. If "." is specified, the plots will be saved at the current directory.

bandColor The color of the contour bands. Defaults to black.

dotSize Simply the size of the dots. The default makes the dots smaller the more obser-
vations that are included.

createOutput  For testing purposes. Defaults to TRUE. If FALSE, no plots are generated.
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Value

This function always returns a dataframe showing the Wilcoxon statistic and the p-value for each
cluster, with an included adjustment for multiple comparisons (see above). It also returns a sne
based plot showing which events that belong to a cluster dominated by the first or the second group.

See Also

dColorPlot, dDensityPlot, dResidualPlot

Examples

# Load some data

data(testData)

## Not run:

# Load or create the dimensions that you want to plot the result over.
# uwot::umap recommended due to speed, but tSNE or other method would
# work as fine.

data(testDataSNE)

# Run the clustering function. For more rapid example execution,
# a depeche clustering of the data is inluded

# testDataDepeche <- depeche(testDatal,2:15])
data(testDataDepeche)

# Run the function

dWilcoxResult <- dWilcox(
xYData = testDataSNE$Y, idsVector = testData$ids,
groupVector = testData$label, clusterVector =
testDataDepeche$clusterVector

)

# Here is an example of how the display vector can be used.
subsetVector <- sample(1:nrow(testData), size = 10000)

# Now, the SNE for this displayVector could be created

# testDataSubset <- testData[subsetVector, 2:15]

# testDataSNESubset <- Rtsne(testDataDisplay, pca=FALSE)$Y
# But we will just subset the testDataSNE immediately
testDataSNESubset <- testDataSNE$Y[subsetVector, 1]

# And now, this new SNE can be used for display, although all
# the data is used for the Wilcoxon calculations
dWilcoxResult <- dWilcox(
xYData = testDataSNESubset, idsVector = testData$ids,
groupVector = testData$label, clusterVector =
testDataDepeche$clusterVector, displayVector = subsetVector

)

## End(Not run)
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groupProbPlot Define and plot group probabilities

Description

This function defines and plots the single-observation probability for belonging to either of two
groups. It uses the neighSmooth function with the special case that the values are binary: For
each set of k nearest neighbors, cell x is assigned a probability to belong to one group or the other
based on the percentage of the neighbors belonging to each group. In other words, if 20 out of 100
neighbors belong to group A and 80 belong to group B, and the value for the cell will be 20 A or 80
accordingly reflected in the color scale on the resulting plot.

Usage

groupProbPlot(
xYData,
groupVector,
euclidSpaceData,
kNeighK = max(100, round(nrow(euclidSpaceData)/10000)),
kMeansK = round(nrow(euclidSpaceData)/1000),
densContour = TRUE,
groupName1 = unique(groupVector)[1],
groupName2 = unique(groupVector)[2],
plotName = "default”,
title = FALSE,
bandColor = "black”,
plotDir = ".",
dotSize = 400/sqrt(nrow(xYData)),
returnProb = FALSE,
returnProbColVec = FALSE,
createOutput = TRUE

)
Arguments

xYData A dataframe or matrix with two columns. Each row contains information about
the x and y positition in the field for that observation.

groupVector Vector with the same length as xYData containing information about the group
identity of each observation.

euclidSpaceData
The data cloud in which the nearest neighbors for the events should be identified.

kNeighK The number of nearest neighbors.

kMeansK The number of clusters in the initial step of the algorithm. A higher number

leads to shorter runtime, but potentially lower accuracy.

densContour If density contours should be created for the plot(s) or not. Defaults to TRUE. a
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groupName1 The name for the first group

groupName2 The name for the second group

plotName The main name for the graph and the analysis.

title If there should be a title displayed on the plotting field. As the plotting field is
saved as a png, this title cannot be removed as an object afterwards, as it is saved
as coloured pixels. To simplify usage for publication, the default is FALSE, as
the files are still named, eventhough no title appears on the plot.

bandColor The color of the contour bands. Defaults to black.

plotDir If different from the current directory. If specified and non-existent, the function
creates it. If "." is specified, the plots will be saved at the current directory.

dotSize Simply the size of the dots. The default makes the dots smaller the more obser-
vations that are included.

returnProb Should a probability vector be returned? Mutually exclusive with returnProb-
ColVec.

returnProbColVec
Should the color vector be returned as part of the output? Mutually exclusive
with returnProb.

createOutput  For testing purposes. Defaults to TRUE. If FALSE, no output is generated.

Value

A graph showing the probability as a color scale from blue over white to red for each event to
belong to one group or the other, with a separate color scale. Optionally also the color vector, if
returnProbColVec is TRUE.

Examples

data(testData)

data(testDataSNE)

euclidSpaceData <-

testDatal, c(

"SYK", "CD16", "CD57", "EAT.2",
"CD8", "NKG2C", "CD2", "CD56"

)]
## Not run:
groupProbPlot(

xYData = testDataSNE$Y, groupVector = testData$label,
euclidSpaceData

)

## End(Not run)
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microClust This function is the core of the neighSmooth. See the documentation
there for details.

Description

This function is the core of the neighSmooth. See the documentation there for details.

Usage
microClust(
dataCenter,
dataNeigh,
dataReturn,
method = "median”,
k =11,
trim = @
)
Arguments
dataCenter The original data.
dataNeigh The data for the neighbors. Often stronly overlapping with the dataCenter, but
for internal reasons, this data cloud is larger than the dataCenter cloud.
dataReturn The neighbor data that should be aggregated and sent back.
method Should median or mean be calculated?
k Number of neighbors.
trim If mean of the neighbors is returned, should it be calculated with trimming?
Value

A dataset with the same shape as dataCenter, filled with aggregated information from the k nearest
neighbors.

neighSmooth Euclidean neighbor smoothing

Description

This function constructs a variable that for each event shows the average value for its euclidean k-
nearest neighbors. It builds on the same idea as has been put forward in the Sconify package: -Burns
TJ (2019). Sconify: A toolkit for performing KNN-based statistics for flow and mass cytometry
data. R package version 1.4.0 and -Hart GT, Tran TM, Theorell J, Schlums H, Arora G, Rajagopalan
S, et al. Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection
from malaria. J Exp Med. 2019 Jun 3;216(6):1280-90. First, the k nearest neighbors are defined
for cell x. Then, the average value for the k nearest neighbors is returned as the result for cell x.
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Usage

neighSmooth(
focusData,

neighSmooth

euclidSpaceData,
neighRows = "default”,
ctrlRows = NULL,
kNeighK = "default”,
kMeansK = "default”,

kMeansCenters

= NULL,

kMeansClusters = NULL,
method = "mean”,
nCores = detectCores() - 1

Arguments

focusData

euclidSpaceData

neighRows

ctrlRows

kNeighK

kMeansK

kMeansCenters

kMeansClusters
method

nCores

The data that should be smoothed. Should be a matrix with the variables to be
smoothed as columns.

The data cloud in which the nearest neighbors for the events should be identified.
Can be a vector, matrix or dataframe. It is worth noting that if this data has
more than 10 dimensions, the first step of the algorithm will be the creation of
a 10-dimensional PCA using fast.prcomp from gmodels. So in cases where this
function is used iteratively, it might be wiser to run the PCA beforehand.

The rows in the dataset that correspond to the neighbors of the focusData points.
"default” is all the focusData points, but a subset can be added instead, if pre-
ferred. This is good to use to increase robustness, e.g. by running 100 itera-
tions with different sets of neighbors with the same number of points from each
group/individual.

Optionally, a set of control rows that are used to remove background signal from
the neighRows data before sending the data back.

The number of nearest neighbors. "default" is the max of 100 and the number
of neighbor rows divided by 10000. Mutliple different values here is preferred.

The number of clusters in the initial step of the algorithm. A higher number
leads to shorter runtime, but potentially lower accuracy. This is not used if
kMeansCenters is provided. "default" is the highest of 1 and the number of cells
in euclidSpaceData divided by 1000.

Here, a pre-clustering of the data can be provided, in which case the clustering
will not be performed internally. Wise if for example a bootstrapping scheme is
used to define the neighRows iteratively, as the k-means step can be quite time
consuming. This part is the cluster centers or centroids.

See above. Here, the clusters, instead of the centroids are provided if used.

The method to use for the smoothing. Three values possible: mean (default),
median and mode.

The number of cores used. Defaults to number of cores in the computer minus
1.
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Value

An object of the same dimensions as focusData that has been smoothed.

Examples

data(testData)
data(testDataSNE)
euclidSpaceData <-
testDatal, c(
"SYK", "CD16", "CD57", "EAT.2",
"CD8", "NKG2C", "CD2", "CD56"
)]
## Not run:
smoothGroupVector <- neighSmooth(
focusData = as.numeric(testData$label),
euclidSpaceData

)

## End(Not run)

nUniqueNeighDons How many donors are contained among the nearest neighbors?

Description

This function constructs a variable that for each event shows the number of donors in its nearest
neighbor surroundings. It builds on the same idea as has been put forward in the Sconify package:
-Burns TJ (2019). Sconify: A toolkit for performing KNN-based statistics for flow and mass cy-
tometry data. R package version 1.4.0 and -Hart GT, Tran TM, Theorell J, Schlums H, Arora G,
Rajagopalan S, et al. Adaptive NK cells in people exposed to Plasmodium falciparum correlate with
protection from malaria. J Exp Med. 2019 Jun 3;216(6):1280-90. First, the k nearest neighbors are
defined for cell x. Then, the number of donors in the k nearest neighbor cloud is returned.

Usage

nUniqueNeighDons(
donorData,
euclidSpaceData,
neighRows = seq_len(nrow(as.matrix(donorData))),
ctrlRows,
kNeighK = max(100, round(nrow(as.matrix(euclidSpaceData))/10000)),
kMeansK = max(1, round(nrow(as.matrix(euclidSpaceData))/1000))
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Arguments
donorData The donor information.
euclidSpaceData
The data cloud in which the nearest neighbors for the events should be identified.
Can be a vector, matrix or dataframe.
neighRows The rows in the dataset that correspond to the neighbors of the donorData points.
This can be all the donorData points, or a subset, depending on the setup.
ctrlRows Optionally, a set of control rows that are used to remove background signal from
the neighRows data before sending the data back.
kNeighK The number of nearest neighbors.
kMeansK The number of clusters in the initial step of the algorithm. A higher number
leads to shorter runtime, but potentially lower accuracy.
Value

An object of the same dimensions as donorData that has been smoothed.

Examples

data(testData)
data(testDataSNE)
euclidSpaceData <-
testDatal, c(
"SYK", "CD16", "CD57", "EAT.2",
"CD8", "NKG2C", "CD2", "CD56"
)]
## Not run:
nDonorsVector <- nUniqueNeighDons(
donorData = as.numeric(testData$label),
euclidSpaceData

)

## End(Not run)

testData A 14 color flow cytometry dataset for example execution and playing
around

Description

This dataset is a 14 color pre-compensated, transformed flow cytometry dataset focusing on cyto-
toxic lymphocytes, where dead cells have been removed. To make examples very obvious, differ-
ences have been artificially exaggregated in the data. The dataset is produced by J. Theorell.

Usage

data("testData")
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Format

An object of class 'data.frame';

testDataDepeche A depeche clustering of the testData set

Description
This is a depeche clustering of the testData dataset. It has been generated with the Rtsne.multicore
package

Usage

data(testDataDepeche)

Format

An object of class 'list';

Details

produced by J. Theorell.

testDataSNE SNE of the testData set

Description
This is a t-distributed stochastic neighbor embedding of the testData dataset. It has been generated
with the Rtsne.multicore package.

Usage
data(testDataSNE)

Format

An object of class 'list’;

References

Jesse H. Krijthe (2015). Rtsne: T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut
Implementation (GitHub)


https://github.com/RGLab/Rtsne.multicore/issues/5
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