Package ‘DESpace’

November 5, 2025
Type Package

Title DESpace: a framework to discover spatially variable genes and
differential spatial patterns across conditions

Version 2.3.1

Description Intuitive framework for identifying spatially variable genes (SVGs) and differential spa-
tial variable pattern (DSP) between conditions via edgeR, a popular method for performing dif-

ferential expression analyses.
Based on pre-annotated spatial clusters as summarized spatial information, DESpace mod-

els gene expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates.

SVGs are then identified by testing the significance of spatial clusters.

For multi-sample, multi-condition datasets, we again fit a NB model via edgeR, incorporat-
ing spatial clusters, conditions and their interactions as covariates.

DSP genes-

representing differences in spatial gene expression patterns across experimental conditions-
are identified by testing the interaction between spatial clusters and conditions.

biocViews Spatial, SingleCell, RNASeq, Transcriptomics,
GeneExpression, Sequencing,
DifferentialExpression,StatisticalMethod, Visualization

License GPL-3
Depends R (>=4.5.0)

Imports edgeR, limma, dplyr, stats, Matrix, SpatialExperiment,
ggplot2, SummarizedExperiment, S4Vectors, BiocGenerics,
data.table, assertthat, terra, sf, spatstat.explore,
spatstat.geom, ggforce, ggnewscale, patchwork, BiocParallel,
methods, scales, scuttle

Suggests knitr, rmarkdown, testthat, BiocStyle, muSpaData,
ExperimentHub, spatialLIBD, purrr, reshape?2, tidyverse,
concaveman

VignetteBuilder knitr
RoxygenNote 7.3.2
ByteCompile true
Encoding UTF-8

URL https://github.com/peicai/DESpace,

https://peicai.github.io/DESpace/

BugReports https://github.com/peicai/DESpace/issues
git_url https://git.bioconductor.org/packages/DESpace
git_branch devel

git_last_commit 3dbd101

git_last_commit_date 2025-10-31

Repository Bioconductor 3.23

Date/Publication 2025-11-05

Author Peiying Cai [aut, cre] (ORCID: <https://orcid.org/0009-0001-9229-2244>),
Simone Tiberi [aut] (ORCID: <https://orcid.org/0000-0002-3054-9964>)

Maintainer Peiying Cai <peiying.cai@uzh.ch>

DESpace

Contents
DESpace e e 2
dsp_testo e e 3
FeaturePlot 5
individual_dsp. e 8
individual_Svg L 9
LIBD subset e 11
results_individual_svg 12
TeSUltS_SVE_LeSt e e e e e e e e e e 13
SVE_ESL . o o o e e e e e e e e 14
top_resultso L 16

Index 18

DESpace DESpace: A package for identifying spatially variable genes
Description

An intuitive framework for identifying spatially variable genes (SVGs) and differential spatial pat-
tern (DSP) genes via edgeR, one of the most common methods for performing differential expres-

sion analyses.

https://github.com/peicai/DESpace
https://peicai.github.io/DESpace/
https://github.com/peicai/DESpace/issues
https://orcid.org/0009-0001-9229-2244
https://orcid.org/0000-0002-3054-9964

dsp_test 3

Details

Based on pre-annotated spatial clusters as summarized spatial information, DESpace models gene
expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates. SVGs
are then identified by testing the significance of spatial clusters, whereas DSP genes are identified
by testing the significance of the interaction terms between spatial clusters and conditions (e.g.,
treatment conditions or time phases).

Our approach assumes that the spatial structure can be summarized by spatial clusters, which should
reproduce the key features of the tissue (e.g., white matter and layers in brain cortex). These spatial
clusters are therefore taken as proxy for the actual spatial distribution; a significant test of these co-
variates indicates that space influences gene expression, hence identifying spatially variable genes.

Our model is flexible and robust, and is significantly faster than the most SV methods. Furthermore,
to the best of our knowledge, it is the only SV approach that allows: - performing a SV test on each
individual spatial cluster, hence identifying the key regions affected by spatial variability; - jointly
fitting multiple samples, targeting genes with consistent spatial patterns across replicates.

For an overview of the functionality provided by the package, please see the vignette: vignette("DESpace”,
package="DESpace")

Author(s)

Peiying Cai <peiying.cai@uzh.ch>, Simone Tiberi <simone.tiberi@unibo.it>

See Also

svg_test, individual_svg, top_results, FeaturePlot, dsp_test, individual_dsp

dsp_test dsp_test

Description

’dsp_test’ identifies differential spatial pattern (DSP) genes between conditions from spatially-
resolved transcriptomics data, provided spatial clusters are available.

Usage

dsp_test(
spe,
design = NULL,
cluster_col,
sample_col,
condition_col,
min_counts = 20,
min_non_zero_spots = 10,
min_pct_cells = 0.5,
filter_gene = FALSE,
filter_cluster = TRUE,

dsp_test

verbose = FALSE

Arguments

spe

design

cluster_col

sample_col

SpatialExperiment or SingleCellExperiment.

Matrix or array. Numeric design matrix for a regression-like model created by
‘model.matrix‘ function.

Character. Column name of spatial clusters in colData(spe).

Character. Column name of sample ids in colData(spe). Sample ids must be
either a factor or character.

condition_col Character. Column name of condition ids in colData(spe).

min_counts

Numeric. Minimum number of counts per sample (across all spots) for a gene
to be analyzed.

min_non_zero_spots

Numeric. Minimum number of non-zero spots per sample, for a gene to be
analyzed.

min_pct_cells Numeric. Minimum percentage of cells required for each cluster to be included

filter_gene

in the analysis across the specified conditions. Default value is 0.5 (i.e., 0.5% of
total cells per cluster per condition).

Logical. If TRUE, dsp_test filters genes by requiring them to be expressed in
at least “'min_non_zero_spots’ cells and have at least 'min_counts’ counts per
sample across all locations.

filter_cluster Logical. When set to TRUE, dsp_test excludes clusters that are insufficiently

verbose

Value

A list of results

represented in the dataset. Only clusters meeting the *min_pct_cells’ threshold
(i.e., containing at least the specified percentage of cells across all conditions)
will be retained for analysis.

Logical. If TRUE, svg_test returns two more results: "'DGEGLM’ and 'DGELRT’
objects contain full statistics from ’edgeR::glmFit’ and edgeR::glmLRT".

- "gene_results": a dataframe contains main edgeR test results;

- "estimated_y":

"

a DGEList object contains the estimated common dispersion, which can later be

used to speed-up calculation when testing individual clusters.

- "glmFit" (only if verbose = TRUE): a DGEGLM object contains full statistics from "edgeR::glmFit".

- "glmLRT" (only if verbose = TRUE): a DGELRT object contains full statistics from "edgeR::glmLRT".

See Also

svg_test, individual_svg, individual_dsp, FeaturePlot, top_results

FeaturePlot 5

Examples

Load the example multi-sample multi-group spe object
spe <- muSpaData::Wei22_example()

Fit the model via \code{\link{dsp_test}} function.
set.seed(123)

results_dsp <- dsp_test(spe = spe,

cluster_col = "Banksy_smooth",
sample_col = "sample_id",
condition_col = "condition”,

verbose = FALSE)

dsp_test returns of an object:
"gene_results”: a dataframe contains main edgeR test results.

We visualize differential results:
head(results_dsp, 3)

FeaturePlot FeaturePlot

Description

Plot spatial gene expression. This function is a modified version of the featurePlot function
from ‘BayesSpace‘ R package. In comparison to the original BayesSpace function, this function
allows plotting multiple genes simultaneously and drawing an outline around a specified cluster. To
draw outlines, the reconstructShapeDensityImage function from the ‘sosta‘ R package has been
adapted. Compared to the original ‘sosta‘ function, this version allows the use of a SingleCellEx-
periment object, which cannot be used with ‘spatialCoords()°.

Usage

FeaturePlot(
spe,
feature,
coordinates = NULL,
concave_hull = FALSE,
sf_dim = 200,
assay.type = "logcounts”,
annotation_cluster = FALSE,
annotation_title = NULL,
platform = "Visium”,
cluster_col = NULL,
cluster = NULL,
legend_cluster = FALSE,
legend_exprs = FALSE,
diverging = FALSE,
low = NULL,

6 FeaturePlot

high = NULL,
mid = NULL,
color = NULL,

linewidth = 0.4,
linecolor = NULL,
label = FALSE,
ncol = 3,

title = FALSE,
title_size = 10,
point_size = 0.5

)
Arguments
spe SpatialExperiment or SingleCellExperiment. If feature is specified and is a
string, it must exist as a row in the specified assay of spe.
feature Feature vector used to color each cell. May be the name of a gene/row in an
assay of spe, or a vector of continuous values.
coordinates Column names for the spatial coordinates of cells stored in colData(spe).

If specified, these coordinates will be used. If not, the function defaults to
using ‘row’ and ’col’ in colData(spe) if they exist. Otherwise, it will use
spatialCoords(spe) if ’spe’ is a SpatialExperiment object and spatialCoords(spe)
is not NULL.

concave_hull A logical value (TRUE or FALSE). For Visium or ST platforms, ‘concave_hull
is automatically set to TRUE. If TRUE, the function uses geom_mark_hull
to outline cluster boundaries (recommended for non-discontinuous clusters).
If FALSE, the adapted reconstructShapeDensityImage is used for complex
cluster shapes.

sf_dim A numeric value for the x-dimension of the reconstruction (default is 200). A
lower value speeds up computation but reduces accuracy. Used only when ‘con-
cave_hull‘ is FALSE.

assay.type String indicating which assay in spe the expression vector should be taken from.

annotation_cluster
A logical value. TRUE or FALSE. If TRUE, annotated spatial clusters are plot-
ted alongside expression plots. If FALSE, clusters are not displayed.

annotation_title

A character string for the title of the annotated spatial clusters. Applied only
when ‘annotation_cluster‘ is TRUE.

platform A character string specifying the spatial sequencing platform. If "Visium" or
"ST", a hexagonal spot layout will be used. Otherwise, points will be plotted.

cluster_col Column name of spatial clusters in colData(spe).

cluster Names of the spatial clusters used for drawing a boundary around a group of

points that belong to the specify cluster. It can be NULL, "all"/"ALL", or a
vector of cluster names.

legend_cluster A logical value. TRUE of FALSE, indicating whether to plot the legend for
the shaped clusters (TRUE), or not (FALSE). Only used when ’cluster_col’

FeaturePlot

legend_exprs

diverging

low, mid, high

color

linewidth

linecolor

label

ncol

title

title_size

point_size

Value

and ’cluster’ are specified, and is supported only when ’concave_hull’ is set
to TRUE.

A logical value. TRUE of FALSE, indicating whether to plot the legend for the
expression level (TRUE), or not (FALSE).

A logical value. If TRUE, uses a diverging color gradient in FeaturePlot (e.g.,
for fold change). If FALSE, uses a sequential gradient (e.g., for expression).

Optional hex codes for low, mid, and high values of the color gradient used for
continuous cell values.

Optional hex code to set color of borders around cells. Set to NA to remove
borders.

The width of the boundary line around the cluster. The default ("0.4’) size of the
boundary line is one.

The colors of the boundary lines around the cluster. If unspecified, the default
color scheme is used.

A logical. TRUE of FALSE. Adding a label and an arrow pointing to a group.

The dimensions of the grid to create. By default, 1, if the length of feature equals
to 1, and 3, otherwise.

A logical. TRUE or FALSE. If true, the title name of each (subplot) is the gene
name.

Title font size.

Point size.

Returns a ggplot object.

See Also

svg_test, individual_svg, top_results, dsp_test, individual_dsp

Examples

load the input data:
data("LIBD_subset”, package = "DESpace")

load pre-computed results (obtained via “svg_test™)
data("results_svg_test”, package = "DESpace”)

Visualize the gene expression of the top three genes

feature = results_svg_test$gene_results$gene_id[seq_len(3)]

FeaturePlot(LIBD_subset, feature, coordinates = c("array_row”, "array_col"),
ncol = 3, title = TRUE)

individual_dsp

individual_dsp

individual_dsp

Description

DESpace can also be used to reveal the specific areas of the tissue affected by DSP genes; i.e., spatial
clusters that are particularly over/under abundant compared to the average signal across conditions.
This function can be used to identify SVGs among conditions for each individual cluster.

Usage

individual_dsp(
spe,
cluster_col,
sample_col,
condition_col
min_counts =

’

20,

min_non_zero_spots = 10,

min_pct_cells
filter_gene =

= 0.5,
TRUE,

filter_cluster = TRUE

Arguments

spe
cluster_col

sample_col

condition_col

min_counts

SpatialExperiment or SingleCellExperiment.
Character. Column name of spatial clusters in colData(spe).

Character. Column name of sample ids in colData(spe). Sample ids must be
either a factor or character.

Character. Column name of condition ids in colData(spe).

Numeric. Minimum number of counts per sample (across all spots) for a gene
to be analyzed.

min_non_zero_spots

min_pct_cells

filter_gene

filter_cluster

Numeric. Minimum number of non-zero spots per sample, for a gene to be
analyzed.

Numeric. Minimum percentage of cells required for each cluster to be included
in the analysis across the specified conditions. Default value is 0.5 (i.e., 0.5% of
total cells per cluster per condition).

Logical. If TRUE, dsp_test filters genes: genes have to be expressed in at least
’min_non_zero_spots’ spots, and a gene requires at least *'min_counts’ counts
per sample (across all locations).

Logical. When set to TRUE, dsp_test excludes clusters that are insufficiently
represented in the dataset. Only clusters meeting the 'min_pct_cells’ threshold
(i.e., containing at least the specified percentage of cells across all conditions)
will be retained for analysis.

individual_svg 9

Value

A list of results, with one result per spatial cluster in each element. Specifically, each item in the
list is a "gene_results" dataframe which contains main edgeR test results.

See Also

top_results, svg_test, dsp_test, FeaturePlot

Examples

load the input data:

spe <- muSpaData: :Wei22_example()
set.seed(123)

results_individual_dsp <- individual_dsp(spe,

cluster_col = "Banksy_smooth”,
sample_col = "sample_id",
condition_col = "condition")

We visualize results for the cluster '3'
results <- results_individual_dsp[['3']]
head(results, 3)

individual_svg individual_svg

Description

DESpace can also be used to reveal the specific areas of the tissue affected by SVGs; i.e., spatial
clusters that are particularly over/under abundant compared to the average signal. This function can
be used to identify SVGs for each individual cluster.

Usage

individual_svg(
spe,
cluster_col,
sample_col = "sample_id",
edgeR_y = NULL,
min_counts = 20,
min_non_zero_spots = 10,
filter_gene = TRUE,
replicates = FALSE,
BPPARAM = NULL

10

Arguments
spe
cluster_col
sample_col
edgeR_y

min_counts

individual_svg

SpatialExperiment or SingleCellExperiment.

Column name of spatial clusters in colData(spe).
Column name of sample ids in colData(spe).
Pre-estimated dispersion; if it’s null, compute dispersion.

Minimum number of counts per sample (across all spots) for a gene to be ana-
lyzed.

min_non_zero_spots

filter_gene

replicates
BPPARAM

Details

Minimum number of non-zero spots per sample, for a gene to be analyzed.

A logical. If TRUE, svg_test filters genes: genes have to be expressed in
at least “'min_non_zero_spots’ spots, and a gene requires at least *min counts’
counts per sample (across all locations).

Single sample or multi-sample test.

An optional parameter passed internally to bplapply. We suggest using as many
cores as the number of spatial clusters. If unspecified, the script does not run
in parallel. Note that parallel coding performs better only when dispersion es-
timations are not provided beforehand. Moreover, parallelizing the script will
increase the memory requirement; if memory is an issue, leave 'BPPARAM’
unspecified and, hence, avoid parallelization.

For every spatial cluster we test, edgeR would normally re-compute the dispersion estimates based
on the specific design of the test. However, this calculation represents the majority of the overall
computing time. Therefore, to speed-up calculations, we propose to use the dispersion estimates
which were previously computed for the gene-level tests. This introduces a minor approximation
which, in our benchmarks, does not lead to decreased accuracy. If you want to use pre-computed
gene-level dispersion estimates, set edgeR_y to ’estimated_y’. Alternatively, if you want to re-
compute dispersion estimates (significantly slower, but marginally more accurate option), leave

edgeR_y empty.

Value

A list of results, with one result per spatial cluster in each element. Specifically, each item in the
list is a "gene_results" dataframe which contains main edgeR test results.

See Also

top_results, svg_test, FeaturePlot

Examples

load the input data:
data("LIBD_subset”, package = "DESpace")

LIBD_subset

load pre-computed results (obtaines via “svg_test™)

LIBD_ subset 11

data("results_svg_test"”, package = "DESpace")

svg_test returns of a list of 2 objects:

"gene_results”: a dataframe contains main edgeR test results;

"estimated_y": a DGEList object contains the estimated common dispersion,

which can later be used to speed-up calculation when testing individual clusters.

We visualize differential results:
head(results_svg_test$gene_results, 3)

Individual cluster test: identify SVGs for each individual cluster
set parallel computing; we suggest using as many cores as the number of spatial clusters.
Note that parallelizing the script will increase the memory requirement;
if memory is an issue, leave 'BPPARAM' unspecified and, hence, avoid parallelization.
set.seed(123)
results_individual_svg <- individual_svg(LIBD_subset,
edgeR_y = results_svg_test$estimated_y,
cluster_col = "layer_guess_reordered”)

We visualize results for the cluster 'WM'
results_WM <- results_individual_svg[[7]]
head(results_WM, 3)

LIBD_subset Subset from the human DLPFC 10x Genomics Visium dataset of the
spatiallLIBD package

Description

Subset from the human DLPFC 10x Genomics Visium dataset of the spatiallLIBD package

Arguments
LIBD_subset contains a SpatialExperiment-class object, representing a subset of the sam-
ple 151673 from the full real data of the spatiallLIBD package. Below the code
used to subset the original dataset.
Value

A spatial experiment object

Author(s)

Peiying Cai <peiying.cai@uzh.ch>, Simone Tiberi <simone.tiberi@unibo.it>

See Also

svg_test, individual_svg

12 results_individual_svg

Examples
Connect to ExperimentHub
ehub <- ExperimentHub::ExperimentHub()
Download the example spe data
spe_all <- spatiallIBD::fetch_data(type = "spe", eh = ehub)
Select one sample only:
LIBD_subset <- spe_all[, colData(spe_all)$sample_id == '151673"']
Select small set of random genes for faster runtime
set.seed(123)
sel_genes <- sample(dim(LIBD_subset)[1],500)
LIBD_subset <- LIBD_subset[sel_genes,]
keep_col <- c("array_row”,"array_col”,"layer_guess_reordered")
library(SingleCellExperiment)
LIBD_subset <- SpatialExperiment(assay = list(counts = assay(LIBD_subset),
logcounts = logcounts(LIBD_subset)),
colData = colData(LIBD_subset)[keep_col])
save(LIBD_subset, file = "./DESpace/data/LIBD_subset.RData")

results_individual_svg
Results from individual_svg function

Description

Results from individual_svg function

Arguments

results_individual_svg

contains a list object, with the results obtained applying individual_svg
function to an external dataset from the spatialLIBD package. Below the code
used to obtain 'results_individual_svg’.

Value

A List of 7 elements - one element for each spatial cluster

Author(s)

Peiying Cai <peiying.cai@uzh.ch>, Simone Tiberi <simone.tiberi@unibo.it>

See Also

svg_test, individual_svg

results_svg_test 13

Examples
load the input data:
data("LIBD_subset”, package = "DESpace")
LIBD_subset
load pre-computed results (obtained via “svg_test™)
data("results_svg_test”, package = "DESpace")
results_svg_test
Function ~individual_svg()~ can be used to identify SVGs for each individual cluster.
Parameter “spatial_cluster™ indicates the column names of ~colData(spe)-”
containing spatial clusters.
set.seed(123)
results_individual_svg <- individual_svg(LIBD_subset,
edgeR_y = results_svg_test$estimated_y,
spatial_cluster = "layer_guess_reordered")
save(results_individual_svg, file = "./DESpace/data/results_individual_svg.RData")
results_svg_test Results from svg_test function
Description

Results from svg_test function

Arguments

results_svg_test
contains a list object, with the results obtained applying svg_test function
to an external dataset from the spatialLIBD package. Below the code used to
obtain 'results_svg_test’.

Value

Large List of 2 elements:
- "gene_results": a dataframe contains main edgeR test results;

- "estimated_y": a DGEList object contains the estimated common dispersion,

Author(s)

Peiying Cai <peiying.cai@uzh.ch>, Simone Tiberi <simone.tiberi@unibo.it>

See Also

svg_test

14 svg_test

Examples

load the input data:

data("LIBD_subset”, package = "DESpace")
LIBD_subset

#

Fit the model via “svg_test™ function.

Parameter ~spe” specifies the input ~SpatialExperiment” or “SingleCellExperiment™ object,
while “cluster_col™ defines the column names of ~colData(spe)” containing spatial clusters.

To obtain all statistics, set “verbose™ to “TRUE".

#
set.seed(123)

results_svg_test <- svg_test(spe = LIBD_subset,

cluster_col = "layer_guess_reordered”,
verbose = FALSE)

#
#

save(results_svg_test, file = "./DESpace/data/results_svg_test.RData")

svg_test svg_test

Description

’svg_test’ identifies spatially variable genes (SVGs) from spatially-resolved transcriptomics data,

provided spatial clusters are available.

Usage

svg_test(
spe,
cluster_col,
sample_col = NULL,
replicates = FALSE,
min_counts = 20,
min_non_zero_spots = 10,
filter_gene = TRUE,
verbose = FALSE

Arguments

spe SpatialExperiment or SingleCellExperiment.

cluster_col Column name of spatial clusters in colData(spe).

sample_col

replicates

Column name of sample ids in colData(spe).

A logical, indicating whether biological replicates are provided (TRUE) or not
(FALSE). If biological replicates are provided, svg_test performs a joint test
across all replicates, searching for SVGs with consistent spatial patterns across
samples.

svg_test

min_counts

15

Minimum number of counts per sample (across all spots) for a gene to be ana-
lyzed.

min_non_zero_spots

filter_gene

verbose

Details

Minimum number of non-zero spots per sample, for a gene to be analyzed.

A logical. If TRUE, svg_test filters genes: genes have to be expressed in
at least *'min_non_zero_spots’ spots, and a gene requires at least *'min counts’
counts per sample (across all locations).

A logical. If TRUE, svg_test returns two more results: 'DGEGLM’ and
’DGELRT” objects contain full statistics from ’edgeR::glmFit” and "edgeR::gImLRT".

If ’sample_col’ is not specified and ’replicates == FALSE’, svg_test assumed that data comes
from an individual sample, and performs SV testing on it.

If ’sample_col’ is provided and ’replicates == FALSE’, svg_test tests each sample individually
and returns a list of results for each sample.

If ’sample_col’ is provided and ’replicates == TRUE’, svg_test performs a joint multi-sample test.

Value

A list of results:

- "gene_results": a dataframe contains main edgeR test results;

- "estimated_y":

a DGEList object contains the estimated common dispersion, which can later be

used to speed-up calculation when testing individual clusters.

- "glmFit" (only if verbose = TRUE): a DGEGLM object contains full statistics from "edgeR::glmFit".
- "glmLRT" (only if verbose = TRUE): a DGELRT object contains full statistics from "edgeR::glmLRT".

See Also

top_results, individual_svg, FeaturePlot, dsp_test, individual_dsp

Examples

load the input data:
data("LIBD_subset”, package = "DESpace")

LIBD_subset

Fit the model via \code{\link{svg_test}} function.

set.seed(123)

results_svg_test <- svg_test(spe = LIBD_subset,

cluster_col = "layer_guess_reordered”,
verbose = FALSE)

svg_test returns of a list of 2 objects:

"gene_results”: a dataframe contains main edgeR test results;

"estimated_y": a DGEList object contains the estimated common dispersion,

which can later be used to speed-up calculation when testing individual clusters.

16 top_results

We visualize differential results:
head(results_svg_test$gene_results, 3)

top_results top_results

Description

Filter significant results. top_results returns the significant results obtained via svg_test and
individual_svg. It can also be used to merge gene- and cluster-level results into a single object.

Usage

top_results(
gene_results = NULL,
cluster_results,
cluster = NULL,
select = "both",
high_low = NULL

Arguments

gene_results Results returned from svg_test.
cluster_results
Results returned from individual_svg.

cluster A character indicating the cluster(s) whose results have to be returned. Results
from all clusters are returned by default ("NULL").

select A character indicating what results should be returned ("FDR", "logFC", or
"both™). Only used if "cluster_results" are provided. By default ("both"), both
FDR and logFC are returned.

high_low A character indicating whether to filter results or not. Only used if "cluster_results"

are provided, and one cluster is specified in "cluster" parameter. By default
(NULL), all results are returned in a single data.frame. If "high" or "HIGH",
we only return SVGs with average abundace in "cluster” higher than in the rest
of the tissue (i.e., logFC > 0). If "low" or "LOW", we only return SVGs with
average abundace in "cluster" lower than in the rest of the tissue (i.e., logFC <
0). If "both" or "BOTH", then both "high" and "low" results are returned, but in
two separate data.frames.

Value

A data.frame object or a list of data. frame with results.

- When only “cluster_results” is provided, results are reported as a data.frame with columns
for gene names (gene_id), spatial clusters affected by SV (Cluster), cluster-specific likelihood ra-
tio test statistics (LR), cluster-specific average (across spots) log-2 counts per million (logCPM),

top_results 17

cluster-specific log2-fold changes (logFC), cluster-specific raw p-values (PValue), and Benjamini-
Hochberg adjusted p-values (FDR) for each spatial cluster.

- When “gene_results” and “cluster_results” are given, results are reported as a data. frame that
merges gene- and cluster-level results.

- If “cluster” is specified, the function returns a subset data.frame for the given cluster, which
contains cluster name, gene name, LR, logCPM, logFC, PValue and FDR, ordered by FDR for the
specified cluster.

- If “high_low” is set, the function returns a list of data.frame that contains subsets of results for
genes with higher and/or lower expression in the given cluster compared to the rest of the tissue.

See Also

svg_test, individual_svg, FeaturePlot, dsp_test, individual_dsp

Examples

load pre-computed results (obtained via “svg_test™)
data("results_svg_test”, package = "DESpace”)

svg_test returns of a list of 2 objects:

"gene_results”: a dataframe contains main edgeR test results;

"estimated_y"”: a DGEList object contains the estimated common dispersion,

which can later be used to speed-up calculation when testing individual clusters.

We visualize differential results:
head(results_svg_test$gene_results, 3)

load pre-computed results (obtained via “individual_svg™)
data("results_individual_svg", package = "DESpace")

Function “individual_svg()~ can be used to identify SVGs for each individual cluster.
“individual_svg()" returns a list containing the results of individual clusters.

For each cluster, results are reported as a data.frame,

where columns For each cluster, results are reported as a data.frame,

where columns contain gene names (“genes™), likelihood ratio ("LR™),

log2-fold changes ("logFC™) and adjusted p-value (TFDR™).

T E E EEE

Combine gene-and cluster-level results

merge_res = top_results(results_svg_test$gene_results,
results_individual_svg)

head(merge_res, 3)

'select = "FDR"' can be used to visualize adjusted p-values for each spatial cluster.
merge_res = top_results(results_svg_test$gene_results,
results_individual_svg, select = "FDR")

head(merge_res, 3)

Specify the cluster of interest and check top genes detected by svg_test.

results_WM_both = top_results(cluster_results = results_individual_svg,
cluster = "WM"”, high_low = "both")

head(results_WM_both$high_genes, 3)

head(results_WM_both$low_genes, 3)

Index

* internal
DESpace, 2

* spatial plotting functions
FeaturePlot, 5

data.frame, 16, 17
DESpace, 2

DESpace-package (DESpace), 2
dsp_test, 3,3,4,7-9, 15,17

FeaturePlot, 3,4,5,7,9, 10, 15, 17
featurePlot, 5

geom_mark_hull, 6

individual_dsp, 3,4, 7,8, 15,17
individual_svg, 3,4,7,9,11, 12, 15-17

LIBD_subset, 11
list, 12,13

reconstructShapeDensityImage, 5, 6
results_individual_svg, 12
results_svg_test, 13

svg_test, 3, 4,7,9-14, 14, 15-17

top_results, 3,4,7,9, 10, 15, 16, 16

18

	DESpace
	dsp_test
	FeaturePlot
	individual_dsp
	individual_svg
	LIBD_subset
	results_individual_svg
	results_svg_test
	svg_test
	top_results
	Index

