Package ‘BayesSpace’

November 5, 2025

Version 1.21.0
Date 2025-10-13
Title Clustering and Resolution Enhancement of Spatial Transcriptomes

Description Tools for clustering and enhancing the resolution of spatial gene
expression experiments. BayesSpace clusters a low-dimensional representation
of the gene expression matrix, incorporating a spatial prior to encourage
neighboring spots to cluster together. The method can enhance the resolution
of the low-dimensional representation into * sub-spots", for which features
such as gene expression or cell type composition can be imputed.

Depends R (>=4.0.0), SingleCellExperiment

Imports Rcpp (>= 1.0.4.6), stats, methods, purrr, scater, scran,
SummarizedExperiment, coda, rhdf5, S4Vectors, Matrix, magrittr,
assertthat, arrow, mclust, RCurl, DirichletReg, xgboost (<
2.0.0), utils, dplyr, rlang, ggplot2, tibble, rjson, tidyr,
scales, microbenchmark, BiocFileCache, BiocSingular,
BiocParallel

License MIT + file LICENSE

RoxygenNote 7.3.2

LinkingTo Rcpp, ReppArmadillo, ReppDist, ReppProgress
NeedsCompilation yes

SystemRequirements C++17

Encoding UTF-8

Suggests testthat, knitr, rmarkdown, igraph, spatial LIBD, viridis,
patchwork, RColorBrewer, Seurat

VignetteBuilder knitr

biocViews Software, Clustering, Transcriptomics, GeneExpression,
SingleCell, ImmunoOncology, Datalmport

BugReports https://github.com/edward130603/BayesSpace/issues

URL edward130603.github.io/BayesSpace

git_url https://git.bioconductor.org/packages/BayesSpace

1

https://github.com/edward130603/BayesSpace/issues

2 Contents

git_branch devel

git_last commit 47c1795
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2025-11-05

Author Edward Zhao [aut],
Senbai Kang [aut, cre],
Matt Stone [aut],
Xing Ren [ctb],
Raphael Gottardo [ctb]

Maintainer Senbai Kang <senbai.kang@chuv.ch>

Contents
adjust_hex_centers L. oL e 3
bsData e e e 3
clean_chain L L e 4
.compute_interspot_distances L. oL oo 4
extract_IndiCes e e e e 5
find_neighbors 5
Mlatten__matrix_List L 6
Hip_axis. e 6
dnfer_param_dims L oL 7
Anit_cluster L s 7
dist2vec L e 8
make_hex_Spots 8
amake_index_names e e 9
amake_SpOt_VertiCes e e e 9
Make_SqUAre_SPOLS i i e e e e e e e e e e e e e e e 10
.make_subspots L e 10
.make_subspot_coldata Lo 11
.make_triangle_subspots L. 11
amake VErtiCeS e s 12
Prepare_INPutsS oL L e e e e e e e e e e 12
dread_chain L L s 13
dead_SPOL_POS e e e 13
select_spot_positions L 14
.select_subspot_positions L 14
BayesSpace 15
cluster e e 16
clusterPlot 16
deconvolve e e e 18
enhanceFeatures 18
exampleSCE 20
featurePlot e 21

find_neighbors 22

.adjust_hex_centers 3

Index

getRDS . . e e 23
memeChain L oL 24
Mode e 25
parallelize L 25
qTune 26
readVisium 27
spatialCluster e e e e 28
spatialEnhance oL 30
spatialPlot L 33
spatialPreprocess 34

36

.adjust_hex_centers Adjust hex spot positions so hexagons are adjacent to each other in

plot

Description

Spots are regular hexagons with one unit of horizontal distance between centers

Usage
.adj

Value

ust_hex_centers(spot_positions)

Shifted spot centers

.bsData Access BayesSpace metadata

Description

Access BayesSpace metadata

Usage

.bsData(sce, name, default = NULL, warn = FALSE)

Arguments
sce SingleCellExperiment
name Metadata name

Value

Requested metadata

4 .compute_interspot_distances

.clean_chain Tidy C++ outputs before writing to disk.

Description

1) Convert each parameter to matrix (n_iterations x n_indices) 2) Add appropriate colnames 3) Thin
evenly (for enhance)

Usage
.clean_chain(out, method = c("cluster”, "enhance"))
Arguments
out List returned by cluster() or deconvolve().
method Whether the output came from clustering or enhancement. (Different params
are included in each.)
Value

List with standardized parameters

.compute_interspot_distances
Estimate the distance between two neighboring spots

Description

Fit linear models between each image pixel coordinate and its corresponding array coordinate to
estimate the pixel distance between two spots along each axis. Add these distances to estimate the
L1 distance between two spots, then add a small buffer.

Usage

.compute_interspot_distances(sce)

Arguments
sce SingleCellExperiment (must include array_row, array_col, pxl_row_in_fullres,
pxl_col_in_fullres in colData)
Value

doubles xdist, ydist

.extract_indices 5

.extract_indices Extract row and column indices of the count matrix from h5 file.

Description

Extract row and column indices of the count matrix from hS file.

Usage

.extract_indices(idx, new.start, zero.based = TRUE)

Arguments
idx Row index of corresponding element in the non-zero count matrix.
new.start Index of the start of each column corresponding to idx and the non-zero count
matrix.
zero.based Whether the and are zero-based or not. (By default is TRUE)
Value

List of row (i) and column (j) indices of the non-zero elements in the count matrix.

.find_neighbors Find neighboring spots based on array coordinates

Description

Find neighboring spots based on array coordinates

Usage

.find_neighbors(sce, platform)

Arguments
sce SingleCellExperiment
platform If "Visium", select six neighboring spots around center; if "ST", select four ad-
jacent spots.
Value

df_j alist of neighbor indices (zero-indexed) for each spot

6 fip_axis

.flatten_matrix_list Convert a list of matrices to a single matrix, where each row is a flat-
tened matrix from the original list

Description

Convert a list of matrices to a single matrix, where each row is a flattened matrix from the original

list
Usage
.flatten_matrix_list(xs, ...)
Arguments
XS List of matrices
Value
Matrix
.flip_axis Whether to flip x and y axis to align the plot with the corresponding
image.
Description

Whether to flip x and y axis to align the plot with the corresponding image.

Usage

.flip_axis(sce, platform)

Value

A list indicates the multiplier for each axis.

.nfer_param_dims 7

.infer_param_dims Infer original dimensions of parameter (per iteration) from colnames

Description
Used to avoid writing colnames directly to HDF5 as attribute, which fails for large parameters (e.g.
Y)

Usage

.infer_param_dims(cnames)

Arguments

chames List of column names

Value

Numeric vector (nrow, ncol)

.init_cluster Initialize cluster assignments

Description

Initialize cluster assignments

Usage

.init_cluster(Y, q, init = NULL, init.method = c("mclust”, "kmeans"))

Arguments
Y Representation of reduced dimensions
q Number of clusters
init Vector of initial cluster assignments
init.method Initialization clustering algorithm
Value

Vector of cluster assignments.

.make_hex_spots

.list2vec Convert a list into vectors for easier output.

Description

Convert a list into vectors for easier output.

Usage

n_n n on

.list2vec(X, sep = , collapse = ",", use_names = TRUE)

Arguments

X A list.

Value

A vector converted from the input list X.

.make_hex_spots Make vertices for each hex spot

Description

Make vertices for each hex spot

Usage

.make_hex_spots(cdata, fill, coord.multiplier = list(x =

Value

1, y=1)

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.make_index_names 9

.make_index_names Make colnames for parameter indices.

Description
Scalar parameters are named "name”. Vector parameters are named "name[i]". Matrix parameters
are named "name[i,j]1".

Usage

.make_index_names(name, m = NULL, n = NULL, dim = 1)

Arguments

name Parameter name

m, n Dimensions of parameter (m=nrow, n=ncol)

dim Dimensionality of parameter (O=scalar, 1=vector, 2=matrix)
Value

List of names for parameter values

.make_spot_vertices Compute vertex coordinates for each spot in frame of plot

Description

Compute vertex coordinates for each spot in frame of plot

Usage

.make_spot_vertices(spot_positions, vertex_offsets)

Arguments

spot_positions Center for hex, top left for square

vertex_offsets Data frame of (x, y) offsets wrt spot position for each vertex of spot

Value

Cartesian product of positions and offsets, with coordinates computed as (pos + offset)

10 .make_subspots

.make_square_spots Make vertices for each square spot

Description

Squares are simple, just make a unit square at each array coordinate

Usage

.make_square_spots(
cdata,
fill = "spatial.cluster”,
scale.factor = 1,
offset = 0,
coord.multiplier = list(x =1, y = 1)

Value

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.make_subspots Define offsets and Manhattan distances for each subspot layout.

Description

Hex spots are divided into 6 triangular subspots, square spots are divided into 9 squares. Offsets are
relative to the spot center. A unit corresponds to the diameter of a spot.

Usage

.make_subspots(
platform,
xdist,
ydist,
force = FALSE,
nsubspots.per.edge = 3,
tolerance = 1.05

Details

Manhattan distance is used here instead of Euclidean to avoid numerical issues.

.make_subspot_coldata 11

.make_subspot_coldata Add subspot labels and offset row/col locations before making en-
hanced SCE.

Description

Subspots are stored as (1.1, 2.1, 3.1, ..., 1.2,2.2,3.2, ..)

Usage
.make_subspot_coldata(
cdata,
sce,
subspot_neighbors,
platform,
nsubspots.per.edge = 3
)
Arguments
cdata Table of colData (imagerow and imagecol; from deconv$positions)
sce Original sce (to obtain number of spots and original row/col)
subspot_neighbors
Neighbors for subspots
platform Spatial transcriptomic platform

nsubspots.per.edge
Number of subspots per edge if the spot is squared

Value

Data frame with added subspot names, parent spot indices, and offset row/column coordinates

.make_triangle_subspots
Make vertices for each triangle subspot of a hex

Description

Make vertices for each triangle subspot of a hex

Usage

.make_triangle_subspots(
cdata,
fill = "spatial.cluster”,
coord.multiplier = list(x =1, y = 1)
)

12 .prepare_inputs

Value

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.make_vertices Make vertices outlining spots/subspots for geom_polygon()

Description

Make vertices outlining spots/subspots for geom_polygon()

Usage

.make_vertices(sce, fill, platform, is.enhanced, nsubspots.per.edge = 3)

Arguments
sce SingleCellExperiment with row/col in colData
fill Name of a column in colData(sce) or a vector of values to use as fill for each
spot
platform "Visium", "VisiumHD" or"ST", used to determine spot layout
is.enhanced If true, sce contains enhanced subspot data instead of spot-level expression.
Used to determine spot layout.
Value

Table of (x.pos, y.pos, spot, fill); where spot groups the vertices outlining the spot’s border

.prepare_inputs Prepare cluster/deconvolve inputs from SingleCellExperiment object

Description

Prepare cluster/deconvolve inputs from SingleCellExperiment object

Usage

.prepare_inputs(
sce,
use.dimred = "PCA",
d =15,
positions = NULL,
position.cols = c("pxl_col_in_fullres”, "pxl_row_in_fullres”),
xdist = NULL,
ydist = NULL

.read_chain 13

Value

List of PCs, names of columns with x/y positions, and inter-spot distances

.read_chain Load saved chain from disk.

Description

Load saved chain from disk.

Usage

.read_chain(h5.fname, params = NULL, is.enhanced = FALSE)

Arguments

h5. fname Path to hdf5 file containing chain

params List of parameters to read from file (will read all by default)
Value

MCMC chain, represented as a coda: :mcmc object

.read_spot_pos Load spot positions.

Description

Load spot positions.

Usage

.read_spot_pos(dirname, barcodes = NULL)

Arguments
dirname Path to spaceranger outputs of spatial pipeline, i.e., "outs/spatial". This direc-
tory must contain a file for the spot positions at tissue_positions_list.csv
(before Space Ranger V2.0) or tissue_positions.csv (since Space Ranger
V2.0).
Value

Data frame of spot positions.

14 .select_subspot_positions

.select_spot_positions
Helper to extract x, v, fill ID from colData

Description

Helper to extract x, y, fill ID from colData

Usage

.select_spot_positions(
cdata,
x = "array_col”,
y = "array_row",
fill = "spatial.cluster”

Value

Dataframe of (x.pos, y.pos, fill) for each spot

.select_subspot_positions
Helper to pull out subspot position columns Probably redundant with
select_spot_positions above, but we need subspot.idx

Description

Helper to pull out subspot position columns Probably redundant with select_spot_positions above,
but we need subspot.idx

Usage

.select_subspot_positions(
cdata,
x = "spot.col”,
y = "spot.row",
fill = "spatial.cluster”

Value

Dataframe of (x.pos, y.pos, fill) for each spot

BayesSpace 15

BayesSpace BayesSpace: A package for processing spatial transcriptomes

Description
Tools for clustering and enhancing the resolution of spatial gene expression experiments. BayesS-
pace clusters a low-dimensional representation of the gene expression matrix, incorporating a spatial
prior to encourage neighboring spots to cluster together. The method can enhance the resolution of

the low-dimensional representation into "sub-spots"”, for which features such as gene expression or
cell type composition can be imputed.

Details
For an overview of the functionality provided by the package, please see the vignette: vignette("BayesSpace”,

package="BayesSpace")

Author(s)

Maintainer: Senbai Kang <senbai . kang@chuv.ch>

Authors:

e Edward Zhao <edward130603@gmail . com>

* Matt Stone <mstone@fredhutch.org>
Other contributors:
* Xing Ren <xren2@fredhutch.org> [contributor]

* Raphael Gottardo <rgottard@fredhutch.org> [contributor]

See Also

Useful links:

e edward130603.github.io/BayesSpace

* Report bugs at https://github.com/edward130603/BayesSpace/issues

edward130603.github.io/BayesSpace
https://github.com/edward130603/BayesSpace/issues

16

clusterPlot

cluster

Wrapper around C++ iterate_%() functions

Description

Wrapper around C++ iterate_*() functions

Usage

cluster(

Y,

qa,

df_j,

init = rep(1, nrow(Y)),

model = c("t", "normal"),

precision = c("equal”, "variable"”),
mu@ = colMeans(Y),

lambda® = diag(@.01, nrow = ncol(Y)),

gamma = 3,
alpha = 1,
beta = 9.01,
nrep = 1000,
thin = 100
)
Value

List of clustering parameter values at each iteration

clusterPlot

Plot spatial cluster assignments.

Description

Plot spatial cluster assignments.

Usage
clusterPlot(
sce,
label = "spatial.cluster”,

palette = NULL,

color
platform

NULL,

NULL,

is.enhanced = NULL,

clusterPlot

17

nsubspots.per.edge = 3,

Arguments

sce

label

palette

color

platform

is.enhanced

SingleCellExperiment. If fill is specified and is a string, it must exist as a
column in colData(sce).

Labels used to color each spot. May be the name of a column in colData(sce),
or a vector of discrete values.

Optional vector of hex codes to use for discrete spot values.

Optional hex code to set color of borders around spots. Set to NA to remove
borders.

Spatial sequencing platform. If "Visium", the hex spot layout will be used, oth-
erwise square spots will be plotted.

NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

True if sce contains subspot-level data instead of spots. Spatial sequencing
platform. If true, the respective subspot lattice for each platform will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

nsubspots.per.edge

Value

Number of subspots per edge of the square. Only valid when platformis ST’
or ’VisiumHD’.

Additional arguments for geom_polygon(). size, to specify the linewidth of
these borders, is likely the most useful.

Returns a ggplot object.

See Also

Other spatial plotting functions: featurePlot()

Examples

sce <- exampleSCE()

clusterPlot(sce)

18

enhanceFeatures

deconvolve

Wrapper around C++ iterate_deconv() function

Description

Wrapper around C++ iterate_deconv() function

Usage

deconvolve(
Y,
positions,
xdist,
ydist,
scalef,
qa,

spot_neighbors,

init,

nrep = 1000,

thin = 100,

model = "normal”,
platform = c("Visium”, "VisiumHD", "ST"),
nsubspots.per.edge = 3,
verbose = TRUE,
jitter.scale = 5,
jitter.prior = 0.01,
adapt.before = 100,

mu@ = colMeans(Y),

gamma = 2,
lambda® = diag(@.01, nrow = ncol(Y)),
alpha = 1,
beta = 0.01,
cores = 1
)
Value

List of enhancement parameter values at each iteration

enhanceFeatures

Predict feature vectors from enhanced PCs.

Description

Predict feature vectors from enhanced PCs.

enhanceFeatures 19

Usage

enhanceFeatures(
sce.enhanced,
sce.ref,
feature_names = NULL,
model = c("xgboost”, "dirichlet”, "1m"),
use.dimred = "PCA",
assay.type = "logcounts”,
altExp.type = NULL,
feature.matrix = NULL,
nrounds = 0,
train.n = round(ncol(sce.ref) x 2/3)

Arguments

sce.enhanced SingleCellExperiment object with enhanced PCs.
sce.ref SingleCellExperiment object with original PCs and expression.

feature_names List of genes/features to predict expression/values for.

model Model used to predict enhanced values.

use.dimred Name of dimension reduction to use.

assay.type Expression matrix in assays(sce.ref) to predict.

altExp.type Expression matrix in altExps(sce.ref) to predict. Overrides assay. type if
specified.

feature.matrix Expression/feature matrix to predict, if not directly attached to sce.ref. Must
have columns corresponding to the spots in sce.ref. Overrides assay. type
and altExp. type if specified.

nrounds Nonnegative integer to set the nrounds parameter (max number of boosting
iterations) for xgboost. nrounds = 100 works reasonably well in most cases.
If nrounds is set to 0, the parameter will be tuned using a train-test split. We
recommend tuning nrounds for improved feature prediction, but note this will
increase runtime.

train.n Number of spots to use in the training dataset for tuning nrounds. By default,
2/3 the total number of spots are used.

Details

Enhanced features are computed by fitting a predictive model to a low-dimensional representation
of the original expression vectors. By default, a linear model is fit for each gene using the top 15
principal components from each spot, i.e. Im(gene ~ PCs), and the fitted model is used to predict
the enhanced expression for each gene from the subspots’ principal components.

Diagnostic measures, such as RMSE for xgboost or R.squared for linear regression, are added to
the ‘rowData‘ of the enhanced experiment if the features are an assay of the original experiment.
Otherwise they are stored as an attribute of the returned matrix/altExp.

Note that feature matrices will be returned and are expected to be input as p X n matrices of p-
dimensional feature vectors over the n spots.

20 exampleSCE

Value

If assay. type or altExp. type are specified, the enhanced features are stored in the corresponding
slot of sce.enhanced and the modified SingleCellExperiment object is returned.

If feature.matrix is specified, or if a subset of features are requested, the enhanced features are
returned directly as a matrix.

Examples

set.seed(149)

sce <- exampleSCE()

sce <- spatialCluster(sce, 7, nrep=100, burn.in=10)

enhanced <- spatialEnhance(sce, 7, init=sce$spatial.cluster, nrep=100, burn.in=10)

enhanced <- enhanceFeatures(enhanced, sce, feature_names=c("gene_1", "gene_2"))
exampleSCE Create minimal SingleCellExperiment for documentation exam-
ples.
Description

Create minimal SingleCellExperiment for documentation examples.

Usage
exampleSCE(nrow = 8, ncol = 12, n_genes = 100, n_PCs = 10)

Arguments

nrow Number of rows of spots

ncol Number of columns of spots

n_genes Number of genes to simulate

n_PCs Number of principal components to include
Details

Inspired by scuttle’s mockSCE().

Value

A SingleCellExperiment object with simulated counts, corresponding logcounts and PCs, and posi-
tional data in colData. Spots are distributed over an (nrow x ncol) rectangle.

Examples

set.seed(149)
sce <- exampleSCE()

featurePlot

21

featurePlot

Plot spatial gene expression.

Description

Plot spatial gene expression.

Usage

featurePlot(
sce,
feature,

assay.type = "logcounts”,

diverging = FALSE,

low = NULL,

high = NULL,

mid = NULL,

color = NULL,

platform = NULL,
is.enhanced = NULL,
nsubspots.per.edge = 3,

Arguments

sce

feature

assay.type

diverging

low, mid, high

color

platform

is.enhanced

SingleCellExperiment. If feature is specified and is a string, it must exist as a
row in the specified assay of sce.

Feature vector used to color each spot. May be the name of a gene/row in an
assay of sce, or a vector of continuous values.

String indicating which assay in sce the expression vector should be taken from.

If true, use a diverging color gradient in featurePlot() (e.g. when plotting a
fold change) instead of a sequential gradient (e.g. when plotting expression).

Optional hex codes for low, mid, and high values of the color gradient used for
continuous spot values.

Optional hex code to set color of borders around spots. Set to NA to remove
borders.

Spatial sequencing platform. If "Visium", the hex spot layout will be used, oth-
erwise square spots will be plotted.

NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

True if sce contains subspot-level data instead of spots. Spatial sequencing
platform. If true, the respective subspot lattice for each platform will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

22 find_neighbors

nsubspots.per.edge

Number of subspots per edge of the square. Only valid when platformis ’ST’
or ’VisiumHD’.

Additional arguments for geom_polygon(). size, to specify the linewidth of
these borders, is likely the most useful.
Value

Returns a ggplot object.

See Also

Other spatial plotting functions: clusterPlot()

Examples

sce <- exampleSCE()
featurePlot(sce, "gene_2")

find_neighbors Compute pairwise distances between all spots and return list of neigh-
bors for each spot.

Description

Compute pairwise distances between all spots and return list of neighbors for each spot.

Usage
find_neighbors(positions, radius, method = c("manhattan”, "euclidean"))
Arguments
positions (n x 2) matrix of spot coordinates.
radius The maximum distance for two spots to be considered neighbors.
method Distance metric to use.
Value

List df_j, where df_j[[i]] is a vector of zero-indexed neighbors of i.

getRDS 23

getRDS Download a processed sample from our S3 bucket

Description

Datasets are cached locally using BiocFileCache. The first time using this function, you may need
to consent to creating a BiocFileCache directory if one does not already exist.

Usage

getRDS(dataset, sample, cache = TRUE)

Arguments
dataset Dataset identifier
sample Sample identifier
cache If true, cache the dataset locally with BiocFileCache. Otherwise, download
directly from our S3 bucket. Caching saves time on subsequent loads, but con-
sumes disk space.
Details

The following datasets are available via getRDS.

Dataset Sample(s)

2018_thrane_melanoma ST_mell_rep2

2020_maynard_prefrontal-cortex 151507, 151508, 151509, 151510, 151669, 151670, 151671, 151672, 151673, 151674, 1
2020_ji_squamous-cell-carcinoma P4_repl

2020_10X-IDC IDC1

2020 _10X-demo_ovarian-cancer whole_transcriptome

Value

sce A SingleCellExperiment with positional information in colData and PCs based on the top 2000
HVGs

Examples

sce <- getRDS("2018_thrane_melanoma”, "ST_mell_rep2"”, cache = FALSE)

24 mcmcChain

mcmcChain Read MCMC chain associated with a BayesSpace clustering or en-
hancement

Description

BayesSpace stores the MCMC chain associated with a clustering or enhancement on disk in an
HDFS5 file. The memcChain() function reads any parameters specified by the user into a coda: :memc
object compatible with TidyBayes.

Usage

mcmcChain(sce, params = NULL)

removeChain(sce)

Arguments
sce SingleCellExperiment with a file path stored in its metadata.
params List of model parameters to read

Details

To interact with the HDFS file directly, obtain the filename from the SingleCellExperiment’s meta-
data: metadata(sce)$chain.h5. Each parameter is stored as a separate dataset in the file, and
is represented as a matrix of size (n_iterations X n_parameter_indices). Parameter choices for the
spot-level clustering include:

* z (cluster assignments)

e weights (w;)

* mu (mean vectors)

* lambda (precision matrix)

* ploglLik (pseudo-log-likelihood)
Parameter choices for the subspot-level enhanced clustering include:

* z (cluster assignments)

e weights (w;)

* Y (enhanced PCs)

* mu (mean vectors)

* lambda (precision matrix)

* Ychange (acceptance rate for the jittering of PCs)

For best results, Ychange should average between 0.25 and 0.40.

Mode

Value

25

Returns an mcmc object containing the values of the requested parameters over the constructed chain.

Examples

set.seed(149)

sce <- exampleSCE()

sce <- spatialCluster(sce, 7, nrep=100, burn.in=10, save.chain=TRUE)
chain <- mcmcChain(sce)

removeChain(sce)

Mode Find the mode

Description

Used for finding the most frequent cluster for each z

Usage
Mode (x)

Arguments

X Numeric vector

Value

mode Numeric scalar, most frequent element in x

parallelize Parallelization

Description

A convenient wrapper function of BiocParallel providing easy parallelization.

Usage

paraLapply(
X,
FUN,
BPPARAM = NULL,
cores = 1L,
type = c("serial”, "fork"”, "sock"),
verbose = FALSE,

26 qTune

Arguments
X Any object for which methods length, [, and [[are implemented (passed to
bplapply).
FUN The function to be applied to each element of X (passed to bplapply).
BPPARAM An optional BiocParallelParam instance determining the parallel back-end
to be used during evaluation, or a list of BiocParallelParam instances, to be
applied in sequence for nested calls to BiocParallel functions.
cores The number of threads to use. The results are invariate to the value of cores.
type One of "serial", "fork", or "sock". When cores is one, type is always "serial".
Both "fork" and "sock" are for multi-threading. "fork" is faster, but only supports
linux and macos. "sock" supports linux, macos, and windows.
verbose Whether to print debug information or not.
Additional parameters passed to bplapply.
Value
See lapply.
gTune Tuning the choice of q (number of clusters) before running spatial-
Cluster
Description

Before running spatialCluster(), we recommend tuning the choice of g by choosing the g that
minimizes the model’s negative log likelihood over early iterations. gTune () computes the average
negative log likelihood for a range of q values over iterations 100:1000, and gqPlot() displays the

results.
Usage

gPlot(sce, gs = seq(3, 7), force.retune = FALSE, ...)

gTune(sce, gs = seq(3, 7), burn.in = 100, nrep = 1000, cores = 1L, ...)
Arguments

sce A SingleCellExperiment object containing the spatial data.

gs The values of q to evaluate.

force.retune If specified, existing tuning values in sce will be overwritten.
Other parameters are passed to spatialCluster().
burn.in,nrep Integers specifying the range of repetitions to compute.

cores The number of threads to use. The results are invariate to the value of cores.

readVisium 27

Details

qTune () takes the same parameters as spatialCluster () and will run the MCMC clustering algo-
rithm up to nrep iterations for each value of q. The first burn. in iterations are discarded as burn-in
and the log likelihood is averaged over the remaining iterations.

gPlot() plots the computed negative log likelihoods as a function of q. If qTune() was run pre-
viously, i.e. there exists an attribute of sce named "q.logliks"”, the pre-computed results are
displayed. Otherwise, or if force.retune is specified, gplot () will automatically run qTune()
before plotting (and can take the same parameters as spatialCluster().

Value

gTune () returns a modified sce with tuning log likelihoods stored as an attribute named "q.logliks".

gPlot () returns a ggplot object.

Examples

set.seed(149)

sce <- exampleSCE()

sce <- qTune(sce, seq(3, 7), burn.in = 10, nrep = 100)
gPlot(sce)

readVisium Load a Visium spatial dataset as a SingleCellExperiment.

Description

Load a Visium spatial dataset as a SingleCellExperiment.

Usage

readVisium(

dirname,

rm.feats.pat = c(”"*NegControl.*", "~BLANK.*",6 "~DEPRECATED.*")
)

read10Xh5(

dirname,

fname = "filtered_feature_bc_matrix.h5",

rm.feats.pat = c(”"*NegControl.*", "*BLANK.*" 6 "~DEPRECATED.*")
)

counts2h5(dirname)

28 spatialCluster

Arguments

dirname Path to spaceranger output directory (e.g. "sampleID/outs/"). This directory
must contain the counts matrix and feature/barcode TSVsin filtered_feature_bc_matrix/
for readVisium, or in filtered_feature_bc_matrix.h5 for read10Xh5. Be-
sides, it must also contain a file for spot positions named spatial/tissue_positions_list.csv
(before Space Ranger V2.0) or spatial/tissue_positions.csv (since Space
Ranger V2.0), as well as a file containing scale factors named spatial/scalefactors_json. json.
(To understand the output directory, refer to the corresponding 10X Genomics

help page.)
rm.feats.pat Patterns for features (genes) to remove.

fname File name of the h5 file. It should be inside dirname. (By default "filtered_feature_bc_matrix.h5")

Details

We store two variables associated with downstream BayesSpace functions in a list called BayesSpace . data
in the SingleCellExperiment’s metadata.

* platformis set to "Visium", and is used to determine spot layout and neighborhood structure.

* is.enhanced is set to FALSE to denote the object contains spot-level data.

Value

SingleCellExperiment containing the counts matrix in counts and spatial data in colData. Array
coordinates for each spot are stored in columns array_row and array_col, while image coordi-
nates are stored in columns px1_row_in_fullres and pxl_col_in_fullres.

Examples

Not run:
sce <- readVisium("path/to/outs/")

End(Not run)

spatialCluster Spatial clustering

Description

Cluster a spatial expression dataset.

https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/output/overview
https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/output/overview

spatialCluster 29

Usage

spatialCluster(
sce,
q,
use.dimred = "PCA",
d = 15,
platform = c("Visium”, "VisiumHD", "ST"),
init = NULL,
init.method = c("mclust”, "kmeans"),
model = c("t", "normal”),
precision = c("equal”, "variable"),
nrep = 50000,
burn.in = 1000,
thin = 100,
gamma = NULL,
mu@ = NULL,
lambda®@ = NULL,
alpha = 1,
beta = 0.01,

save.chain = FALSE,
chain.fname = NULL

)
Arguments

sce A SingleCellExperiment object containing the spatial data.

q The number of clusters.

use.dimred Name of a reduced dimensionality result in reducedDims(sce). If provided,
cluster on these features directly.

d Number of top principal components to use when clustering.

platform Spatial transcriptomic platform. Specify ’Visium’ for hex lattice geometry or
ST’ and *VisiumHD’ for square lattice geometry. Specifying this parameter is
optional when analyzing SingleCellExperiments processed using readVisium,
spatialPreprocess, or spatialCluster, as this information is included in
their metadata.

init Initial cluster assignments for spots.

init.method If init is not provided, cluster the top d PCs with this method to obtain initial
cluster assignments.

model Error model. ("normal’ or ’t’)

precision Covariance structure. ("equal’ or ’variable’ for EEE and VVV covariance mod-
els, respectively.)

nrep The number of MCMC iterations.
burn.in The number of MCMC iterations to exclude as burn-in period.

thin Thinning rate.

30 spatialEnhance

gamma Smoothing parameter. Defaults to 2 for platform="ST" and 3 for platform="Visium".
(Values in range of 1-3 seem to work well.)

mu@ Prior mean hyperparameter for mu. If not provided, mu0 is set to the mean of
PCs over all spots.

lambda@ Prior precision hyperparam for mu. If not provided, lambda0 is set to a diagonal
matrix 0.017.

alpha Hyperparameter for Wishart distributed precision lambda.

beta Hyperparameter for Wishart distributed precision lambda.

save.chain If true, save the MCMC chain to an HDF5 file.

chain.fname File path for saved chain. Tempfile used if not provided.

Details

The input SCE must have row and col columns in its colData, corresponding to the array row and
column coordinates of each spot. These are automatically parsed by readVisium or can be added
manually when creating the SCE.

Cluster labels are stored in the spatial.cluster column of the SCE, and the cluster initialization
is stored in cluster.init.

Value

Returns a modified sce with cluster assignments stored in colData under the name spatial.cluster.

See Also

spatialPreprocess for preparing the SCE for clustering, spatialEnhance for enhancing the
clustering resolution, clusterPlot for visualizing the cluster assignments, featurePlot for vi-
sualizing expression levels in spatial context, and mcmcChain for examining the full MCMC chain
associated with the clustering.

Examples

set.seed(149)
sce <- exampleSCE()
sce <- spatialCluster(sce, 7, nrep = 100, burn.in = 10)

spatialEnhance Enhance spot resolution

Description

Enhanced clustering of a spatial expression dataset to subspot resolution.

spatialEnhance

Usage

spatialEnhance(

sce,
q,

31

platform = c("Visium”, "VisiumHD", "ST"),

use.dimred =
d =15,

IIPCAII ,

nsubspots.per.edge = 3,

init = NULL,

init.method =

c("spatialCluster”, "mclust”, "kmeans"),

model = c("t", "normal”),

nrep = le+@5,
gamma = NULL,

mu@ = NULL,

lambda@ = NULL,

alpha = 1,
beta = 0.01,
save.chain =

chain.fname =

FALSE,
NULL,

burn.in = 10000,

thin = 100,

jitter.scale = 5,
jitter.prior = 0.3,
adapt.before = burn.in,
cores =1,
verbose = FALSE
)
coreTune(sce, test.cores = detectCores(), test.times =1, ...)

adjustClusterLabels(sce, burn.in)

Arguments

sce

q
platform

use.dimred

d

A SingleCellExperiment object containing the spatial data.
The number of clusters.

Spatial transcriptomic platform. Specify ’Visium’ for hex lattice geometry or
ST’ and *VisiumHD’ for square lattice geometry. Specifying this parameter is
optional when analyzing SingleCellExperiments processed using readVisium,
spatialPreprocess, or spatialCluster, as this information is included in
their metadata.

Name of a reduced dimensionality result in reducedDims(sce). If provided,
cluster on these features directly.

Number of top principal components to use when clustering.

nsubspots.per.edge

Number of subspots per edge of the square. Only valid when platformis ST’
or ’VisiumHD”.

32

init

init.method

model
nrep
gamma

mu@

lambda®

alpha
beta
save.chain
chain. fname

burn.in

thin

jitter.scale

jitter.prior

adapt.before

cores
verbose
test.cores

test.times

Details

spatialEnhance

Initial cluster assignments for spots.

If init is not provided, cluster the top d PCs with this method to obtain initial
cluster assignments.

Error model. "normal’ or ’t”)
The number of MCMC iterations.
Smoothing parameter. (Values in range of 1-3 seem to work well.)

Prior mean hyperparameter for mu. If not provided, mu0 is set to the mean of
PCs over all spots.

Prior precision hyperparam for mu. If not provided, lambda0 is set to a diagonal
matrix 0.011.

Hyperparameter for Wishart distributed precision lambda.
Hyperparameter for Wishart distributed precision lambda.
If true, save the MCMC chain to an HDFS file.

File path for saved chain. Tempfile used if not provided.

Number of iterations to exclude as burn-in period. The MCMC iterations are
currently thinned to every 100; accordingly burn.in is rounded down to the
nearest multiple of 100. If a value no larger than 1 is set, it is considered as a
percentage. It is always considered as percentage for adjustClusterLabels.

Thinning rate.

Controls the amount of jittering. Small amounts of jittering are more likely to
be accepted but result in exploring the space more slowly. We suggest tuning
jitter.scale sothat Ychange is on average around 25%-40%. Ychange can be
accessed viamemcChain(). Alternatively, set it to O to activate adaptive MCMC.

Scale factor for the prior variance, parameterized as the proportion (default =
0.3) of the mean variance of the PCs. We suggest making jitter.prior smaller
if the jittered values are not expected to vary much from the overall mean of the
spot.

Adapting the MCMC chain before the specified number or proportion of itera-
tions (by default equal to burn. in; set to 0 to always adapt). Only valid when
jitter.scaleisO.

The number of threads to use. The results are invariate to the value of cores.
Log progress to stderr.

Either a list of, or a maximum number of cores to test. In the latter case, a list of
values (power of 2) will be created

Times to repeat the benchmarking with microbenchmark.

Arguments for spatialEnhance (except for cores).

The enhanced SingleCellExperiment has most of the properties of the input SCE - rowData,
colData, reducedDims - but does not include expression data in counts or logcounts. To impute
enhanced expression vectors, please use [enhanceFeatures()] after running spatialEnhance.

The colData of the enhanced SingleCellExperiment includes the following columns to permit
referencing the subspots in spatial context and linking back to the original spots:

spatialPlot 33

* spot.idx: Index of the spot this subspot belongs to (with respect to the input SCE).
* subspot.idx: Index of the subspot within its parent spot.

* spot.row: Array row of the subspot’s parent spot.

* spot.col: Array col of the subspot’s parent spot.

e array_row: Array row of the subspot. This is the parent spot’s row plus an offset based on
the subspot’s position within the spot.

e array_col: Array col of the subspot. This is the parent spot’s col plus an offset based on the
subspot’s position within the spot.

e pxl_row_in_fullres: Pixel row of the subspot. This is the parent spot’s row plus an offset
based on the subspot’s position within the spot.

e pxl_col_in_fullres: Pixel col of the subspot. This is the parent spot’s col plus an offset
based on the subspot’s position within the spot.

Value

spatialEnhance returns a new SingleCellExperiment object. By default, the assays of this object
are empty, and the enhanced resolution PCs are stored as a reduced dimensionality result accessible
with reducedDim(sce, '"PCA").

coresTune returns the output of microbenchmark.

adjustClusterLabels adjusts the cluster labels from the MCMC samples via burn.in, the per-
centage of samples to drop. The MCMC chain must be retained.

See Also

spatialCluster for clustering at the spot level before enhancing, clusterPlot for visualizing
the cluster assignments, enhanceFeatures for imputing enhanced expression, and mcmcChain for
examining the full MCMC chain associated with the enhanced clustering. .

Examples

set.seed(149)

sce <- exampleSCE()

sce <- spatialCluster(sce, 7, nrep = 100, burn.in = 10)
enhanced <- spatialEnhance(sce, 7, nrep = 100, burn.in = 10)

spatialPlot Spatial plotting functions

Description

Spatial plotting functions

34 spatialPreprocess

Arguments

color Optional hex code to set color of borders around spots. Set to NA to remove
borders.
Additional arguments for geom_polygon(). size, to specify the linewidth of
these borders, is likely the most useful.

platform Spatial sequencing platform. If "Visium", the hex spot layout will be used, oth-
erwise square spots will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

is.enhanced True if sce contains subspot-level data instead of spots. Spatial sequencing

platform. If true, the respective subspot lattice for each platform will be plotted.
NOTE: specifying this argument is only necessary if sce was not created by
spatialCluster() or spatialEnhance().

nsubspots.per.edge
Number of subspots per edge of the square. Only valid when platformis ’ST’
or *VisiumHD’.

spatialPreprocess Preprocess a spatial dataset for BayesSpace

Description

Adds metadata required for downstream analyses, and (optionally) performs PCA on log-normalized
expression of top HVGs.

Usage

spatialPreprocess(
sce,
platform = c("Visium”, "VisiumHD", "ST"),
n.PCs = 15,
n.HVGs = 2000,
skip.PCA = FALSE,
log.normalize = TRUE,
assay.type = "logcounts”,
BSPARAM = ExactParam(),
BPPARAM = SerialParam()

)
Arguments
sce SingleCellExperiment to preprocess
platform Spatial sequencing platform. Used to determine spot layout and neighborhood

structure (Visium = hex, VisiumHD = square, ST = square).

spatialPreprocess

n.PCs

n.HVGs
skip.PCA

log.normalize

assay. type

BSPARAM

BPPARAM

Value

35

Number of principal components to compute. We suggest using the top 15 PCs
in most cases.

Number of highly variable genes to run PCA upon.
Skip PCA (if dimensionality reduction was previously computed.)

Whether to log-normalize the input data with scater. May be omitted if log-
normalization previously computed.

Name of assay in sce containing normalized counts. Leave as "logcounts" un-
less you explicitly pre-computed a different normalization and added it to sce
under another assay. Note that we do not recommend running BayesSpace on
PCs computed from raw counts.

A BiocSingularParam object specifying which algorithm should be used to per-
form the PCA. By default, an exact PCA is performed, as current spatial datasets
are generally small (<10,000 spots). To perform a faster approximate PCA,
please specify FastAutoParam() and set a random seed to ensure reproducibil-
ity.

A BiocParallelParam object specifying whether to model the gene variation in
parallel or not (default to SerialParam()). To perform faster modeling, please
specify SnowParam() or MulticoreParam().

SingleCellExperiment with PCA and BayesSpace metadata

Examples

sce <- exampleSCE()
sce <- spatialPreprocess(sce)

Index

* internal
.adjust_hex_centers, 3
.bsData, 3
.clean_chain, 4
.compute_interspot_distances, 4
.extract_indices, 5
.find_neighbors, 5
.flatten_matrix_list, 6
.flip_axis, 6
.infer_param_dims, 7
.init_cluster, 7
.list2vec, 8
.make_hex_spots, 8
.make_index_names, 9
.make_spot_vertices, 9
.make_square_spots, 10
.make_subspot_coldata, 11
.make_subspots, 10
.make_triangle_subspots, 11
.make_vertices, 12
.prepare_inputs, 12
.read_chain, 13
.read_spot_pos, 13
.select_spot_positions, 14
.select_subspot_positions, 14
BayesSpace, 15
cluster, 16
deconvolve, 18
find_neighbors, 22
Mode, 25
spatialPlot, 33

+ spatial plotting functions
clusterPlot, 16
featurePlot, 21

.adjust_hex_centers, 3

.bsData, 3

.clean_chain, 4

.compute_interspot_distances, 4

.extract_indices, 5

36

.find_neighbors, 5
.flatten_matrix_list, 6
.flip_axis, 6
.infer_param_dims, 7
.init_cluster, 7
.list2vec, 8
.make_hex_spots, 8
.make_index_names, 9
.make_spot_vertices, 9
.make_square_spots, 10
.make_subspot_coldata, 11
.make_subspots, 10
.make_triangle_subspots, 11
.make_vertices, 12
.prepare_inputs, 12
.read_chain, 13
.read_spot_pos, 13
.select_spot_positions, 14
.select_subspot_positions, 14

adjustClusterLabels (spatialEnhance), 30

BayesSpace, 15

BayesSpace-package (BayesSpace), 15
BiocParallelParam, 35
BiocSingularParam, 35

cluster, 16
clusterPlot, 16, 22, 30, 33
coreTune (spatialEnhance), 30
counts2h5 (readVisium), 27

deconvolve, 18

enhanceFeatures, 18, 33
exampleSCE, 20

featurePlot, 17,21, 30
find_neighbors, 22

getRDS, 23

INDEX

mcmeChain, 24, 30, 33
Mode, 25

paralLapply (parallelize), 25
parallelize, 25

gPlot (qTune), 26
gTune, 26

read10Xh5 (readVisium), 27
readVisium, 27, 29-31
removeChain (mcmcChain), 24

spatialCluster, 28, 29, 31, 33
spatialEnhance, 30, 30
spatialPlot, 33
spatialPreprocess, 29-31, 34

37

	.adjust_hex_centers
	.bsData
	.clean_chain
	.compute_interspot_distances
	.extract_indices
	.find_neighbors
	.flatten_matrix_list
	.flip_axis
	.infer_param_dims
	.init_cluster
	.list2vec
	.make_hex_spots
	.make_index_names
	.make_spot_vertices
	.make_square_spots
	.make_subspots
	.make_subspot_coldata
	.make_triangle_subspots
	.make_vertices
	.prepare_inputs
	.read_chain
	.read_spot_pos
	.select_spot_positions
	.select_subspot_positions
	BayesSpace
	cluster
	clusterPlot
	deconvolve
	enhanceFeatures
	exampleSCE
	featurePlot
	find_neighbors
	getRDS
	mcmcChain
	Mode
	parallelize
	qTune
	readVisium
	spatialCluster
	spatialEnhance
	spatialPlot
	spatialPreprocess
	Index

