A common application of single-cell RNA sequencing (RNA-seq) data is
to identify discrete cell types. To take advantage of the large collection
of well-annotated scRNA-seq datasets, scClassify
package implements
a set of methods to perform accurate cell type classification based on
ensemble learning and sample size calculation.
This vignette will provide an example showing how users can use a pretrained
model of scClassify to predict cell types. A pretrained model is a
scClassifyTrainModel
object returned by train_scClassify()
.
A list of pretrained model can be found in
https://sydneybiox.github.io/scClassify/index.html.
First, install scClassify
, install BiocManager
and use
BiocManager::install
to install scClassify
package.
# installation of scClassify
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("scClassify")
We assume that you have log-transformed (size-factor normalized) matrices as query datasets, where each row refers to a gene and each column a cell. For demonstration purposes, we will take a subset of single-cell pancreas datasets from one independent study (Wang et al.).
library(scClassify)
data("scClassify_example")
wang_cellTypes <- scClassify_example$wang_cellTypes
exprsMat_wang_subset <- scClassify_example$exprsMat_wang_subset
exprsMat_wang_subset <- as(exprsMat_wang_subset, "dgCMatrix")
Here, we load our pretrained model using a subset of the Xin et al. human pancreas dataset as our reference data.
First, let us check basic information relating to our pretrained model.
data("trainClassExample_xin")
trainClassExample_xin
#> Class: scClassifyTrainModel
#> Model name: training
#> Feature selection methods: limma
#> Number of cells in the training data: 674
#> Number of cell types in the training data: 4
In this pretrained model, we have selected the genes based on Differential Expression using limma. To check the genes that are available in the pretrained model:
features(trainClassExample_xin)
#> [1] "limma"
We can also visualise the cell type tree of the reference data.
plotCellTypeTree(cellTypeTree(trainClassExample_xin))
Next, we perform predict_scClassify
with our pretrained model
trainRes = trainClassExample
to predict the cell types of our
query data matrix exprsMat_wang_subset_sparse
. Here,
we used pearson
and spearman
as similarity metrics.
pred_res <- predict_scClassify(exprsMat_test = exprsMat_wang_subset,
trainRes = trainClassExample_xin,
cellTypes_test = wang_cellTypes,
algorithm = "WKNN",
features = c("limma"),
similarity = c("pearson", "spearman"),
prob_threshold = 0.7,
verbose = TRUE)
#> Performing unweighted ensemble learning...
#> Using parameters:
#> similarity algorithm features
#> "pearson" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.704590818 0.239520958 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.000000000 0.051896208 0.003992016
#> Using parameters:
#> similarity algorithm features
#> "spearman" "WKNN" "limma"
#> [1] "Using dynamic correlation cutoff..."
#> [1] "Using dynamic correlation cutoff..."
#> classify_res
#> correct correctly unassigned intermediate
#> 0.702594810 0.013972056 0.000000000
#> incorrectly unassigned error assigned misclassified
#> 0.001996008 0.277445110 0.003992016
#> weights for each base method:
#> [1] NA NA
Noted that the cellType_test
is not a required input.
For datasets with unknown labels, users can simply leave it
as cellType_test = NULL
.
Prediction results for pearson as the similarity metric:
table(pred_res$pearson_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 0
#> beta 0 0 118 0 1 0 0
#> beta_delta_gamma 0 0 0 0 25 0 0
#> delta 0 0 0 10 0 0 0
#> gamma 0 0 0 0 0 19 0
#> unassigned 5 0 0 0 70 0 45
Prediction results for spearman as the similarity metric:
table(pred_res$spearman_WKNN_limma$predRes, wang_cellTypes)
#> wang_cellTypes
#> acinar alpha beta delta ductal gamma stellate
#> alpha 0 206 0 0 0 2 2
#> beta 2 0 118 0 29 0 6
#> beta_delta_gamma 1 0 0 0 66 0 31
#> delta 0 0 0 10 0 0 2
#> gamma 0 0 0 0 0 18 0
#> unassigned 2 0 0 0 1 1 4
sessionInfo()
#> R version 4.5.1 Patched (2025-08-23 r88802)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] scClassify_1.21.0 BiocStyle_2.37.1
#>
#> loaded via a namespace (and not attached):
#> [1] gridExtra_2.3 rlang_1.1.6
#> [3] magrittr_2.0.4 matrixStats_1.5.0
#> [5] compiler_4.5.1 mgcv_1.9-3
#> [7] DelayedMatrixStats_1.31.0 vctrs_0.6.5
#> [9] reshape2_1.4.4 stringr_1.5.2
#> [11] pkgconfig_2.0.3 crayon_1.5.3
#> [13] fastmap_1.2.0 magick_2.9.0
#> [15] XVector_0.49.1 labeling_0.4.3
#> [17] ggraph_2.2.2 rmarkdown_2.30
#> [19] tinytex_0.57 purrr_1.1.0
#> [21] xfun_0.53 cachem_1.1.0
#> [23] jsonlite_2.0.0 rhdf5filters_1.21.0
#> [25] DelayedArray_0.35.3 Rhdf5lib_1.31.0
#> [27] BiocParallel_1.43.4 tweenr_2.0.3
#> [29] parallel_4.5.1 cluster_2.1.8.1
#> [31] R6_2.6.1 bslib_0.9.0
#> [33] stringi_1.8.7 RColorBrewer_1.1-3
#> [35] limma_3.65.5 diptest_0.77-2
#> [37] GenomicRanges_1.61.5 jquerylib_0.1.4
#> [39] Rcpp_1.1.0 Seqinfo_0.99.2
#> [41] bookdown_0.45 SummarizedExperiment_1.39.2
#> [43] knitr_1.50 mixtools_2.0.0.1
#> [45] IRanges_2.43.5 Matrix_1.7-4
#> [47] splines_4.5.1 igraph_2.1.4
#> [49] tidyselect_1.2.1 dichromat_2.0-0.1
#> [51] abind_1.4-8 yaml_2.3.10
#> [53] hopach_2.69.0 viridis_0.6.5
#> [55] codetools_0.2-20 minpack.lm_1.2-4
#> [57] Cepo_1.15.0 lattice_0.22-7
#> [59] tibble_3.3.0 plyr_1.8.9
#> [61] Biobase_2.69.1 withr_3.0.2
#> [63] S7_0.2.0 evaluate_1.0.5
#> [65] survival_3.8-3 proxy_0.4-27
#> [67] polyclip_1.10-7 kernlab_0.9-33
#> [69] pillar_1.11.1 BiocManager_1.30.26
#> [71] MatrixGenerics_1.21.0 stats4_4.5.1
#> [73] plotly_4.11.0 generics_0.1.4
#> [75] S4Vectors_0.47.4 ggplot2_4.0.0
#> [77] sparseMatrixStats_1.21.0 scales_1.4.0
#> [79] glue_1.8.0 lazyeval_0.2.2
#> [81] proxyC_0.5.2 tools_4.5.1
#> [83] data.table_1.17.8 graphlayouts_1.2.2
#> [85] tidygraph_1.3.1 rhdf5_2.53.5
#> [87] grid_4.5.1 tidyr_1.3.1
#> [89] SingleCellExperiment_1.31.1 nlme_3.1-168
#> [91] patchwork_1.3.2 ggforce_0.5.0
#> [93] HDF5Array_1.37.0 cli_3.6.5
#> [95] segmented_2.1-4 S4Arrays_1.9.1
#> [97] viridisLite_0.4.2 dplyr_1.1.4
#> [99] gtable_0.3.6 sass_0.4.10
#> [101] digest_0.6.37 BiocGenerics_0.55.1
#> [103] SparseArray_1.9.1 ggrepel_0.9.6
#> [105] htmlwidgets_1.6.4 farver_2.1.2
#> [107] memoise_2.0.1 htmltools_0.5.8.1
#> [109] lifecycle_1.0.4 h5mread_1.1.1
#> [111] httr_1.4.7 statmod_1.5.0
#> [113] MASS_7.3-65