iBMQ: An Integrated Hierarchical Bayesian Model for
Multivariate eQTL Mapping

Greg Imholte, MariePier Scott-Boyer, Aurélie Labbe,
Christian F. Deschepper and Raphaél Gottardo

October 7, 2025

1 Download

iBMQ is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation. For citation purposes,
please refer to the first reference in the bibliography.

To install this package, start R and enter:
if (IrequireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager")
BiocManager::install("iBMQ").

In order to properly compile iBMQ, the GNU Scientific Library (GSL) is required. GSL is free
and can be downloaded at http://www.gnu.org/software/gsl/ . A tutorial on how to configure
and use GSL and R can be found at http://wiki.rglab.org/ . For calculations with multiple
processors (Mac or Linux only), OpenMP needs also to be installed (http://openmp.org/wp/).

2 Introduction

Recently, mapping studies of expression quantitative loci (eQTL), where expression levels
of thousands of genes are viewed as quantitative traits, have been used to provide greater
insight into the biology of gene regulation. Current data analyses and interpretation of eQTL
studies involve the use of multiple methods and applications, the output of which is often
fragmented. We present an integrated hierarchical Bayesian model that jointly models all
genes and genomic markers (the most common ones being single nucleotide polymorphisms
(SNPs)) to detect eQTLs. We propose a model (named iBMQ) that is specifically designed
to handle a large number G of gene expressions, a large number S of regressors (genetic
markers) and a small number n of individuals in what we call a large G, large S, small n
paradigm [I]. This method incorporates genotypic and gene expression data into a single
model while 1) specifically coping with the high dimensionality of eQTL data (large number
of genes), 2) borrowing strength from all gene expression data for the mapping procedures,
and 3) controlling the number of false positives to a desirable level. One distinct feature of
our model is that we calculate one weight parameter for each Gene g and each SNP j.

3 Formatting the data

The next subsection describes how to format data. To run the eQTL analysis, two types of
data are required: a genotype data frame and an expression data frame. To visualize the data,
we also need a data frame with the genomic positions of each SNP and of each gene/probe.

3.1 The genotypes

Each genotype needs to be a SnpSet object from the Biobase package. When using data where
each member of the population is homozygous at each position (such as for recombinant inbred
strains (RIS): see example 1), the genotype must be coded with 0 and 1. When using data
where each member may be homozygous or heterozygous (such as example 2) the genotypes
must be coded 1, 2 or 3 and the parameter “RIS” of the eqt]Mcmc function must be set as
equal to FALSE. The column names must be the SNP names and the row names must be
names of the individuals (or strains).
Example:

SNP1 SNP2 SNP3 SNP4

Ind1 0 0 1 1
Ind2 0 1 0 1
Ind3 0 1 1 0

3.2 The gene expression values

Each gene expression value needs to be anExpressionSet object from the Biobase package.
The assayData comprises the expression data for each member of the population. Each row
and column corresponds to an individual and a gene, respectively. We have assumed that the
gene expression values have been appropriately normalized and pre-processed using specialized
statistical methods. The column names must be the gene or probe names and the row names
must be the names of the individuals. The order of individuals needs to be the same as for
the gene expression value needs to be the name as for the genotype data.

Genel Gene2 Gene3
Indl 10.2 11.4 12.2
Ind2 6.7 5.6 7.7
Ind3 13.1 14.5 12.3

3.3 The SNP position data frame

For the genome-wide eQTL mapping plot, we need a data frame specifying the genomic
locations of each SNP with following columns: SNP name, chromosome number, SNP location
(in base pair). Please note that the entries for the chromosome and the position need to be
numerical values.

SNP Chr pos
Snpl 1 17098
Snp2 1 1029012

3.4 The gene position data frame

A data frame specifying the genomic locations of each gene/probe needs to be prepared with
the following columns: gene name, chromosome number, start location (in base pairs) and
the location (in base pairs). Please note that the entries for the chromosome and the position
need to be numerical values.

Gene Chr start end
Genel 1 10290 10460
Gene?2 1 18989 19069

4 First example dataset: data from mouse Recombinant Inbred
Strains (RIS)

This example uses data generated by Williams and Lu, as available from the Gene Network
website (genenetwork.com). This dataset comprises the profiles of mRNA abundance in whole
eye tissue from n = 68 BXD RIS mice, as measured using Affymetrix M430 2.0 microarrays
[2]. To ease calculation and facilitate comparisons, we will use a set of G = 1000 probes and
1700 single nucleotide polymorphic markers (SNPs).

5 Preparing the workspace

We will first load the library iBMQ, the SNP data and gene expression data.
To load the iBMQ package:

> library(iBMG)

To load the SNP data:

> data(snp)

To load gene expression data:

> data(gene)

6 Running the eQTL model:

This function computes the MCMC algorithm to produce Posterior Probabilities of Associa-
tion (PPA) for eQTL mapping. This function takes time: please be patient! On a Mac 2* 3.2
Ghz Quad-Core Intel Xeon computer using 6 cores, it takes 2.44 minutes.

If you have an appropriately powered computer, you can calculate the PPAs by running the
function below. If not, you can skip the function and load pre-computed PPA table instead.

> # PPA <- eqtlMcmc(snp, gene, n.iter=100,burn.in=100,n.sweep=20,mc.cores=6, RIS=TRUE)

In this example, we will perform only 100 iterations in the interest of time. Please note that
an optimal analysis requires a greater number of iterations (preferably in the order of 100,000,
with a burn-in of 50,000). The result is a matrix with Posterior Probabilities of Association
for each gene (row) and SNP (column).

7 Computing the FDR Threshold for eQTL identification:

Our ultimate goal is to identify gene/SNP associations, which can be done using parame-
ter estimates from our model. An eQTL for gene g at SNP j is declared significant if it’s
corresponding marginal posterior probability of association (PPA) is greater than a given
threshold. In the context of multiple testing and discoveries, a popular approach is to use a
common threshold leading to a desired false discovery rate (FDR)[3]. In this example we will
calculate a FDR of 0.1 (corresponding to 10%). The FDR value needs to be a numerical value
between 0 and 1.

To calculate the threshold:

> cutoff <- calculateThreshold(PPA, 0.1)

In this example, the PPA optimal cutoff is 0.74. This means that all the eQTLs with a PPA
above 0.74 are significant eQTLs. We can calculate how many eQTLs have PPA above the
cutoff with the eqtlFinder function:

> eqtl <- eqtlFinder (PPA, cutoff)

With this example, a total of 759 significant eQTLs are identified. The output of the eqtlFinder
is a data frame where the first column contains the names of each gene, the second column
contains the names of corresponding markers and the third column contains the PPA value
for each significant eQTL.

8 Classifying the eQTLs:

It is customary to distinguish two kinds of eQTLs: 1) cis-eQTLs (where the eQTL is on the
same locus as the expressed gene); and 2) trans-eQTLs (where the eQTL is on a locus other
than that of the expressed gene). The eqtlClassifier allows us to classify the eQTLs as either
cis-eQTL or trans-eQTL according to their position in the genome. For this function, we need
a data frame specifying the genomic locations of the SNPs and a data frame specifying the
genomic locations of the gene/probe (see section on data format).

Load the data containing the position for each SNP:

> data(snppos)
Load the data containing the position for each gene/probe:
> data(genepos)

We need to specify a cutoff value(in base pair) corresponding to the threshold where a eQTL
is considered a cis-eQTL. In this case, we will use a cutoff of 1 MB (1000000 pb).

> eqtltype <- eqtlClassifier(eqtl, snppos, genepos,1000000)

The output of the eqtlClassifier is a data frame where the first column contains the names of
each gene, the second column contains the names of markers and the third column contains
the PPA value for each significant eQTL. The fourth column contains the number of the
chromosome to which the gene belongs, the fifth column contains the start position of the
gene and the sixth column contains the end position of the gene. The seventh column contains
the number of the chromosome to which the marker belongs, the eighth column contains the
position of the marker and the ninth column contains a descriptor of the type of eQTL (either
cis or trans). Please note that in order to ascertain that an eQTL is either cis or trans, the
positions of the markers and the gene need to the given to the function. If one of the values
is missing the type of eQTL will be “NA”.

9 Visualizing the result:

To visualize the data we propose using the package ggplot2 to provides a genome-wide plot
visualizing the characteristics of each eQTL in terms gene/snp position. Using the data frame
from the output of the eqtlClassifier function and the provided code we can generate the plot

> library(ggplot2)

> ggplot(eqtltype, aes(y=GeneStart, x=MarkerPosition)) +

+ geom_point (aes (y=GeneStart, x=MarkerPosition,color = PPA), size = 1.5)+

+ facet_grid(GeneChrm~MarkerChrm)+theme_bw(base_size = 12, base_family = "")+
+ theme (axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text

Genome-wide distribution of eQTLs found by iBMQ for the test using 1000 probes for
whole eye tissue from 68 BXD mouse recombinant inbred strains. The x-axis gives the position
of each eQTL along the genome; the y-axis gives the position of the probe set target itself.
The grey lines mark chromosome boundaries. The cis-QTLs are distributed along a diagonal
line. Vertical bands represent groups of transcripts linked to one same trans-eQTL.

10 Finding eQTL hotspots:

One main advantage of our method is its increased sensitivity for finding trans-eQTL hotspots
(corresponding to situations where a single SNP is linked to the expression of several genes
across the genome). Two types of data frame can be used as input: 1) the data frame
(3 columns) corresponding to the output of the eqtlFinder function; 2) the data frame (9
columns) corresponding to the output of the eqtlClassifier function.

> hotspot <- hotspotFinder(eqtltype, 10)

Using the dataset from example 1, we find 9 eQTL hotspots each containing more than 10
genes. The output of this function is a list, where each element is a marker. For each marker
there is a data frame with all the eQTLs linked to this marker.

.y = element_

11 Example dataset 2: data from a mouse F2 cross

The next example uses data from a mouse F2 cross. In this case each genotype takes a value of
either 1,2 or 3. This F2 cross data set containing genotypic and phenotypic information for 60
mice was obtained from the lab of Alan Attie at the University of Wisconsin-Madison. These
data are also available at GEO (accession number GSE3330). Only the 5000 most variable
expression traits out of 45,265 transcripts from the liver were used for the current example.
We will first load the genotype and gene expression data for the 60 mice.

> data(genotype.liver)
> data(phenotype.liver)

Since these functions take a lot of time, we have already calculated the results for 100,000
iterations and 50,000 burn-in. These numbers were suggested by simulation[I]. Please note
that for the F2 data the “RIS” parameter needs to be set as equal to FALSE. If you have an
appropriately powered computer, you can calculate the PPAs by running the function below.
If not, you can skip the function and load pre-computed PPA table instead.

> #PPA.liver <- eqtlMcmc(genotype.liver, phenotype.liver, n.iter=100,burn.in=100,n.sweep=2
> data(PPA.liver)

This function will calculate the threshold to identify significant eQTLs.

> cutoff.liver <- calculateThreshold(PPA.liver, 0.2)

This function will find the all significant eQTLs.

> eqtl.liver <- eqtlFinder(PPA.liver, cutoff.liver)

We will load the position of the markers and probes to be able the classify each eQTL as
either cis-eQTL or trans-eQTL. Since in this case, the genetics map is not very dense, we will
use a 5 MB cutoff for detecting cis-eQTLs.

> data(probe.liver)
> data(map.liver)
> eqtl.type.liver <- eqtlClassifier(eqtl.liver, map.liver, probe.liver,5000000)

We will now plot the results and calculate how many hotspots have been identified.

> library(ggplot2)

> ggplot(eqtl.type.liver, aes(y=GeneStart, x=MarkerPosition)) +

+ geom_point (aes (y=GeneStart, x=MarkerPosition,color = PPA), size = 1.5)+

+ facet_grid(GeneChrm~MarkerChrm)+theme_bw(base_size = 12, base_family = "")+

+ theme(axis.ticks = element_blank(), axis.text.x = element_blank(), axis.text.y = element_

=

1/12]|3]| |4 0 (11 12} 13 (14| |15] [16 11 8
ofslallafelslslalels|stlsli st 5=
RO OOWOORDOmH 0 LT
WOOO0O LD bd [Te]

, JORE NPT A NN
MUOOEOHONUMEOR] Te]
HOWO A [Te]
OO0 0]

L OGO] [T=] ppa
[l [(8 [] 8] [Te]
LWL e[e]LTE] 09
Ll [(e [J] CTE] 08
][Il [1e][IR] 07
[l 18 [el [T8]

[]08] [a] Lol [0] [TE]

Ll O e 6] [T&]

L Ll D1 [d [0] [T5]
1600 o J U100 Lol [T el L] fad LTS

(o 1O ORI O el O el [] L&

e OO O OO W O O ETE]
LOOMOOOOOOAD WU] [T

MarkerPosition

GeneStart
PifeldP][0T][0T
B & B B B B B BB
EEEEEEEE EEE

EEEEEEEEE

i]
b
b
B
8
8
B
B
B
|
b

Flelblvirirle bkl = n el -

2] [
HiN
[a) [
[]ls]
[]
EE
EE
L0
EE
EE
EE
EE

DDDDDDDDDDDDDDDED

[o] B]
= E
E &
=
EE
EE
EE
[[
[o] []
(8] []
[[]
EE
EE
R
[o] []
E &
[a]]
EE

Genome-wide dis-
tribution of eQTLs found by iBMQ for the test using 5000 probes for liver tissue from 60 F2
mice. The x-axis gives the position of each eQTL along the genome; the y-axis gives the posi-
tion of the probe set target itself. The grey lines mark chromosome boundaries. cis-QTLs form
a diagonal line. Vertical bands represent groups of transcripts linked to one same trans-eQTL

> hotspot.liver <- hotspotFinder(eqtl.type.liver,20)

There is a total of 10 hotspots each containing more than 20 genes.

References

[1] Scott-Boyer, MP., Tayeb, G., Imholte, Labbe, A., Deschepper C., and Gottardo R.
An integrated Bayesian hierarchical model for multivariate eQTL mapping (iBMQ).
Statistical Applications in Genetics and Molecular Biology Vol. 11, 2012.

[2] Geisert, EE., Lu, L., Freeman-Anderson, NE., Templeton, JP., Nassr, M., Wang, X.,
Gu, W., Jiao, Y., Williams, RW. (2009): Gene expression in the mouse eye: an online
resource for genetics using 103 strains of mice. Mol Vis.,15, 1730-63

[3] Newton, MA., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004): Detecting differential
gene expression with a semiparametric hierarchical mixture method. Biometrics, 5(2),
155-176

	Download
	Introduction
	Formatting the data
	The genotypes
	The gene expression values
	The SNP position data frame
	The gene position data frame

	First example dataset: data from mouse Recombinant Inbred Strains (RIS)
	Preparing the workspace
	Running the eQTL model:
	Computing the FDR Threshold for eQTL identification:
	Classifying the eQTLs:
	Visualizing the result:
	Finding eQTL hotspots:
	Example dataset 2: data from a mouse F2 cross

