Contents

1 Load and process single cell data

Here we perform analysis of PBMCs from 8 individuals stimulated with interferon-β Kang, et al, 2018, Nature Biotech. We perform standard processing with dreamlet to compute pseudobulk before applying crumblr.

Here, single cell RNA-seq data is downloaded from ExperimentHub.

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

sce$ind <- as.character(sce$ind)

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim

1.1 Aggregate to pseudobulk

Dreamlet creates the pseudobulk dataset:

# Since 'ind' is the individual and 'StimStatus' is the stimulus status,
# create unique identifier for each sample
sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk data by specifying cluster_id and sample_id for aggregating cells
pb <- aggregateToPseudoBulk(sce,
  assay = "counts",
  cluster_id = "cell",
  sample_id = "id",
  verbose = FALSE
)

1.2 Process data

Here we evaluate whether the observed cell proportions change in response to interferon-β.

library(crumblr)

# use dreamlet::cellCounts() to extract data
cellCounts(pb)[1:3, 1:3]
##          B cells CD14+ Monocytes CD4 T cells
## ctrl101      101             136         288
## ctrl1015     424             644         819
## ctrl1016     119             315         413
# Apply crumblr transformation
# cobj is an EList object compatable with limma workflow
# cobj$E stores transformed values
# cobj$weights stores precision weights
cobj <- crumblr(cellCounts(pb))

1.3 Analysis

Now continue on with the downstream analysis

library(variancePartition)

fit <- dream(cobj, ~ StimStatus + ind, colData(pb))
fit <- eBayes(fit)

topTable(fit, coef = "StimStatusstim", number = Inf)
##                         logFC    AveExpr          t     P.Value  adj.P.Val         B
## CD8 T cells       -0.25085170  0.0857175 -4.0787416 0.002436375 0.01949100 -1.279815
## Dendritic cells    0.37386979 -2.1849234  3.1619195 0.010692544 0.02738587 -2.638507
## CD14+ Monocytes   -0.10525402  1.2698117 -3.1226341 0.011413912 0.02738587 -2.709377
## B cells           -0.10478652  0.5516882 -3.0134349 0.013692935 0.02738587 -2.940542
## CD4 T cells       -0.07840101  2.0201947 -2.2318104 0.050869691 0.08139151 -4.128069
## FCGR3A+ Monocytes  0.07425165 -0.2567492  1.6647681 0.128337022 0.17111603 -4.935304
## NK cells           0.10270672  0.3797777  1.5181860 0.161321761 0.18436773 -5.247806
## Megakaryocytes     0.01377768 -1.8655172  0.1555131 0.879651456 0.87965146 -6.198336

Given the results here, we see that CD8 T cells at others change relative abundance following treatment with interferon-β.

2 Session Info

## R version 4.5.1 Patched (2025-08-23 r88802)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB             
##  [4] LC_COLLATE=C               LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] muscData_1.23.0             scater_1.37.0               scuttle_1.19.0             
##  [4] ExperimentHub_2.99.5        AnnotationHub_3.99.6        BiocFileCache_2.99.6       
##  [7] dbplyr_2.5.1                muscat_1.23.1               dreamlet_1.7.1             
## [10] SingleCellExperiment_1.31.1 SummarizedExperiment_1.39.2 Biobase_2.69.1             
## [13] GenomicRanges_1.61.5        Seqinfo_0.99.2              IRanges_2.43.5             
## [16] S4Vectors_0.47.4            BiocGenerics_0.55.1         generics_0.1.4             
## [19] MatrixGenerics_1.21.0       matrixStats_1.5.0           lubridate_1.9.4            
## [22] forcats_1.0.1               stringr_1.5.2               dplyr_1.1.4                
## [25] purrr_1.1.0                 readr_2.1.5                 tidyr_1.3.1                
## [28] tibble_3.3.0                tidyverse_2.0.0             glue_1.8.0                 
## [31] HMP_2.0.1                   dirmult_0.1.3-5             variancePartition_1.39.3   
## [34] BiocParallel_1.43.4         limma_3.65.5                crumblr_1.1.0              
## [37] ggplot2_4.0.0               BiocStyle_2.37.1           
## 
## loaded via a namespace (and not attached):
##   [1] dichromat_2.0-0.1         GSEABase_1.71.1           progress_1.2.3           
##   [4] Biostrings_2.77.2         TH.data_1.1-4             vctrs_0.6.5              
##   [7] digest_0.6.37             png_0.1-8                 corpcor_1.6.10           
##  [10] shape_1.4.6.1             ggrepel_0.9.6             mixsqp_0.3-54            
##  [13] parallelly_1.45.1         permute_0.9-8             magick_2.9.0             
##  [16] MASS_7.3-65               fontLiberation_0.1.0      reshape2_1.4.4           
##  [19] SQUAREM_2021.1            foreach_1.5.2             withr_3.0.2              
##  [22] xfun_0.53                 ggfun_0.2.0               survival_3.8-3           
##  [25] memoise_2.0.1             ggbeeswarm_0.7.2          emmeans_1.11.2-8         
##  [28] systemfonts_1.3.1         tidytree_0.4.6            zoo_1.8-14               
##  [31] GlobalOptions_0.1.2       gtools_3.9.5              KEGGgraph_1.69.0         
##  [34] prettyunits_1.2.0         KEGGREST_1.49.1           httr_1.4.7               
##  [37] globals_0.18.0            ashr_2.2-63               babelgene_22.9           
##  [40] curl_7.0.0                ScaledMatrix_1.17.0       SparseArray_1.9.1        
##  [43] xtable_1.8-4              doParallel_1.0.17         evaluate_1.0.5           
##  [46] S4Arrays_1.9.1            Rfast_2.1.5.1             hms_1.1.3                
##  [49] bookdown_0.45             irlba_2.3.5.1             filelock_1.0.3           
##  [52] colorspace_2.1-2          magrittr_2.0.4            Rgraphviz_2.53.0         
##  [55] viridis_0.6.5             ggtree_3.99.0             lattice_0.22-7           
##  [58] future.apply_1.20.0       scattermore_1.2           XML_3.99-0.19            
##  [61] pillar_1.11.1             nlme_3.1-168              iterators_1.0.14         
##  [64] caTools_1.18.3            compiler_4.5.1            beachmat_2.25.5          
##  [67] stringi_1.8.7             rmeta_3.0                 minqa_1.2.8              
##  [70] plyr_1.8.9                msigdbr_25.1.1            crayon_1.5.3             
##  [73] abind_1.4-8               truncnorm_1.0-9           blme_1.0-6               
##  [76] metadat_1.4-0             gridGraphics_0.5-1        locfit_1.5-9.12          
##  [79] bit_4.6.0                 mathjaxr_1.8-0            sandwich_3.1-1           
##  [82] codetools_0.2-20          multcomp_1.4-28           BiocSingular_1.25.0      
##  [85] bslib_0.9.0               slam_0.1-55               GetoptLong_1.0.5         
##  [88] remaCor_0.0.20            splines_4.5.1             circlize_0.4.16          
##  [91] Rcpp_1.1.0                sparseMatrixStats_1.21.0  EnrichmentBrowser_2.39.2 
##  [94] knitr_1.50                blob_1.2.4                BiocVersion_3.22.0       
##  [97] clue_0.3-66               lme4_1.1-37               fs_1.6.6                 
## [100] listenv_0.9.1             DelayedMatrixStats_1.31.0 Rdpack_2.6.4             
## [103] IHW_1.37.0                ggplotify_0.1.3           estimability_1.5.1       
## [106] Matrix_1.7-4              rpart.plot_3.1.3          statmod_1.5.0            
## [109] tzdb_0.5.0                fANCOVA_0.6-1             pkgconfig_2.0.3          
## [112] tools_4.5.1               cachem_1.1.0              RhpcBLASctl_0.23-42      
## [115] rbibutils_2.3             RSQLite_2.4.3             viridisLite_0.4.2        
## [118] DBI_1.2.3                 numDeriv_2016.8-1.1       zigg_0.0.2               
## [121] fastmap_1.2.0             rmarkdown_2.30            scales_1.4.0             
## [124] grid_4.5.1                broom_1.0.10              sass_0.4.10              
## [127] patchwork_1.3.2           coda_0.19-4.1             BiocManager_1.30.26      
## [130] graph_1.87.0              zenith_1.11.0             rpart_4.1.24             
## [133] farver_2.1.2              reformulas_0.4.1          aod_1.3.3                
## [136] mgcv_1.9-3                yaml_2.3.10               cli_3.6.5                
## [139] lifecycle_1.0.4           mashr_0.2.79              glmmTMB_1.1.12           
## [142] mvtnorm_1.3-3             backports_1.5.0           annotate_1.87.0          
## [145] timechange_0.3.0          gtable_0.3.6              rjson_0.2.23             
## [148] metafor_4.8-0             ape_5.8-1                 jsonlite_2.0.0           
## [151] edgeR_4.7.5               bitops_1.0-9              bit64_4.6.0-1            
## [154] assertthat_0.2.1          yulab.utils_0.2.1         vegan_2.7-1              
## [157] BiocNeighbors_2.3.1       RcppParallel_5.1.11-1     jquerylib_0.1.4          
## [160] pbkrtest_0.5.5            lazyeval_0.2.2            htmltools_0.5.8.1        
## [163] sctransform_0.4.2         rappdirs_0.3.3            tinytex_0.57             
## [166] httr2_1.2.1               XVector_0.49.1            gdtools_0.4.4            
## [169] RCurl_1.98-1.17           treeio_1.33.0             gridExtra_2.3            
## [172] EnvStats_3.1.0            boot_1.3-32               TMB_1.9.17               
## [175] invgamma_1.2              R6_2.6.1                  DESeq2_1.49.4            
## [178] ggiraph_0.9.2             gplots_3.2.0              fdrtool_1.2.18           
## [181] labeling_0.4.3            cluster_2.1.8.1           aplot_0.2.9              
## [184] nloptr_2.2.1              DelayedArray_0.35.3       tidyselect_1.2.1         
## [187] vipor_0.4.7               fontBitstreamVera_0.1.1   AnnotationDbi_1.71.1     
## [190] future_1.67.0             rsvd_1.0.5                KernSmooth_2.23-26       
## [193] S7_0.2.0                  fontquiver_0.2.1          data.table_1.17.8        
## [196] htmlwidgets_1.6.4         ComplexHeatmap_2.25.2     RColorBrewer_1.1-3       
## [199] rlang_1.1.6               lmerTest_3.1-3            lpsymphony_1.37.0        
## [202] beeswarm_0.4.0