Package ‘smoppix’

October 15, 2025

Type Package

Title Analyze Single Molecule Spatial Omics Data Using the
Probabilistic Index

Version 1.1.9

Description Test for univariate and bivariate spatial patterns in
spatial omics data with single-molecule resolution. The tests implemented
allow for analysis of nested designs and are automatically calibrated to different
biological specimens. Tests for aggregation, colocalization, gradients and vicin-
ity to cell edge or centroid are provided.

License GPL-2
Encoding UTF-8

Imports spatstat.geom(>=
3.2.0),spatstat.random,methods,BiocParallel,SummarizedExperiment,SpatialExperiment,scam,Rdpack,stats,utils,extra
(>= 1.0.11),spatstat.model,openxlsx,Rfast

Suggests
testthat,rmarkdown,knitr,DropletUtils,polyCub,RImageJROI,sp,ape,htmltools,funkycells,glmnet,doParallel

RdMacros Rdpack

RoxygenNote 7.3.3

biocViews Transcriptomics, Spatial, SingleCell
Depends R (>=4.4.0)

VignetteBuilder knitr

BugReports https://github.com/sthawinke/smoppix/issues

URL https://github.com/sthawinke/smoppix
LinkingTo Rcpp

git_url https://git.bioconductor.org/packages/smoppix
git_branch devel

git_last_commit 178579b

git_last_commit_date 2025-10-07

Repository Bioconductor 3.22

Date/Publication 2025-10-14

Author Stijn Hawinkel [cre, aut] (ORCID:
<https://orcid.org/0000-0002-4501-5180>)

Maintainer Stijn Hawinkel <stijn.hawinkel@psb.ugent.be>

1

https://github.com/sthawinke/smoppix/issues
https://github.com/sthawinke/smoppix
https://orcid.org/0000-0002-4501-5180

2 Contents

Contents
addCell e 3
addDesign 5
addNuclei 5
addTabObs o e 7
buildDataFrame L e 8
buildFormula 9
buildHyperFrame 9
calcIndividualPIs L 11
caleNNPI e 12
calcWindowDistPl L 13
centerNUMEIIC o o it e e e 14
checkFeatures 14
checkPi e 15
constructDesignVars L 15
convertTOOWINS L 16
crossdistWrapper 16
Eng . . . e 17
estGradients L 17
estPis 20
evalWeightFunction L 23
extractResults L 24
findEcdfsCell e 24
findOverlap e 25
fitGradient 26
itLMMS . . . e 27
fitPiModel 29
fitSingleLmmModel 29
getCoordsMat e 30
getDesignVars L 30
getElement 31
getFeatures e e e e e 31
CetGD . . . e e e 32
getHypFrame 32
getPiAndWeights 33
Im_from_wihit e e 33
loadBalanceBplapply 34
makeDesignVaro 35
makePairs 35
Named.CONLSUM o v vttt e et e e e e e e 36
nestRandom 36
plotCells e e 37
plotExplore 38
plotTopResults 40
PlOtWE . o e e e e 41
selfName 42
SIMOPPIX &+ v v v v e v e e e e e e e e e e e e e e e e e e e 42
SOTEGD .« . v o o e e e e e 43
splitWindow L L L 43
subSampleP 44

SUNA e e e e e 44

addCell 3
writeToXISX e 45
Yang e e e 46
Index 47
addCell Add cell boundaries and event-wise cell identifiers to a hyperframe.
Description

Add the list of the cells and their centroids in the hyperframe, check in which cell each event lies
and add a cell marker.

Usage

addCell(
hypFrame,
owins,

cellTypes = NULL,
findOverlappingOwins = FALSE,
warnOut = TRUE,

coords = c("x", "y"),
verbose = TRUE,

addCellMarkers = TRUE,
overwriteCells = FALSE,
)
Arguments
hypFrame A hyperframe
owins A list containing a list of owins per point pattern. The length of the list must
match the length of the hyperframe, and the names must match. Also lists of
geojson objects, coordinate matrices or rois are accepted, see details.
cellTypes A dataframe of cell types and other cell-associated covariates. If supplied, it
must contain a variable “cell’ that is matched with the names of the owins
findOverlappingOwins
a boolean, should windows be checked for overlap? Can be computationally
intensive.
warnOut a boolean, should warning be issued when points are not contained in window?
coords The names of the coordinates, if the windows are given as sets of coordinates.
verbose A boolean, should verbose output be printed?
addCellMarkers A boolean, should cell identities be added? Set this to FALSE if cell identifiers
are already present in the data, and you only want to add windows and centroids.
overwriteCells A boolean, should cells already present in hyperframe be overwritten?

Further arguments passed onto convertToOwins

4 addCell

Details

First the different cells are checked for overlap per point pattern if ’findOverlappingOwins’ is
TRUE. If no overlap is found, each event is assigned the cell that it falls into. Events not be-
longing to any cell will trigger a warning and be assigned "NA’. Cell types and other variables are
added to the marks if applicable. This function employs multithreading through the BiocParallel
package. If this leads to excessive memory usage and crashes, try serial processing by setting reg-
ister(SerialParam()). Different formats of windows are allowed, if the corresponding packages are
installed. A dataframe of coordinates or a list of spatstat.geom owins is always allowed, as the
necessary packages are required by smoppix. A ’SpatialPolygonsDataFrame’ object is allowed if
the "polycub’ package is installed, and a list of ’ijroi’ object or a single ’ijzip’ object if the 'RIm-
ageJROI’ package is installed.

Value

The hyperframe with cell labels added in the marks of the point patterns

Note

By default, overlap between windows is not checked. Events are assigned to the first window
they fall in. If you are not sure of the quality of the segmentation, do check your input or set
checkOverlap to TRUE, even when this make take time.

See Also

buildHyperFrame, convertToOwins

Examples

library(spatstat.random)
set.seed(54321)
n <- 1e3 # number of molecules
ng <- 25 # number of genes
nfov <- 3 # Number of fields of view
conditions <- 3
sample xy-coordinates in [0, 1]
X <= runif(n)
y <= runif(n)
assign each molecule to some gene-cell pair
gs <- paste@("gene”, seq(ng))
gene <- sample(gs, n, TRUE)
fov <- sample(nfov, n, TRUE)
condition <- sample(conditions, n, TRUE)
construct data.frame of molecule coordinates
df <- data.frame(gene, x, y, fov, "condition” = condition)
A list of point patterns
1istPPP <- tapply(seq(nrow(df)), df$fov, function(i) {
ppp(x = df$x[i], y = df$y[i], marks = df[i, "gene"”, drop = FALSE])
}, simplify = FALSE)
Regions of interest (roi): Diamond in the center plus four triangles
wl <- owin(poly = list(x = c(@, .5, 1, .5), y = c(.5, 0, .5, 1)))
w2 <- owin(poly = list(x = c(@, 0, .5), y = c(.5, 0, @)))
w3 <- owin(poly = list(x = c(@, @, .5), y = c(1, 0.5, 1)))
w4 <- owin(poly = list(x = c(1, 1, .5), y = c(0.5, 1, 1)))
w5 <- owin(poly = list(x = c(1, 1, .5), y = c(@, 0.5, 0)))
hypFrame <- buildHyperFrame(df,

addDesign

coordVars = c("x", "y"),

imageVars = c("condition”, "fov")
)
nDesignFactors <- length(unique(hypFrame$image))
wList <- lapply(seg_len(nDesignFactors), function(x) {

list("wl” = w1, "w2" = w2, "w3" = w3, "w4" = w4, "w5" = wh)
»
names(wList) <- rownames(hypFrame) # Matching names is necessary
hypFrame2 <- addCell(hypFrame, wList)

addDesign Add design variables to hyperframe

Description

Add design variables to hyperframe

Usage

addDesign(hypFrame, desMat, designVec)

Arguments
hypFrame The hyperframe
desMat The design matrix
designVec The design vector
Value

The hyperframe with design variables added

addNuclei Add nuclei to a hyperframe

Description

Add the nuclei identifiers to a hyperframe already containing cells.

Usage

addNuclei(
hypFrame,
nucleilist,
checkSubset = TRUE,
verbose = TRUE,
coords = c("x", "y"),
overwriteNuclei = FALSE,

6 addNuclei

Arguments
hypFrame A hyperframe
nucleilist A list containing a list of owins per point pattern. The length of the list must
match the length of the hyperframe, and the names must match. Also lists of
geojson objects, coordinate matrices or rois are accepted, see addCell
checkSubset A boolean, should be checked whether nuclei are encompassed by cells?
verbose A boolean, should verbose output be printed?
coords The names of the coordinates, if the nuclei are given as sets of coordinates.
overwriteNuclei
A boolean, should existing nuclei be replaced?
Further arguments passed onto convertToOwins
Details

The nuclei names must match the cell names already present, all other nuclei are dropped. A
warning is issued when nuclei are not encompassed by their cell.

Value

The hyperframe with nuclei added as entry

See Also

addCell, convertToOwins

Examples

library(spatstat.random)
set.seed(54321)
n <- 1e3 # number of molecules
ng <- 25 # number of genes
nfov <- 3 # Number of fields of view
conditions <- 3
sample xy-coordinates in [0, 1]
X <= runif(n)
y <= runif(n)
assign each molecule to some gene-cell pair
gs <- paste@d("gene"”, seq(ng))
gene <- sample(gs, n, TRUE)
fov <- sample(nfov, n, TRUE)
condition <- sample(conditions, n, TRUE)
construct data.frame of molecule coordinates
df <- data.frame(gene, x, y, fov, "condition” = condition)
A list of point patterns
1istPPP <- tapply(seq(nrow(df)), df$fov, function(i) {
ppp(x = df$x[il, y = df$y[il, marks = df[i, "gene"”, drop = FALSE])
}, simplify = FALSE)
Regions of interest (roi): Diamond in the center plus four triangles
wl <- owin(poly = list(x = c(@, .5, 1, .5), y = c(.5, 9, .5, 1)))
w2 <- owin(poly = list(x = c(@, @, .5), y = c(.5, 0, @)))
w3 <- owin(poly = list(x = c(@, @, .5), y = c(1, 0.5, 1)))
w4 <- owin(poly = list(x = c(1, 1, .5), y = c(@.5, 1, 1)))
w5 <- owin(poly = list(x = c(1, 1, .5), y = c(@, 0.5, 0)))

addTabObs 7

hypFrame <- buildHyperFrame(df,

coordVars = c("x", "y"),

imageVars = c("condition”, "fov")
)
nDesignFactors <- length(unique(hypFrame$image))
wList <- lapply(seqg_len(nDesignFactors), function(x) {

list("wl” = wl, "w2" = w2, "w3” = w3, "w4" = w4, "w5" = w5)
»
names(wList) <- rownames(hypFrame) # Matching names is necessary
hypFrame2 <- addCell(hypFrame, wList)
The nuclei
nl <- owin(poly = list(x = c(0.2, .4, 0.8, .4), y = c(.4, .2, .4, .8)))
n2 <- owin(poly = list(x = c(0.1, 0.1, .4), y = c(.4, .1, .1)))
n3 <- owin(poly = list(x = c(@0.1, 0.1, .4), y = c(1, .75, 1)))
n4 <- owin(poly = list(x = c(1, 1, .6), y = c(.7, .9, .9)))
n5 <- owin(poly = list(x = c(.95, .95, .7), y = c(.1, .4, .1)))
nList <- lapply(seq_len(nDesignFactors), function(x) {

list("wl” = n1, "w2" = n2, "w3” = n3, "w4" = n4, "w5" = nb)

b

names(nList) <- rownames(hypFrame) # Matching names is necessary
hypFrame3 <- addNuclei(hypFrame2, nList)

addTabObs Add tables with gene counts to the hyperframe, presort by gene and
x-ccordinate and add design varibales

Description

Add tables with gene counts to the hyperframe, presort by gene and x-ccordinate and add design
varibales

Usage

addTabObs (hypFrame)

Arguments

hypFrame The hyperframe

Value

The hyperframe with tabObs added

8 buildDataFrame

buildDataFrame Extract a data frame for a certain gene and PI from a fitted object

Description

Based on a fitted object, a dataframe with results for a certain feature and PI is built, e.g. in prepa-
ration for linear modelling.

Usage
buildDataFrame(
obj,
gene,
pi = c("nn”, "nnPair”, "edge", "centroid”, "nnCell”, "nnPairCell”),
piMat,
ppPDf,
prepMat,
prepTab,
prepCells
)
Arguments
obj A results object. For distances to fixed objects, the result of a call to estPis; for
nearest neighbour distances, the result of a call to addWeightFunction
gene A character string indicating the desired gene or gene pair (genes separated by
double hyphens)
pi character string indicating the desired PI
piMat A data frame. Will be constructed if not provided, for internal use.
pppDf Dataframe of point pattern-wise variables. It is precalculated in fitLMMsSingle

for speed, but will be newly constructed when not provided.
prepMat, prepTab, prepCells
Preconstructed objects to save computation time, for internal use

Value

A dataframe with estimated PIs and covariates

See Also
addWeightFunction

Examples

example(addWeightFunction, "smoppix")
dfUniNN <- buildDataFrame(yangObj, gene = "SmVND2", pi = "nn")
Example analysis with linear mixed model

library(lmerTest)
mixedMod <- 1lmer(pi - @.5 ~ day + (1 | root), weight = weight, data = dfUniNN,
contrasts = list("day"” = "contr.sum")

)

buildFormula 9

summary (mixedMod)
Evidence for aggregation

buildFormula Build a formula from different components

Description

Build a formula from different components

Usage

buildFormula(Formula, fixedVars, randomVars, outcome = "pi - 0.5")
Arguments

Formula A formula. If not supplied or equals NULL, will be overridden

fixedVars, randomVars
Character vectors with fixed and random variables

outcome A character vector describing the outcome

Details
Random intercepts are assumed for the random effects, if more complicated designs are used, do
supply your own formula.

Value

A formula

See Also

fitLMMs,formula

buildHyperFrame Build a hyperframe containing all point patterns of an experiment.

Description

Build a spatstat hyperframe with point patterns and metadata. Matrices, dataframe, lists and Spa-
tialExperiment inputs are accepted.

10 buildHyperFrame

Usage
buildHyperFrame(x, ...)

S4 method for signature 'data.frame'
buildHyperFrame(
X,
coordVars,
imageldentifier = imageVars,
imageVars,
pointVars = setdiff(names(x), c(imageVars, imageldentifier, coordVars, featureName)),
featureName = "gene",

S4 method for signature 'matrix’
buildHyperFrame(
X,
imageVars,
imageldentifier = imageVars,
covariates,
featureName = "gene",

S4 method for signature 'list'
buildHyperFrame(
X,
coordVars = c("x", "y"),
covariates = NULL,
idvar = NULL,
featureName = "gene",

S4 method for signature 'SpatialExperiment'
buildHyperFrame(x, imageVars, pointVars, imageldentifier = imageVars, ...)

Arguments

X the input object, see methods(’buildHyperFrame’)
additional constructor arguments

coordVars Names of coordinates

imageldentifier
A character vector of variables whose unique combinations define the separate
point patterns (images)

imageVars Covariates belonging to the point patterns

pointVars Names of event-wise covariates such as gene or cell for each single point
featureName The name of the feature identifier for the molecules.

covariates A matrix or dataframe of covariates

idvar An optional id variable present in covariates, that is matched with the names of

covariates

calcIndividualPls 11

list A list of matrices or of point patterns of class ’spatstat.geom::ppp’

Value

An object of class hyperframe’ from the ’spatstat.geom’ package

See Also
hyperframe
Examples
data(Yang)
hypYang <- buildHyperFrame(Yang,
coordVars = c("x", "y"),
imageVars = c("day”, "root"”, "section")
)
calcIndividualPIs Calculate individual PI entries of a single point pattern
Description

Calculate individual PI entries of a single point pattern

Usage

calcIndividualPIs(

P,

tabObs,
pis,
pSubLeft,
owins,
centroids,
null,
features,
ecdfAll,
ecdfsCell,
loopFun,
minDiff,
minObsNN

Arguments

p The point pattern
tabObs A table of observed gene frequencies
pis The PIs to be estimated or for which weighting functions is to be added

pSubLeft The subsampled overall point pattern returned by subSampleP
owins, centroids
The list of windows corresponding to cells, and their centroids

12 calcNNPI

null A character vector, indicating how the null distribution is defined. See details.
features A character vector, for which features should the probabilistic indices be calcu-
lated?

ecdfAll, ecdfsCell

Empirical cumulative distribution functions of all events and of cells within the
cell, under the null

loopFun The function to use to loop over the features. Defaults to bplapply except when
looping over features within cells

minDiff An integer, the minimum number of events from other genes needed for calcu-
lation of background distribution of distances. Matters mainly for within-cell
calculations: cells with too few events are skipped.

minObsNN An integer, the minimum number of events required for a gene to be analysed.
See details.

Details

For the single-feature nearest neighbour distances, the PI is average over the point pattern

Value

A list containing PI entries per feature

See Also
estPis, calcNNPI

calcNNPI Estimate the PI for nearest neighbour distances with the negative hy-
pergeometric distribution

Description
Estimate the PI for the nearest neighbour distances, given a set of ranks, using the negative hyper-
geometric distribution

Usage

calcNNPI(Ranks, n, m, ties, r = 1)

Arguments
Ranks The (approximate) ranks, number of times observed distance is larger
n the total number of observed distances minus the number of distances under
consideration (the number of failures or black balls in the urn)
m the number of observed distances (successes or white balls in the urn)
ties The number of times the observed distance is equal to a null distance, of the

same length as Ranks

r The rank of distances considered, r=1 is nearest neighbour distance

calcWindowDistPI 13

Details

Ties are counted half to match the definition of the PI.

Value

A vector of evaluations of the negative hypergeometric distribution function

See Also

pnhyper, calcIndividualPIs

calcWindowDistPI Estimate the PI for the distance to a fixed object of interest, such as a
cell wall or centroid

Description

Estimate the PI for the distance to a fixed object of interest, such as a cell wall or centroid

Usage

calcWindowDistPI(pSub, owins, centroids, ecdfAll, pi)

Arguments

pSub The subset point pattern containing only a single gene

owins, centroids
The list of windows corresponding to cells, and their centroids

ecdfAll the cumulative distribution function under the null
pi The type of PI to calculate
Details

Analysis of the distance to the border was introduced by (Joyner et al. 2013) in the form of the
B-function. The independent evaluations of the B-functions under the null hypothesis represented
by ecdfAll per cell are here returned as realizations of the probabilistic index.

Value

A list of vectors of estimated probabilistic indeces per event

References

Joyner M, Ross C, Seier E (2013). “Distance to the border in spatial point patterns.” Spat. Stat., 6,
24 - 40. ISSN 2211-6753, doi:10.1016/j.spasta.2013.05.002.

See Also
addCell, estPis

https://doi.org/10.1016/j.spasta.2013.05.002

14 checkFeatures

centerNumeric Center numeric variables

Description

Center numeric variables

Usage

centerNumeric(x)
Arguments

X The dataframe whose numeric variables are being centered
Value

The adapted dataframe

Examples

df = data.frame(a = rnorm(10), b = sample(c(TRUE, FALSE), 10, replace = TRUE))
dfCen = centerNumeric(df)
mean(dfCen$a)

checkFeatures Check if features are present in hyperframe

Description

Check if features are present in hyperframe

Usage

checkFeatures(hypFrame, features)

Arguments
hypFrame A hyperframe
features A character vector, for which features should the probabilistic indices be calcu-
lated?
Value

Throws error when features not found

checkPi

15

checkPi Check if the required PI’s are present in the object

Description

Check if the required PI’s are present in the object

Usage
checkPi(x, pi)

Arguments
X The result of the PI calculation, or a weighting function
pi A character string indicating the desired PI

Value

Throws an error when the PIs are not found, otherwise returns invisible

constructDesignVars Check for or construct design matrix

Description

Run checks on design variables, or construct them as vector them if missing

Usage

constructDesignVars(designVars, lowestlLevelVar, allCell, resList)

Arguments

designVars The initial design variables

lowestLevelVar Variable indicating the lowest level of nesting

allCell A boolean, are all PIs cell-related?
resList The results list
Value

A vector of design variables

See Also

buildDataFrame

16 crossdistWrapper

convertToOwins Convert windows to spatstat.geom owin format

Description

Convert a list of windows in different possible formats to owins, for addition to a hyperframe.

Usage
convertToOwins(windows, namePPP, coords, ...)
Arguments
windows The list of windows. See addCell for accepted formats.
namePPP the name of the point pattern, will be added to the cell names
coords The names of the coordinates, if the windows are given as sets of coordinates.
passed onto as.owin
Details

Order of traversion of polygons may differ between data types. Where applicable, different orders
are tried before throwing an error.

Value

A list of owins

See Also

addCell, as.owin

crossdistWrapper A wrapper for C-functions calculating cross-distance matrix fast

Description

A wrapper for C-functions calculating cross-distance matrix fast

Usage

crossdistWrapper(x, y)

Arguments

X,y the matrices or point patterns between which to calculate the cross distances

Value

a matrix of cross distances

Eng 17

Eng Spatial transcriptomics data of mouse fibroblast cells

Description

Single-molecule spatial transcriptomics seqFISH+ data containing measurements of 10,000 genes
in NIH/3T3 mouse fibroblast cells by (Eng et al. 2019). Molecule locations, gene identity and
design variables are included, a subset of eight most expressed genes is included in the package,
and the dataset was subsampled to 100,000 observations for memory reasons. In addition, a list of
regions of interest (rois) is given describing the cell boundaries.

Usage

data(Eng)

Format

1. Eng A data frame with variables

X,y Molecule coordinates
gene Character vector with gene identities
experiment,fov Design variables

2. EngRois A list of lists of regions of interest (ROIs): the cell boundaries

Source

doi:10.1038/5415860191049y

References

Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan G, Cai
L (2019). “Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+.” Nature,
568(7751), 235 - 239. ISSN 1476-4687, doi:10.1038/s415860191049y.

estGradients Estimate gradients over multiple point patterns, and test for signifi-
cance

Description

estGradients() estimate gradients on all single-molecule point patterns of a hyperframe. estGradi-
entsSingle() is the workhorse function for a single point pattern. getPvaluesGradient() extracts the
p-values of the fits.

https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41586-019-1049-y

18

Usage

estGradients(
hypFrame,

estGradients

gradients = c("overall”, if (!is.null(hypFrame$owins)) "cell"),

fixedEffects
randomEffects

= NULL,

= NULL,

verbose = FALSE,

features =

getFeatures(hypFrame),

silent = TRUE,
loopFun = "bplapply”,

)

estGradientsSingle(

hypFrame,
gradients,
fixedForm,
randomForm,

fixedFormSimple,
effects = NULL,

)

getPvaluesGradient(res, gradient, method = "BH")

Arguments

hypFrame

gradients

A hyperframe

The gradients types to be estimated: "overall" or within cell ("cell")

fixedEffects, randomEffects

verbose
features
silent

loopFun

Character vectors of fixed and random effects present in the hyperframe, modi-
fying the baseline intensity. See details.

A boolean, whether to report on progress of the fitting process.

A character vector, for which features should the gradients indices be calculated?
A boolean, should error messages from spatstat.model::mppm be printed?

The function to use to loop over the features.

Passed onto fitGradient

fixedForm, randomForm, fixedFormSimple

effects
res
gradient

method

Details

Formulae for fixed effects, random effects and fixed effects without slopes re-
spectively

Character vector of fixed and random effects
The fitted gradients
The gradient to be extracted, a character vector equal to "overall" or "cell".

Method of multiplicity correction, see p.adjust. Defaults to Benjamini-Hochberg.

The test for existence of a gradient revolves around interaction terms between x and y coordinates
and image identifiers. If this interactions are significant, this implies existence of gradients in the

estGradients 19

different point patterns, albeit with different directions. Yet be aware that a gradient that is signifi-
cant for a computer may look very different from the human perspective; many spatial patterns can
be captured by a gradient to some extent. Baseline intensity corrections for every image or cell are
included by default. The fixed and random effects modify the baseline intensity of the point pattern,
not the gradient! Random effects can lead to problems with fitting and are dissuaded.

Value

For estGradients(), a list with the estimated gradients

For estGradientsSingle(), a list containing

overall Overall gradients

cell Gradients within the cell

For getPvaluesGradient(), a vector of p-values

Note

Fitting Poisson point processes is computation-intensive.

See Also

fitGradient

Examples

Overall Gradients

data(Yang)
hypYang <- buildHyperFrame(Yang,

coordVars = c("x", "y"),

imageVars = c("day"”, "root"”, "section”)
)

yangGrads <- estGradients(hypYang[seq_len(2), 1,
features = getFeatures(hypYang)[1],
fixedEffects = "day"”, randomEffects = "root")

Gradients within cell

data(Eng)

hypEng <- buildHyperFrame(Eng[Eng$fov %in% c(1,2),1,
coordVars = c("x", "y"),
imageVars = c("fov"”, "experiment"”)

) #Subset for speed
hypEng <- addCell(hypEng, EngRois[rownames(hypEng)], verbose = FALSE)
Limit number of cells and genes for computational reasons
engGrads <- estGradients(hypEng[seq_len(2),1],
features = feat <- getFeatures(hypEng)[1])
pVals <- getPvaluesGradient(engGrads, "cell”)

20 estPis

estPis Estimate probabilistic indices and add a variance weighting function.

Description

Estimate different probabilistic indices for localization on all point patterns of a hyperframe, and
integrate the results in the same hyperframe. estPisSingle() is the workhorse function for a single
point pattern.

addWeightFunction() adds a weighting function based on the data to the object by modeling vari-
ance as a non-increasing spline as a function of the number of events.

Usage

estPis(
hypFrame,
pis = c¢("nn"”, "nnPair”, "edge", "centroid”, "nnCell”, "nnPairCell”),
verbose = TRUE,
null = c("background”, "CSR"),
nPointsAll = switch(null, background = 50000, CSR = 2000),
nPointsAl1WithinCell = switch(null, background = 5000, CSR = 1000),
nPointsAllWin = 10000,
minDiff = 20,
minObsNN = 1L,
features = getFeatures(hypFrame),

)

estPisSingle(
P,
pis,
null,
tabObs,
owins = NULL,
centroids = NULL,
window = p$window,
loopFun = "bplapply”,
features,
nPointsAll,
nPointsAllWithinCell,
nPointsAllWin,
minDiff,
minObsNN

)

addWeightFunction(
resList,
pis = resList$pis,
designVars,
lowestLevelVar,
maxObs = 1e+05,

estPis 21

maxFeatures = 1000,
minNumVar = 3,

)
Arguments
hypFrame A hyperframe
pis The PIs to be estimated or for which weighting functions is to be added
verbose A boolean, whether to report on progress of the fitting process.
null A character vector, indicating how the null distribution is defined. See details.

nPointsAll, nPointsAl1lWithinCell
How many points to subsample or simulate to calculate the overall nearest neigh-
bour distance distribution under the null hypothesis. The second argument (nPointsAll-
WithinCell) applies to within cell calculations, where a lower number usually
suffises.

nPointsAllWin How many points to subsample or simulate to calculate distance to cell edge or
centroid distribution

minDiff An integer, the minimum number of events from other genes needed for calcu-
lation of background distribution of distances. Matters mainly for within-cell
calculations: cells with too few events are skipped.

minObsNN An integer, the minimum number of events required for a gene to be analysed.
See details.

features A character vector, for which features should the probabilistic indices be calcu-
lated?

Additional arguments passed on to the scam function, fitting the spline
p The point pattern

tabObs A table of observed gene frequencies

owins, centroids
The list of windows corresponding to cells, and their centroids

window An window of class owin, in which events can occur

loopFun The function to use to loop over the features. Defaults to bplapply except when
looping over features within cells

resList A results list, from a call to estPis().

designVars A character vector containing all design factors (both fixed and random), that
are also present as variables in hypFrame.

lowestLevelVar The design variable at the lowest level of nesting, often separating technical
replicates. The conditional variance is calculated within the groups of PIs de-
fined by this variable.

maxObs, maxFeatures
The maximum number of observations respectively features for fitting the weight-
ing function. See details.

minNumVar The minimum number of observations needed to calculate a variance. Groups
with fewer replicates are ignored.

22 estPis

Details

The null distribution used to calculate the PIs can be either 'background’ or 'null’. For ’back-
ground’, the observed distributions of all genes is used. Alternatively, for null = *CSR’, Monte-
Carlo simulation under complete spatial randomness is performed within the given window to find
the null distribution of the distance under study. See Hawinkel et al. 2025 for precise definition of
the PI.

The ’nn’ prefix indicates that nearest neighbour distances are being used, either univariately or
bivariately. The suffix ’Pair’ indicates that bivariate probabilistic indices, testing for co- and antilo-
calization are being used. ’edge’ and ’centroid’ calculate the distance to the edge respectively the
centroid of the windows added using the addCell function. The suffix *Cell’ indicates that nearest
neighbour distances are being calculated within cells only.

It can be useful to set the minObsNN higher than the default of 5 for calculations within cells when
the number of events is low, not to waste computation time on gene (pairs) with very variable PI
estimates.

Provide either ’designVars’ or ’lowestLevelVar’. The ’designVars’ are usually the same as the re-
gressors in the linear model. In case "lowestLevelVar’ is provided, the design variables are set to
all imageVars in the hypFrame object except lowestLevelVar. When the PI is calculated on the cell
level ("nnCell" or "nnPairCell"), the cell is always the lowest nesting level, and inputs to ’design-
Vars’ or "lowestLevel Var’ will be ignored for these PIs. The registered parallel backend will be used
for fitting the trends of the different PIs. For computational and memory reasons, for large datasets
the trend fitting is restricted to a random subset of the data through the maxObs and maxFeatures
parameters.

Value

For estPis(), the hyperframe with the estimated PIs present in it

For estPisSingle(), a list of data frames with estimated PIs per gene and/or gene pair:

pointDists PIs for pointwise distances overall
windowDists PIs for distances to cell wall or centroid
withinCellDists

PIs for pointwise distances within cell
For addWeightFunction(), the input object ’resList’ with a slot "Wfs’ added containing the weight-
ing functions.
References

Hawinkel S, Yang X, Poelmans W, Motte H, Beeckman T, Maere S (2025). “Unified nonparametric
analysis of single-molecule spatial omics data using probabilistic indices.” bioRxiv. doi:10.1101/
2025.05.20.654270.

See Also

buildDataFrame, estPis

Examples
data(Yang)
hypYang <- buildHyperFrame(Yang,
coordVars = c("x", "y"),

imageVars = c("day"”, "root"”, "section”)

https://doi.org/10.1101/2025.05.20.654270
https://doi.org/10.1101/2025.05.20.654270

evalWeightFunction

)

yangPims <- estPis(hypYang[c(seq_len(4), seq(27, 29)), 1, pis = "nn",
nPointsAll = 4e2)

Univariate nearest neighbour distances

yangObj <- addWeightFunction(yangPims, designVars = c("day", "root"))

Add the weight functions

yangObj <- addWeightFunction(yangPims, lowestlLevelVar = "section”,

pi = "nn"

Alternative formulation with 'lowestlLevelVar'

23

evalWeightFunction Evaluate a variance weighting function

Description

Evaluate the variance weighting function to return unnormalized weights

Usage

evalWeightFunction(wf, newdata)

Arguments
wf The weighting function
newdata A data frame with new data
Value

A vector of weights, so the inverse of predicted variances, unnormalized

See Also

predict.scam, addWeightFunction

Examples
data(Yang)
hypYang <- buildHyperFrame(Yang, coordVars = c("x", "y"),
imageVars = c("day"”, "root"”, "section"))

n

yangPims <- estPis(hypYang, pis = "nn",
features = getFeatures(hypYang)[12:19], nPointsAll = 5e2)

First Build the weighting function

yangObj <- addWeightFunction(yangPims, designVars = c("day”, "root"))
evalWeightFunction(yangObjWfsnn, newdata = data.frame(”"NP" = 2))

24 findEcdfsCell

extractResults Extract results from a list of fitted LMMSs. For internal use mainly.

Description

Extract results from a list of fitted LMMs. For internal use mainly.

Usage

extractResults(models, hypFrame, fixedVars = NULL, method = "BH")

Arguments
models The models
hypFrame The original hyperframe
fixedVars The fixed effects for which the effect is to be reported
method Multiplicity correction method passed onto p.adjust
Value

A list of matrices, all containing estimate, standard error, p-value and adjusted p-value

See Also
fitLMMs, p.adjust

findEcdfsCell Construct empirical cumulative distribution functions (ecdfs) for
within-cell distances

Description

The distance distribution under the null hypothesis of complete spatial randomness (CSR) within
the cell is the same for all genes. This function precalculates this distribution using Monte-Carlo
simulation under CSR, and summarizes it in an ecdf object

Usage

findEcdfsCell(p, owins, nPointsAllWin, centroids, null, pis, loopFun)

Arguments

p The point pattern
owins, centroids
The list of windows corresponding to cells, and their centroids

nPointsAllWin How many points to subsample or simulate to calculate distance to cell edge or
centroid distribution

null A character vector, indicating how the null distribution is defined. See details of
estPis.

findOverlap 25

pis The PIs to be estimated or for which weighting functions is to be added

loopFun The function to use to loop over the features. Defaults to bplapply except when
looping over features within cells

Value

The list of ecdf functions

See Also
ecdf

findOverlap Find overlap between list of windows

Description
The function seeks overlap between the list of windows supplied, and throws an error when found
or returns the id’s when found.

Usage

findOverlap(owins, centroids = NULL, returnIds = FALSE, numCentroids = 30)

Arguments
owins the list of windows
centroids The centroids of the windows
returnlds A boolean, should the indices of the overlap be returned? If FALSE an error is

thrown at the first overlap

numCentroids An integer, the number of cells with closest centroids to consider looking for
overlap

Value

Throws an error when overlap found, otherwise returns invisible. When returnlds=TRUE, the in-
dices of overlapping windows are returned.

Examples

library(spatstat.geom)
owins <- replicate(10, owin(
xrange = runif(1) + c(0, 0.2),
yrange = runif (1) + c(0, 0.1)
), simplify = FALSE)
idOverlap <- findOverlap(owins, returnlds = TRUE)

26 fitGradient

fitGradient Test for presence of gradient in a hyperframe of point patterns

Description

A Poisson process is fitted to the data assuming exponential relationship wit intensity of the inter-
action between x and y variables and image identifier. This is compared to a model without this
interaction to test for the significance of the gradient.

Usage

fitGradient(
hypFrame,
fixedForm,
randomForm,
fixedFormSimple,
returnModel = FALSE,
silent,

Arguments

hypFrame the hyperframe

fixedForm, randomForm, fixedFormSimple
Formulae for fixed effects, random effects and fixed effects without slopes re-
spectively

returnModel A boolean, should the entire model be returned? Otherwise the p-value and
coefficient vector are returned

silent A boolean, should error messages from spatstat.model::mppm be printed?

passed onto mppm

Value

A list contraining

pval The p-value for existence of gradients

coef The model coefficients

or a mppm model when returnModel is true

See Also

estGradients

fitLMMs 27

fitLMMs Fit linear (mixed) models for all probabilistic indices (Pls) and all
genes

Description

The PI is used as outcome variable in a linear (mixed) model, with design variables as regressors.
Separate models are fitted for every combination of gene and PI. fitLMMsSingle() is the workhorse
function for a single point pattern, fitSingleLmmModel() for a single feature in a single point pat-
tern.

getResults() extracts effect size estimates, standard errors and adjusted p-values for a certain pa-
rameter from a linear model.

Usage

fitLMMs(
obj,
pis = obj$pis,
fixedVars = NULL,
randomVars = NULL,
verbose = TRUE,
returnModels = FALSE,
Formula = NULL,
randomNested = TRUE,
features = getEstFeatures(obj),

)

fitLMMsSingle(
obj,
pi,
fixedVars,
randomVars,
verbose,
returnModels,
Formula,
randomNested,
features

)

getResults(obj, pi, parameter)

Arguments
obj The result object
pis Optional, the pis required. Defaults to all pis in the object
fixedVars Names of fixed effects
randomVars Names of random variables

verbose A boolean, should the formula be printed?

28

returnModels

Formula

randomNested

features

pi

parameter

Details

fitLMMs

a boolean: should the full models be returned? Otherwise only summary statis-
tics are returned

A formula; if not supplied it will be constructed from the fixed and random
variables

A boolean, indicating if random effects are nested within point patterns. See
details.

The features for which to fit linear mixed models. Defaults to all features in the
object

Passed onto fitLMMsSingle
The desired PI

The desired parameter

Genes or gene pairs with insufficient observations will be silently omitted. When randomVars is
provided as a vector, independent random intercepts are fitted for them by default. Providing them

separated by ’\’ or

2.9

> as in the Imer formulas is also allowed to reflect nesting structure, but the

safest is to construct the formula yourself and pass it onto fitLMMs.

It is by default assumed that random effects are nested within the point patterns. This means for
instance that cells with the same name but from different point patterns are assigned to different
random effects. Set ‘randomNested’ to FALSE to override this behaviour.

Value

For fitLMMs(), a list of fitted objects

For fitLMMsSingle(), a list of test results, if requested also the linear models are returned

For getResults(), the matrix with results, with p-values in ascending order

Estimate
se

pVal
PAd]j

See Also

buildDataFrame

Examples

The estimated PI
The corresponding standard error
The p-value

The Benjamini-Hochberg adjusted p-value

example(addWeightFunction, "smoppix")
1mmModels <- fitLMMs(yangObj, fixedVars = "day”, randomVars = "root")

" ”

res <- getResults(lmmModels, "nn", "Intercept”) #Extract the results

head(res)

fitPiModel

29

fitPiModel

Fit a linear model for an individual gene and PI combination

Description

Fit a linear model for an individual gene and PI combination

Usage

fitPiModel(Formula, dff, contrasts, Control, MM, Weight = NULL)

Arguments

Formula A formula; if not supplied it will be constructed from the fixed and random

variables

dff The dataframe

contrasts The contrasts to be used, see model.matrix

Control Control parameters

MM A boolean, should a mixed model be tried

Weight A weight variable
Value

A fitted model
See Also

fitLMMsSingle

fitSingleLmmModel Take an existing frame, add outcome and weight and fit Imer model

Description

Take an existing frame, add outcome and weight and fit Imer model

Usage

fitSingleLmmModel (ff, y, Control, Terms, modMat, MM, Assign, weights = NULL)

Arguments

ff

y

Control
modMat

MM

Assign, Terms
weights

The prepared frame

outcome vector

Control parameters

Design matrix of the fixed effects model
A boolean, should a mixed model be tried
Added to fitted fixed effects model
weights vector

30 getDesign Vars

Value

A fitted Imer model

getCoordsMat Extract coordinates from a point pattern or data frame

Description

Extract coordinates from a point pattern or data frame

Usage

getCoordsMat (x)

Arguments

X the point pattern, dataframe or matrix

Value

the matrix of coordinates

getDesignVars Extract design variables from a hyperframe

Description

Returns all design variables, both at the level of the point pattern and the level of the event

Usage
getDesignVars(x)
getPPPvars(

X,

exclude = c("tabObs", "centroids”, "owins”, "ppp"”, "pimRes”, "image"”, "nuclei")

)

getEventVars(x, exclude = c("x", "y", "z"))

Arguments
X The results list, output from estPis
exclude variables to exclude

Details

getDesignVars() returns all design variables, getPPPvars returns design variables related to the dif-
ferent images and getEventVars returns design variables related to the individual events

getElement

Value

A vector of design variables

getElement Extract en element from a matrix or vector

Description

Extract en element from a matrix or vector

Usage

getElement(x, e)

Arguments

X the matrix or vector

e The column or element name
Value

The desired element

getFeatures Extract all unique and estimated features from an object

Description

Extract all unique and estimated features from an object

Usage

getFeatures(x)

Arguments

X A hyperframe or a results list containing a hyperframe

Value

A vector of features

Examples
data(Yang)
hypYang <- buildHyperFrame(Yang,
coordVars = c("x", "y"),
imageVars = c("day”, "root"”, "section")
)

head(getFeatures(hypYang))

32 getHypFrame

getGp Get a gene pair from a vector or list

Description

When provided with argument "geneA—geneB", looks for this gene pair as well as for "geneB—
geneA" in the provided object.

Usage
getGp(x, gp, drop = TRUE, Collapse = "--", notFoundReturn = NULL)
Arguments
X The object in which to look
gp A character string describing the gene pair
drop A boolean, should matrix attributes be dropped in [] subsetting
Collapse The character separating the gene pair

notFoundReturn value to return if element is not found

Value

The element sought

Examples

mat <- cbind(
"genel--gene2" = c(1, 2),
"genel--gene3"” = c(2, 3)

)
getGp(mat, "gene3--genel")

getHypFrame Extract the hyperframe

Description

Extract the hyperframe

Usage

getHypFrame(x)

Arguments

X The hyperframe, or list containing one

Value

the hyperframe

getPiAndWeights 33

getPiAndWeights Build a matrix with pi and weights

Description

Build a matrix with pi and weights

Usage

getPiAndWeights(obj, gene, pi, piMat, prepMat, prepTab)

Arguments
obj A results object. For distances to fixed objects, the result of a call to estPis; for
nearest neighbour distances, the result of a call to addWeightFunction
gene A character string indicating the desired gene or gene pair (genes separated by
double hyphens)
pi character string indicating the desired PI
piMat A data frame. Will be constructed if not provided, for internal use.

prepMat, prepTab
Preconstructed objects to avoid looping over genes. For internal use mainly

Value

A matrix of two columns: pi estimate and weights

Im_from_wfit Add compoments to a result from Im.wfit to make it a minimally valid
Im object

Description

Add compoments to a result from Im.wfit to make it a minimally valid Im object

Usage

Im_from_wfit(obj, y, Terms, Assign)

Arguments
obj The Im.wfit() result
y the outcome variable

Terms, Assign Added to the object

Value

A object of class Im

34 loadBalanceBplapply

Examples

n<-7;p<-2

X <- matrix(rnorm(n * p), n, p) # no intercept!

y <= rnorm(n)

w <= rnorm(n)*2

Imw <- Im.wfit(x = X, y =y, w=w)

ImObject <- Im_from_wfit(lmw, y =y, Terms = terms(Y~X),
Assign = attr(model.matrix(~X), "assign"))

summary (ImObject)

anova(lmObject)

loadBalanceBplapply Parallel processing with BiocParallel with load balancing

Description

The vector to iterate over (iterator) is split into as many parts as there are cores available, such that
each core gets an equal load and overhead is minimized. The registered backend is then used by
default to multithread using bplapply.

Usage

loadBalanceBplapply(

iterator,

func,

loopFun = if (bpparam()$workers == 1) "lapply" else "bplapply”
)

Arguments

iterator The vector to iterate over

func The function to apply to each element

loopFun The looping function, can also be ’lapply’ for serial processing
Value

A list with the same length as iterator

Examples

library(BiocParallel)
loadBalanceBplapply (LETTERS, length)

makeDesign Var

35

makeDesignVar Make design variable by combining different design variables

Description

Make design variable by combining different design variables

Usage

makeDesignVar(x, designVars, sep = "_")
Arguments

X the design matrix

designVars the design variables to be combined

sep The string to separate the components
Value

a vector of design levels

makePairs An aux function to build gene pairs

Description

An aux function to build gene pairs

Usage

makePairs(genes)
Arguments

genes The genes to be combined
Value

A character vector of gene pairs

Examples

genes <- paste@("gene”, seq_len(4))
makePairs(genes)

36 nestRandom

named. contr.sum A version of contr.sum that retains names, a bit controversial but also
clearer

Description

A version of contr.sum that retains names, a bit controversial but also clearer

Usage

named.contr.sum(x, ...)
Arguments

Xy on passed on to contr.sum
Value

The matrix of contrasts

Note

After https://stackoverflow.com/questions/24515892/r-how-to-contrast-code-factors-and-retain-meaningful-
labels-in-output-summary

Examples

fac = sample(c(TRUE, FALSE), 10, replace = TRUE)
named. contr.sum(fac)

nestRandom Nest random effects within fixed variables, in case the names are the
same

Description

Nest random effects within fixed variables, in case the names are the same

Usage

nestRandom(df, randomVars, fixedVars)

Arguments
df The dataframe
randomVars The random variables
fixedVars The fixed variables
Value

The dataframe with adapted random Vars

plotCells 37

plotCells Plot the n cells with highest abundance of a feature

Description

After testing for within-cell patterns, it may be useful to look at the cells with the most events for
certain genes. These are plotted here, but the spatial location of the cells in the point pattern is lost!
The choice and ranking of cells is one of decreasing gene (pair) expression.

Usage
plotCells(
obj,
features = getFeatures(obj)[seq_len(3)1],
nCells = 100,
Cex = 1.5,

borderColVar = NULL,

borderCols = rev(palette()),

Mar = c(0.5, 0.1, 0.75, 0.1),

warnPosition = TRUE,

summaryFun = "min",

plotNuclei = !is.null(getHypFrame(obj)$nuclei),
nucCol = "lightblue”,

)
Arguments
obj A hyperframe, or an object containing one
features The features to be plotted, a character vector
nCells An integer, the number of cells to be plotted
Cex The point expansion factor
borderColvar The variable to colour borders of the cell
borderCols Colour palette for the borders
Mar the margins
warnPosition A boolean, should a warning be printed on the image that cells are not in their
original location?
summaryFun A function to summarize the gene-cell table in case multiple genes are plotted,
to determine which cells are plotted. Choose "min" for cells with the highest
minimum, or "sum" for highest total expression of the combination of genes
plotNuclei A boolean, should nuclei be added?
nucCol A character string, the colour in which the nucleus’ boundary is plotted
Additional arguments, currently ignored
Value

Plots cells with highest expression to the plotting window, returns invisible

38 plotExplore

Examples

example(addCell, "smoppix")
plotCells(hypFrame2, "genel")
plotCells(hypFrame2, "genel”, borderColVar = "condition”, nCells = 10)

plotExplore Plot a hyperframe with chosen features highlighted

Description

All points of the hyperframe are plotted in grey, with a subset of features highlighted in colour. A
selection of point patterns is plotted that fit in the window, by default the first six. This function is
meant for exploratory purposes as well as for visual confirmation of findings.

Usage

plotExplore(
hypFrame,
features = getFeatures(hypFrame)[seq_len(6)1],
pPPS,
numPps,
maxPlot = 1e+0@5,
Cex =1,
plotWindows = !is.null(hypFrame$owins),
plotPoints = TRUE,
plotNuclei = !is.null(hypFrame$nuclei),
piEsts = NULL,
Xlim = NULL,
Ylim = NULL,
Cex.main = 1.1,
Mar = c(0.5, 0.1, 0.9, 0.1),
titleVar = NULL,
piColourCell = NULL,
palCols = c("blue”, "yellow"),
nucCol = "lightblue”,
border = NULL,
CexLegend = 1.4,
CexLegendMain = 1.7,

Nrow,
Cols
)
Arguments
hypFrame The hyperframe
features A small number of features to be highlighted. Defaults to the first 5.
ppps The rownames or indices of the point patterns to be plotted. Defaults to maxi-
mum 99.
numPps The number of point patterns with highest expression to be shown. Ignored is

pps is given.

plotExplore

maxPlot

Cex, Cex.main

39

The maximum number of events plotted per point pattern

Point and title expansion factors, repsectively

plotWindows A boolean, should windows be plotted too?
plotPoints A boolean, should the molecules be plotted as points?
plotNuclei A boolean, should the nuclei be plotted?

piEsts Set of PI estimates, returned by estPis

X1lim, Y1im plotting limits

Mar the margins

titlevar Image variable to be added to the title

piColourCell PI by which to colour the cell

palCols Two extremes of the colour palette for colouring the cells
nucCol The colour for the nucleus window

border Passed on to plot.owin, and further to graphics::polygon

CexLegend, CexLegendMain

Expansion factor for the legend and its title respectively

Nrow Number of rows of the facet plot. Will be calculated if missing.
Cols colours vector named by features. If missing a default palette is used
Details

When cell-specific Pls are calculated ("nnCell’, "nnCellPair", "edge", "centroid"), the cells can
be coloured by them to investigate their spatial distribution, for instance those discovered through
Moran’s I statistic. The colour palette is taken from the output of palette(), so set that one to change

the colour scheme.

Value

Plots a facet of point patterns to output

Note

palCols sets the pseudo-continuous scale to colour cells.

Examples

example(buildHyperFrame, "smoppix")
plotExplore(hypYang)

plotExplore(hypYang, titleVar = "day")

plotExplore(hypYang, features = c(”SmRBRb"”, "SmTMO5b"”, "SmWER--SmAHK4f"))

40 plotTopResults

plotTopResults Plot the most significant findings for a certain PI

Description

Extract the most significant features for a certain PI and direction of effect, and plot them using an
appropriate function: either plotExplore or plotCells

Usage

plotTopResults(
hypFrame,
results,
pi,
effect = "Intercept”,
what = if (pi %in% c("nn”, "nnCell”)) {
"aggregated”
} else if (pi %in%
c("nnPair”, "nnPairCell”)) {
"colocalized”
} else if (pi %in% c("edge”,
"centroid")) {
"close”
1
siglevel = 0.05,
numFeats = 2,
piThreshold = switch(effect, Intercept = 0.5, @),
effectParameter = NULL,

Arguments

hypFrame The hyperframe with the data

results The results frame

pi A character string, specifying the probabilistic index

effect The name of the effect

what Which features should be detected? Can be abbreviated, see details.

siglevel The significance level

numFeats The number of features to plot

piThreshold The threshold for PI, a minimum effect size

effectParameter
A character string, indicating which parameter to look for when effect is pro-
vided

passed onto plotting functions plotCells or plotExplore

plotWf

Details

41

The "what" argument indicates if features far from or close to cell wall or centroid should be shown
for pi "edge" or "centroid", aggregated or regular features for "nn" and "nnCell" and colocalized
or antilocalized features for "nnPair" and "nnPairCell". Partial matching is allowed. Defaults to
small probabilistic indices: proximity, aggregation and colocalization. For fixed effects, provide the
name of the parameter, in combination with what. For instance, what = "regular", effect = "Varl"
and effectParameter = "levell" will return features more regular at levell of the variable than at

baseline.

Value

A plot from plotCells or plotExplore, throws an error when no features meet the criteria

See Also
plotCells,plotExplore,fitLMMs

Examples

example(fitLMMs, "smoppix")
plotTopResults(hypYang, lmmModels, "nn")

#For the sake of illustration, set high significance level, as example dataset is small

plotTopResults(hypYang, lmmModels, "nn”
effect = "day”, what = "reg”,
effectParameter = "day@", siglLevel = 1-1e-10)

)

plotWf Plot the variance weighting function

Description

The observation weights are plotted as a function of number of events. For a univariate PI, this is a
line plot, for a bivariate PI this is a scatterplot of majority gene as a function of minority gene, with
the weight represented as a colour scale. The minority respectively majority gene are the genes in

the gene pair with least and most events

Usage
plotWf(obj, pi = obj$pis[1])

Arguments

obj The result of a call to addWeightFunction

pi The PI for which to plot the weighting function
Value

For univariate PI, returns a line plot; for bivariate PI a ggplot object

Examples

example(addWeightFunction, "smoppix")
plotWf (yangObj, "nn"

42 smoppix

selfName Name a character vector after itself

Description

Name a character vector after itself

Usage

selfName(x)

Arguments

X The vector to be names

Value

the named vector

Examples

selfName (LETTERS[1:5])

smoppix smoppix: Analyze Single Molecule Spatial Omics Data Using the
Probabilistic Index

Description

Test for univariate and bivariate spatial patterns in spatial omics data with single-molecule resolu-
tion. The tests implemented allow for analysis of nested designs and are automatically calibrated to
different biological specimens. Tests for aggregation, colocalization, gradients and vicinity to cell
edge or centroid are provided.

Author(s)

Maintainer: Stijn Hawinkel <stijn.hawinkel@psb.ugent.be> (ORCID)

See Also
Useful links:

* https://github.com/sthawinke/smoppix
* Report bugs at https://github.com/sthawinke/smoppix/issues

https://orcid.org/0000-0002-4501-5180
https://github.com/sthawinke/smoppix
https://github.com/sthawinke/smoppix/issues

sortGp

43

sortGp Sort feature pairs alphabetically

Description

Sort feature pairs alphabetically

Usage

sortGp(featurePairs)

Arguments

featurePairs The feature pairs to be sorted

Value

A character vector of the same length as the features, with pairs sorted

splitWindow Split a number of plots into rows and columns

Description

Split a number of plots into rows and columns

Usage

splitWindow(x)

Arguments

X The number of plots

Value

A vector of length 2 with required number of rows and columns

44

sund

subSampleP Subsample a point pattern when it is too large

Description

Subsample a point pattern when it is too large

Usage

subSampleP(p, nSims, returnld = FALSE)

Arguments

p The point pattern

nSims The maximum size

returnld A boolean, should the id of the sampled elements be returned?
Value

A point pattern, subsampled if necessary

sund Helper function to spit gene pairs

Description

Helper function to spit gene pairs

Usage

sund(x, sep = "-=")

Arguments

X character string

sep The character used to split

Value

The split string

Examples

GenePair <- "genel--gene2"
sund(GenePair)

writeToXIsx 45

writeToX1lsx Write effect sizes and p-values results to an excel worksheet

Description

The results of the linear models are written to an excel spreadsheet with different tabs for every sign
(PI smaller than or larger than 0.5) of every PI, sorted by increasing p-value.

Usage

writeToXlsx(obj, file, overwrite = FALSE, digits = 3, siglLevel = 0.05)

Arguments
obj The results of linear model fitting
file The file to write the results to
overwrite A boolean, should the file be overwritten if it exists already?
digits An integer, the number of significant digits to retain for the PI, raw and adjusted
p-values
siglevel The significance level threshold to use for the adjusted p-values, only features
exceeding the threshold are written to the file. Set this parameter to 1 to write
all features
Details

If no feature exceeds the significance threshold for a certain pi and parameter combination, an
empty tab is created. For fixed effects, a single tab is written for PI differences of any sign. The
"baseline" tabs indicate the overall patterns, the other tabs are named after the fixed effects and
indicate departure from this baseline depending on this fixed effect

Value

Returns invisible with a message when writing operation successful, otherwise throws an error.

See Also

createWorkbook,writeData, addWorksheet, saveWorkbook

Examples

example(fitLMMs, "smoppix")
writeToX1sx(1mmModels, "tmpFile.xlsx")
file.remove("tmpFile.x1lsx")

46 Yang

Yang Spatial transcriptomics data of Selaginella moellendorffii roots

Description

Single-molecule spatial transcriptomics smFISH data of Selaginella moellendorffii roots of a repli-
cated experiment by (Yang et al. 2023). Molecule locations, gene identity and design variables are
included. Only a subset of the data, consisting of roots 1-3 and sections 1-5 is included in the pack-
age for computational and memory reasons. The data are in table format to illustrate conversion to
hyperframe using buildHyperFrame.

Usage
data(Yang)

Format
A data matrix
X,y Molecule coordinates

gene Character vector with gene identities

root,section,day Design variables

Source

doi:10.1016/j.cub.2023.08.030

References

Yang X, Poelmans W, Grones C, Lakehal A, Pevernagie J, Bel MV, Njo M, Xu L, Nelissen H, Rybel
BD, Motte H, Beeckman T (2023). “Spatial transcriptomics of a lycophyte root sheds light on root
evolution.” Curr. Biol., 33(19), 4069 - 4084. ISSN 0960-9822, doi:10.1016/j.cub.2023.08.030.

https://doi.org/10.1016/j.cub.2023.08.030
https://doi.org/10.1016/j.cub.2023.08.030

Index

+ datasets
Eng, 17
Yang, 46

* internal
smoppix, 42

addCell, 3, 6, 13, 16, 22
addDesign, 5

addNuclei, 5

addTabObs, 7
addWeightFunction, 8, 23, 33, 41
addWeightFunction (estPis), 20
addWorksheet, 45

as.owin, 16

bplapply, 34
buildDataFrame, 8, 15, 22, 28
buildFormula, 9
buildHyperFrame, 4, 9, 46
buildHyperFrame,data.frame-method
(buildHyperFrame), 9
buildHyperFrame,list-method
(buildHyperFrame), 9
buildHyperFrame,matrix-method
(buildHyperFrame), 9

buildHyperFrame, SpatialExperiment-method

(buildHyperFrame), 9

calcIndividualPIs, 11, /3
calcNNPI, /2, 12
calcWindowDistPI, 13
centerNumeric, 14
checkFeatures, 14
checkPi, 15
constructDesignVars, 15
convertToOwins, 3, 4, 6, 16
createWorkbook, 45
crossdistWrapper, 16

ecdf, 25

Eng, 17

EngRois (Eng), 17

estGradients, 17, 26
estGradientsSingle (estGradients), 17

47

estPis, 8, 12, 13,20, 22, 24, 33
estPisSingle (estPis), 20
evalWeightFunction, 23
extractResults, 24

findEcdfsCell, 24
findOverlap, 25
fitGradient, 719, 26
fitLMMs, 9, 24, 27,41
fitLMMsSingle, 29
fitLMMsSingle (fitLMMs), 27
fitPiModel, 29
fitSingleLmmModel, 29
formula, 9

getCoordsMat, 30
getDesignVars, 30

getElement, 31

getEventVars, 30

getEventVars (getDesignVars), 30
getFeatures, 31

getGp, 32

getHypFrame, 32
getPiAndWeights, 33
getPPPvars, 30

getPPPvars (getDesignVars), 30
getPvaluesGradient (estGradients), 17
getResults (fitLMMs), 27

hyperframe, 11, 46

Im_from_wfit, 33
loadBalanceBplapply, 34

makeDesignVar, 35
makePairs, 35
model .matrix, 29
mppm, 26

named. contr.sum, 36
nestRandom, 36

p.adjust, 18, 24
plotCells, 37, 40, 41
plotExplore, 38, 40, 41

48

plotTopResults, 40
plotWf, 41
pnhyper, 13
predict.scam, 23

saveWorkbook, 45

scam, 21

selfName, 42

smoppix, 42

smoppix-package (smoppix), 42
sortGp, 43

splitWindow, 43
subSampleP, 44

sund, 44

writeData, 45
writeToX1lsx, 45

Yang, 46

INDEX

	addCell
	addDesign
	addNuclei
	addTabObs
	buildDataFrame
	buildFormula
	buildHyperFrame
	calcIndividualPIs
	calcNNPI
	calcWindowDistPI
	centerNumeric
	checkFeatures
	checkPi
	constructDesignVars
	convertToOwins
	crossdistWrapper
	Eng
	estGradients
	estPis
	evalWeightFunction
	extractResults
	findEcdfsCell
	findOverlap
	fitGradient
	fitLMMs
	fitPiModel
	fitSingleLmmModel
	getCoordsMat
	getDesignVars
	getElement
	getFeatures
	getGp
	getHypFrame
	getPiAndWeights
	lm_from_wfit
	loadBalanceBplapply
	makeDesignVar
	makePairs
	named.contr.sum
	nestRandom
	plotCells
	plotExplore
	plotTopResults
	plotWf
	selfName
	smoppix
	sortGp
	splitWindow
	subSampleP
	sund
	writeToXlsx
	Yang
	Index

