
Package ‘ramr’
October 29, 2025

Title Detection of Rare Aberrantly Methylated Regions in Array and NGS
Data

Version 1.17.1

Description ramr is an R package for detection of epimutations (i.e.,
infrequent aberrant DNA methylation events)
in large data sets obtained by methylation profiling using array or
high-throughput methylation sequencing. In addition, package
provides functions to visualize found aberrantly methylated regions (AMRs),
to generate sets of all possible regions to be used as reference sets for
enrichment analysis, and to generate biologically relevant test data sets
for performance evaluation of AMR/DMR search algorithms.

SystemRequirements C++20, GNU make

NeedsCompilation yes

Depends R (>= 4.1)

Imports methods, data.table, Seqinfo, GenomicRanges, IRanges,
BiocGenerics, S4Vectors, Rcpp

LinkingTo Rcpp

Suggests RUnit, knitr, rmarkdown, ggplot2, gridExtra, annotatr, LOLA,
org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene, parallel,
doParallel, foreach, doRNG, matrixStats, EnvStats, ExtDist,
gamlss, gamlss.dist

License Artistic-2.0

URL https://github.com/BBCG/ramr

BugReports https://github.com/BBCG/ramr/issues

Encoding UTF-8

biocViews DNAMethylation, DifferentialMethylation, Epigenetics,
MethylationArray, MethylSeq

RoxygenNote 7.3.2

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ramr

git_branch devel

git_last_commit 87b137f

git_last_commit_date 2025-07-06

1

https://github.com/BBCG/ramr
https://github.com/BBCG/ramr/issues

2 getAMR

Repository Bioconductor 3.22

Date/Publication 2025-10-28

Author Oleksii Nikolaienko [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5910-4934>)

Maintainer Oleksii Nikolaienko <oleksii.nikolaienko@gmail.com>

Contents

getAMR . 2
getAMR.obsolete . 7
getUniverse . 9
plotAMR . 10
ramr.data . 12
simulateAMR . 13
simulateData . 15
simulateData.obsolete . 17

Index 20

getAMR Search for aberrantly methylated regions

Description

‘getAMR‘ returns a ‘GRanges‘ object with aberrantly methylated regions (AMRs / epimutations)
for all samples in a data set.

Usage

getAMR(
data.ranges,
data.samples = NULL,
data.coverage = NULL,
transform = c("identity", "linear"),
exclude.range = NULL,
compute = c("IQR", "beta+binom"),
compute.estimate = c("mom", "amle", "nmle"),
compute.weights = c("equal", "logInvDist", "sqrtInvDist", "invDist"),
combine = c("threshold", "comb-p"),
combine.threshold = ifelse(compute == "IQR", 5, 0.001),
combine.window = 300,
combine.min.cpgs = 7,
combine.min.width = 1,
combine.ignore.strand = FALSE,
ncores = NULL,
verbose = TRUE

)

https://orcid.org/0000-0002-5910-4934

getAMR 3

Arguments

data.ranges A ‘GRanges‘ object with genomic locations and corresponding beta values in-
cluded as metadata.

data.samples A character vector with sample names (e.g., a subset of metadata column names).
If ‘NULL‘ (the default), then all samples (metadata columns) are included in the
analysis.

data.coverage An optional ‘data.frame‘ object with coverage data. If provided, must be an
all-integer ‘data.frame‘, with the same dimensions and column names as the
‘data.ranges‘ metadata columns.

transform A character scalar specifying if beta values should be used as supplied ("iden-
tity", the default) or linearly transformed ("linear") to force all {0; 1} endpoint
(extreme) values within open (0, 1) interval using the following formula:

x′ =
x(N − 1) + 0.5

N

where x is the beta value before transformation, and N is the number of samples.
Such transformation is recommended only if beta values contain {0; 1} values
and coverage data is NOT available. See doi: 10.1037/1082-989X.11.1.54 and
Dealing with 0,1 values in a beta regression for more details.

exclude.range A numeric vector of length two. Unless ‘NULL‘ (the default), all ‘data.ranges‘
genomic locations with their median methylation beta value within the ‘ex-
clude.range‘ interval are filtered out.

compute A character scalar: when "IQR" (the default), AMR search based on interquan-
tile range is performed. When "beta+binom" - search is based on fitting op-
tionally weighted beta distribution (with the possibility of estimating binomial
probability of {0; 1} endpoint values). See Details section for explanation.

compute.estimate

A character scalar for the method of parameter estimation of beta distribution.
The default ("mom") stands for the method of moments based on the unbiased
estimator of variance and includes {0; 1} endpoints in calculation of moments
(mean, unbiased variance). Other options are "amle" (approximation of maxi-
mum likelihood estimation) and "nmle" (numeric maximum likelihood estima-
tion) - both ignore {0; 1} endpoints in calculations. See Details section for ex-
planation.

compute.weights

A character scalar for the weights assigned to individual observations (beta val-
ues) and used to compute weighted means and variance as described in "Com-
pute" section below. Four available weighing schemes result in different sensi-
tivity of outlier detection and rate of false positive (FP) findings: "equal" (the
default) is the least sensitive and gives least number of FPs, while "invDist" is
the most sensitive but may result in a very high number of FPs especially when
‘combine.threshold‘ is too high (1e-3 or higher). "logInvDist" is recommended
when one desires a balance between relatively low type I error rate and higher
detection sensitivity for both unique and non-unique AMRs.
If "equal", all weights are equal to 1 (wi = 1). Otherwise, weights of obser-
vations inversely depend on their distance from the median (thus emphasizing
outliers) and are calculated using the following formulas:

"logInvDist": wi = log
1

|M − xi|+ ϵ

https://doi.org/10.1037/1082-989x.11.1.54
https://stats.stackexchange.com/questions/31300/dealing-with-0-1-values-in-a-beta-regression

4 getAMR

"sqrtInvDist": wi =

√
1

|M − xi|+ ϵ

"invDist": wi =
1

|M − xi|+ ϵ

where xi is a beta value for i-th sample, M is a median of all beta values at this
genomic location, and ϵ is a very small number (= FLT_EPSILON ≈ 1.192093e-
07).

combine A character scalar for the method used to combine individual outlier genomic
positions into genomic intervals (ranges). When "threshold" (the default) is
used, simple thresholding is applied. More details are given in the "Combine"
subsection below.

combine.threshold

A numeric scalar setting the threshold for an outlier value. When ‘compute=="IQR"‘,
methylation beta values differing from the median value by at least ‘combine.threshold‘
interquartile ranges are considered to be outliers (the default: 5). When ‘com-
pute=="beta+binom"‘, all probability values not higher than ‘combine.threshold‘
are considered to be outliers (the default: 0.001).

combine.window A positive integer. All significant (survived the filtering stage) ‘data.ranges‘ ge-
nomic locations within this distance will be merged to create AMRs (the default:
300).

combine.min.cpgs

A single integer >= 1. All AMRs containing less than ‘combine.min.cpgs‘ sig-
nificant genomic locations are filtered out (the default: 7).

combine.min.width

A single integer >= 1 (the default). Only AMRs with the width of at least ‘com-
bine.min.width‘ are returned.

combine.ignore.strand

A boolean scalar to ignore strand information in the input ‘data.ranges‘ and
when outlier genomic positions are combined into genomic intervals (the de-
fault: FALSE).

ncores A single integer >= 1. Number of OpenMP threads for parallel computation
(the default: half of the available cores). Results of parallel processing are fully
reproducible.

verbose Boolean to report progress and timings (default: TRUE).

Details

In the provided data set, ‘getAMR‘ finds stretches of outlier beta values to identify rare long-range
methylation aberrations (epimutations) in one or several samples. As a rule, methods for differential
methylation analysis rely on between-group comparisons — ‘getAMR‘ performs this comparison
within-group, which is not only faster, but also more sensitive. The logic of computations is de-
scribed below.

Compute: This section describes computations that are performed in order to identify individ-
ual outlier beta values — but before values are deemed as outliers. At the moment, the two
supported methods are:

"IQR" When ‘compute=="IQR"‘, for every genomic location (CpG) in ‘data.ranges‘ the IQR-
normalized deviation from the median value is calculated using the following formula:

xIQRi =
xi −M

IQR

getAMR 5

where xi is a beta value for i-th sample, M and IQR are a median and an interquartile range
of all beta values at this genomic location, respectively.

"beta+binom" When ‘compute=="beta+binom"‘, for every genomic location (CpG), ‘getAMR‘
will estimate the probability of each beta value to occur. For all beta values inside the open
(0, 1) interval, beta distribution is used. For all {0; 1} endpoint (extreme) values where beta
distribution is not defined, binomial probability is calculated using coverage data (supplied
using ‘data.coverage‘ parameter).
Alpha α and beta β parameters of beta distribution can be estimated using one of the follow-
ing methods:

1. Method of moments (‘compute.estimate="mom"‘) based on (both optionally weighted)
mean and unbiased variance

sample mean = x̄ =

n∑
i=1

wixi

n∑
i=1

wi

unbiased variance = v̄ =

N∑
i=1

wi(xi − x̄)2∑N
i=1 wi − (

∑N
i=1 w

2
i /
∑N

i=1 wi)

where xi and wi are a beta value and its reliability weight for i-th sample.

α̂ = x̄

(
x̄(1− x̄)

v̄
− 1

)

β̂ = (1− x̄)

(
x̄(1− x̄)

v̄
− 1

)
Note: all beta values from the closed [0, 1] interval are used for calculation of arith-
metic mean value. For more details on used formulas, visit Weighted arithmetic mean,
Weighted variance with reliability weights, and Method of moments for beta distribution

2. Approximate maximum likelihood (‘compute.estimate="amle"‘) based on (both option-
ally weighted) geometric means of x and (1− x)

Ĝx =

(
n∏

i=1

xwi
i

)1/
∑n

i=1 wi

Ĝ(1−x) =

(
n∏

i=1

(1− xi)
wi

)1/
∑n

i=1 wi

where xi and wi are a beta value and its reliability weight for i-th sample.

α̂ ≈ 1
2 +

Ĝx

2(1− Ĝx − Ĝ(1−x))

β̂ ≈ 1
2 +

Ĝ(1−x)

2(1− Ĝx − Ĝ(1−x))

Note: only beta values from the open (0, 1) interval are used for calculation of geometric
means. For more details, visit Weighted geometric mean, and Maximum likelihood for
beta distribution

https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Mathematical_definition
https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Reliability_weights
https://en.wikipedia.org/wiki/Beta_distribution#Method_of_moments
https://en.wikipedia.org/wiki/Weighted_geometric_mean
https://en.wikipedia.org/wiki/Beta_distribution#Two_unknown_parameters_2
https://en.wikipedia.org/wiki/Beta_distribution#Two_unknown_parameters_2

6 getAMR

3. And a numerical maximum likelihood (‘compute.estimate="nmle"‘) which is yet to be
implemented.

After estimating parameters of beta distribution, probabilities of observed beta values from
the open (0, 1) interval are computed using regularized incomplete beta function Ix(α, β).
For more details, visit Cumulative distribution function for beta distribution.
Probabilities of {0; 1} endpoint values are computed using mean value (either arithmetic for
‘compute.estimate="mom"‘ or geometric for ‘compute.estimate="*mle"‘) using the follow-
ing formulas:

p0i = (1− x̄)k

p1i = x̄k

where p0i and p1i are probabilities of observing 0 or 1 for i-th sample, respectively, x̄ is a
mean of all beta values for this genomic position, and k is a sequencing coverage of this
genomic position for i-th sample.

Combine: This section describes how individual beta values are deemed as outliers and how
these outliers are combined into extended genomic regions (aberrantly methylated regions, AMRs,
or epimutations). The only method supported at the moment is thresholding as described below.

"threshold" This method applies a fixed threshold (specified using ‘combine.threshold‘ param-
eter) to all ‘xIQR‘ or probability values computed at the previous step. All observed beta
values that are passing this threshold (above or equal to the threshold for ‘xIQR‘; below or
equal in case of probability values) are considered to be outliers and therefore retained.
Next, for all outlier beta values per sample, corresponding genomic positions are merged into
genomic intervals using the window of ‘combine.window‘ and keeping the strand information
unless ‘combine.ignore.strand‘ is TRUE.

"comb-p" This method of combining outliers into genomic ranges is yet to be implemented.

Resulting genomic intervals are then filtered: only the regions containing at least ‘combine.min.cpgs‘
outliers and which are at leas as wide as ‘combine.min.width‘ are reported back.
As a final step, the following average values are computed for every aberrantly methylated region:

1. arithmetic mean of distances of all outlier beta values to a median beta value (‘dbeta‘)
2. if ‘compute=="IQR"‘, arithmetic mean of xIQR values of all outlier genomic position (‘xiqr‘)

OR
3. if ‘compute=="beta+binom"‘, geometric mean of probability values of all outlier genomic

position (‘pval‘)

Value

The output is a ‘GRanges‘ object that contains all the aberrantly methylated regions (AMRs / epimu-
tations) for all ‘data.samples‘ samples in ‘data.ranges‘ object. The following metadata columns may
be present:

• ‘revmap‘ – integer list of significant CpGs (‘data.ranges‘ genomic locations) that are included
in this AMR region

• ‘ncpg‘ – number of significant CpGs within this AMR region

• ‘sample‘ – contains an identifier of a sample to which corresponding AMR belongs

• ‘dbeta‘ – average deviation of beta values for significant CpGs from their corresponding me-
dian values

• ‘pval‘ – geometric mean of p-values for significant CpGs

• ‘xiqr‘ – average IQR-normalised deviation of beta values for significant CpGs from their cor-
responding median values

https://en.wikipedia.org/wiki/Beta_distribution#Cumulative_distribution_function

getAMR.obsolete 7

Note

NA values within metadata columns of ‘data.ranges‘ are silently dropped in all computations.

See Also

plotAMR for plotting AMRs, getUniverse for info on enrichment analysis, simulateAMR and
simulateData for the generation of simulated test data sets, and ‘ramr‘ vignettes for the description
of usage and sample data.

Examples

data(ramr)
getAMR(data.ranges=ramr.data, data.samples=ramr.samples,

compute="beta+binom", compute.estimate="amle",
combine.min.cpgs=5, combine.window=1000, combine.threshold=1e-3)

getAMR.obsolete [OBSOLETE] Search for aberrantly methylated regions

Description

This function is fully functional but obsolete. It will remain a part of the package for consistency, as
it was used in ‘ramr‘ publication (doi:10.1093/bioinformatics/btab586). Please use faster and more
capable getAMR instead.

‘getAMR.obsolete‘ returns a ‘GRanges‘ object with all the aberrantly methylated regions (AMRs)
for all samples in a data set.

Usage

getAMR.obsolete(
data.ranges,
data.samples = NULL,
ramr.method = c("IQR", "beta", "wbeta", "beinf"),
iqr.cutoff = 5,
pval.cutoff = 0.05,
qval.cutoff = NULL,
merge.window = 300,
min.cpgs = 7,
min.width = 1,
exclude.range = NULL,
cores = max(1, parallel::detectCores() - 1),
verbose = TRUE,
...

)

Arguments

data.ranges A ‘GRanges‘ object with genomic locations and corresponding beta values in-
cluded as metadata.

https://doi.org/10.1093/bioinformatics/btab586

8 getAMR.obsolete

data.samples A character vector with sample names (a subset of metadata column names). If
‘NULL‘ (the default), then all samples (metadata columns) are included in the
analysis.

ramr.method A character scalar: when ramr.method is "IQR" (the default), the filtering based
on interquantile range is used (‘iqr.cutoff‘ value is then used as a threshold).
When "beta", "wbeta" or "beinf" - filtering based on fitting non-weighted (‘En-
vStats::ebeta‘), weighted (‘ExtDist::eBeta‘) or zero-and-one inflated (‘gamlss.dist::BEINF‘)
beta distributions, respectively, is used, and ‘pval.cutoff‘ or ‘qval.cutoff‘ (if not
‘NULL‘) is used as a threshold. For "wbeta", weights directly correlate with
bin contents (number of values per bin) and inversly - with the distances from
the median value, thus narrowing the estimated distribution and emphasizing
outliers.

iqr.cutoff A single integer >= 1. Methylation beta values differing from the median value
by more than ‘iqr.cutoff‘ interquartile ranges are considered to be significant
(the default: 5).

pval.cutoff A numeric scalar (the default: 5e-2). Bonferroni correction of ‘pval.cutoff‘ by
the length of the ‘data.samples‘ object is used to calculate ‘qval.cutoff‘ if the
latter is ‘NULL‘.

qval.cutoff A numeric scalar. Used as a threshold for filtering based on fitting non-weighted
or weighted beta distributions: all p-values lower than ‘qval.cutoff‘ are consid-
ered to be significant. If ‘NULL‘ (the default), it is calculated using ‘pval.cutoff‘

merge.window A positive integer. All significant (survived the filtering stage) ‘data.ranges‘ ge-
nomic locations within this distance will be merged to create AMRs (the default:
300).

min.cpgs A single integer >= 1. All AMRs containing less than ‘min.cpgs‘ significant
genomic locations are filtered out (the default: 7).

min.width A single integer >= 1 (the default). Only AMRs with the width of at least
‘min.width‘ are returned.

exclude.range A numeric vector of length two. If not ‘NULL‘ (the default), all ‘data.ranges‘
genomic locations with their median methylation beta value within the ‘ex-
clude.range‘ interval are filtered out.

cores A single integer >= 1. Number of processes for parallel computation (the de-
fault: all but one cores). Results of parallel processing are fully reproducible
when the same seed is used (thanks to doRNG).

verbose boolean to report progress and timings (default: TRUE).
... Further arguments to be passed to ‘EnvStats::ebeta‘ or ‘ExtDist::eBeta‘ func-

tions.

Details

In the provided data set, ‘getAMR.obsolete‘ compares methylation beta values of each sample with
other samples to identify rare long-range methylation aberrations (epimutations). For ‘ramr.method=="IQR"‘:
for every genomic location (CpG) in ‘data.ranges‘ the IQR-normalized deviation from the median
value is calculated, and all CpGs with such normalized deviation not smaller than the ‘iqr.cutoff‘ are
retained. For ‘ramr.method distribution are estimated by means of ‘EnvStats::ebeta‘ (beta distribu-
tion), ‘ExtDist::eBeta‘ (weighted beta destribution), or ‘gamlss.dist::BEINF‘ (zero and one inflated
beta distribution) functions, respectively. These parameters are then used to calculate the probabil-
ity values, followed by the filtering when all CpGs with p-values not greater than ‘qval.cutoff‘ are
retained. Another filtering is then performed to exclude all CpGs within ‘exclude.range‘. Next, the
retained (significant) CpGs are merged within the window of ‘merge.window‘, and final filtering is
applied to AMR genomic ranges (by ‘min.cpgs‘ and ‘min.width‘).

getUniverse 9

Value

The output is a ‘GRanges‘ object that contains all the aberrantly methylated regions (AMRs) for all
‘data.samples‘ samples in ‘data.ranges‘ object. The following metadata columns may be present:

• ‘revmap‘ – integer list of significant CpGs (‘data.ranges‘ genomic locations) that are included
in this AMR region

• ‘ncpg‘ – number of significant CpGs within this AMR region

• ‘sample‘ – contains an identifier of a sample to which corresponding AMR belongs

• ‘dbeta‘ – average deviation of beta values for significant CpGs from their corresponding me-
dian values

• ‘pval‘ – geometric mean of p-values for significant CpGs

• ‘xiqr‘ – average IQR-normalised deviation of beta values for significant CpGs from their cor-
responding median values

See Also

plotAMR for plotting AMRs, getUniverse for info on enrichment analysis, simulateAMR and
simulateData for the generation of simulated test data sets, and ‘ramr‘ vignettes for the description
of usage and sample data.

Examples

data(ramr)
getAMR.obsolete(ramr.data, ramr.samples, ramr.method="beta",

min.cpgs=5, merge.window=1000, qval.cutoff=1e-3, cores=2)

getUniverse Merges, filters and outputs all genomic regions of a given ‘GRanges‘
object

Description

‘getUniverse‘ returns a ‘GRanges‘ object with all the genomic regions in a data set, that can be used
for AMR enrichment analysis

Usage

getUniverse(data.ranges, merge.window = 300, min.cpgs = 7, min.width = 1)

Arguments

data.ranges A ‘GRanges‘ object with genomic locations and corresponding beta values in-
cluded as metadata.

merge.window A single integer >= 1. All ‘data.ranges‘ genomic locations within this distance
will be merged (the default: 300).

min.cpgs A single integer >= 1. All genomic regions containing less than ‘min.cpgs‘
genomic locations are filtered out (the default: 7).

min.width A single integer >= 1 (the default). Only regions with the width of at least
‘min.width‘ are returned.

10 plotAMR

Details

In the provided data set ‘getUniverse‘ merges and outputs all the genomic regions that satisfy filter-
ing criteria, thus creating a ‘GRanges‘ object to be used as a reference set of genomic regions for
AMR enrichment analysis.

Value

The output is a ‘GRanges‘ object that contain all the genomic regions in ‘data.ranges‘ object (in
other words, all potential AMRs).

See Also

getAMR for identification of AMRs, plotAMR for plotting AMRs, simulateAMR and simulateData
for the generation of simulated test data sets, and ‘ramr‘ vignettes for the description of usage and
sample data.

Examples

data(ramr)
universe <- getUniverse(ramr.data, min.cpgs=5, merge.window=1000)

identify AMRs
amrs <- getAMR(

data.ranges=ramr.data, compute="beta+binom",
combine.min.cpgs=5, combine.window=1000, combine.threshold=1e-3

)

AMR enrichment analysis using LOLA
library(LOLA)
download LOLA region databases from http://databio.org/regiondb
hg19.extdb.file <- system.file("LOLAExt", "hg19", package="LOLA")
if (file.exists(hg19.extdb.file)) {

hg19.extdb <- loadRegionDB(hg19.extdb.file)
runLOLA(amrs, universe, hg19.extdb, cores=1, redefineUserSets=TRUE)

}

plotAMR Plot aberrantly methylated regions

Description

‘plotAMR‘ uses ‘ggplot2‘ to visualize aberrantly methylated regions (AMRs) at particular genomic
locations.

Usage

plotAMR(
data.ranges,
amr.ranges,
data.samples = NULL,
window = 300,

plotAMR 11

ignore.strand = FALSE,
highlight = NULL,
title = NULL,
labs = c("genomic position", "beta value"),
transform = c("identity", "log1p", "log10"),
limits = NULL,
breaks = NULL,
verbose = TRUE

)

Arguments

data.ranges A ‘GRanges‘ object with genomic locations and corresponding beta values in-
cluded as metadata.

amr.ranges An output of ‘getAMR‘ - a ‘GRanges‘ object that contain aberrantly methylated
regions (AMRs).

data.samples A character vector with sample names (a subset of metadata column names) to
be included in the plot. If ‘NULL‘ (the default), then all samples (metadata
columns) are included.

window An optional integer constant to expand genomic ranges of the ‘amr.ranges‘ ob-
ject (the default: 300).

ignore.strand Boolean to ignore strand of AMR region. Default: FALSE.

highlight An optional list of samples to highlight. If NULL (the default), will contain
sample IDs from the ‘sample‘ metadata column of ‘amr.ranges‘ object.

title An optional title for the plot. If NULL (the default), plot title is set to a genomic
location of particular AMR.

labs Optional axis labels for the plot. Default: c("genomic position", "beta value").

transform Optional transformation of y-axis. Default: "identity" (no transformation).

limits Optional limits of y-axis. When default (NULL), limits are c(NA,1) for ‘trans-
form=="log10"‘ and c(0,1) otherwise.

breaks Optional breaks of y-axis. When default (NULL), breaks are ‘10**(seq(from=-
5, to=0, length.out=6))‘ for ‘transform=="log10"‘ and ‘seq(from=0, to=1, length.out=6)‘
otherwise.

verbose Boolean to report progress and timings (default: TRUE).

Details

For every non-overlapping genomic location from ‘amr.ranges‘ object, ‘plotAMR‘ plots and outputs
a line graph of methylation beta values taken from ‘data.ranges‘ for all samples from ‘data.samples‘.
Samples bearing significantly different methylation profiles (’sample’ column of ‘amr.ranges‘ ob-
ject) are highlighted.

Value

The output is a list of ‘ggplot‘ objects.

See Also

getAMR for identification of AMRs, getUniverse for info on enrichment analysis, simulateAMR
and simulateData for the generation of simulated test data sets, and ‘ramr‘ vignettes for the de-
scription of usage and sample data.

12 ramr.data

Examples

data(ramr)
plotAMR(data.ranges=ramr.data, amr.ranges=ramr.tp.unique[1])
library(gridExtra)
do.call("grid.arrange",

c(plotAMR(data.ranges=ramr.data, amr.ranges=ramr.tp.nonunique), ncol=2))

ramr.data Simulated Illumina HumanMethylation 450k data set with 3000 CpGs
and 100 samples

Description

Data was simulated using GSE51032 data set as described in the reference. Current data set
("ramr.data") contains beta values for 10000 CpGs and 100 samples ("ramr.samples"), and
carries 6 unique ("ramr.tp.unique") and 15 non-unique ("ramr.tp.nonunique") true positive
AMRs containing at least 10 CpGs with their beta values increased/decreased by 0.5.

Usage

data(ramr)

Format

Objects of class "GRanges" ("ramr.data, ramr.tp.unique,ramr.tp.nonunique") and "character"
("ramr.samples").

References

Nikolaienko et al., 2020 (bioRxiv)

Examples

data(ramr)
amrs <- getAMR(

data.ranges=ramr.data, compute="IQR",
combine.min.cpgs=5, combine.window=1000, combine.threshold=5

)
plotAMR(data.ranges=ramr.data, amr.ranges=amrs[1])
plotAMR(data.ranges=ramr.data, amr.ranges=ramr.tp.nonunique[4],

highlight=c("sample7","sample8","sample9"))

https://doi.org/10.1101/2020.12.01.403501

simulateAMR 13

simulateAMR Simulate a set of aberrantly methylated regions

Description

‘simulateAMR‘ returns a ‘GRanges‘ object containing a set of randomly selected aberrantly methy-
lated regions (AMRs) to be used as an input for the ‘simulateData‘ method.

Usage

simulateAMR(
template.ranges,
nsamples,
exclude.ranges = NULL,
regions.per.sample = 1,
samples.per.region = 1,
sample.names = NULL,
merge.window = 300,
min.cpgs = 7,
max.cpgs = Inf,
min.width = 1,
dbeta = 0.25

)

Arguments

template.ranges

A ‘GRanges‘ object with genomic locations (same object must be supplied to
this and to the ‘simulateData‘ functions).

nsamples A single integer >= 1 indicating the number of samples to which AMRs will be
assigned.

exclude.ranges A ‘GRanges‘ object with genomic locations. None of the simulated AMRs in
the output will overlap with any of regions from ‘exclude.ranges‘. If ‘NULL‘
(the default), AMRs are not restricted by their genomic location.

regions.per.sample

A single integer >= 1 (the default). Number of AMRs to be assigned to every
sample. Message is shown and the ‘regions.per.sample‘ value is limited to ‘max-
nAMR (where ‘maxnAMR‘ is the maximum number of potential AMRs for the
‘template.ranges‘).

samples.per.region

A single integer >= 1 (the default). Number of samples to which the same AMR
will be assigned. Message is shown and the ‘samples.per.region‘ value is limited
to ‘nsamples‘ if the former is greater than the latter.

sample.names A character vector with sample names. If ‘NULL‘ (the default), sample names
will be computed as ‘paste0("sample", seq_len(nsamples))‘. When specified,
the length of the ‘sample.names‘ vector must not be smaller than the value of
‘nsamples‘.

merge.window A positive integer. All ‘template.ranges‘ genomic locations within this distance
will be merged to create a list of potential AMRs (which will be later filtered
from regions overlapping with any regions from the ‘exclude.ranges‘).

14 simulateAMR

min.cpgs A single integer >= 1. All AMRs containing less than ‘min.cpgs‘ genomic loca-
tions are filtered out. The default: 7.

max.cpgs A single integer >= 1. All AMRs containing more than ‘max.cpgs‘ genomic
locations are filtered out. The default: ‘Inf‘.

min.width A single integer >= 1 (the default). Only AMRs with the width of at least
‘min.width‘ are returned.

dbeta A single non-negative numeric value in the range [0,1] or a numeric vector of
such values (with as many elements as there are AMRs). Used to populate the
‘dbeta‘ metadata column, defines a desired absolute deviation of corresponding
AMR from the median for the ‘simulateData‘ function.

Details

Using provided template (‘GRanges‘ object) ‘simulateAMR‘ randomly selects genomic regions
satisfying various criteria (number of CpGs, width of the region) and assigns them to samples
according to specified parameters (number of AMRs per sample, number of samples per AMR). Its
output is meant to be used as the set of true positive AMRs for the ‘simulateData‘ function.

Value

The output is a ‘GRanges‘ object that contains a subset of aberrantly methylated regions (AMRs)
randomly selected from all the possible AMRs for the provided ‘template.ranges‘ object. The fol-
lowing metadata columns are included:

• ‘revmap‘ – integer list of ‘template.ranges‘ genomic locations that are included in this AMR
region

• ‘ncpg‘ – number of ‘template.ranges‘ genomic locations within this AMR region

• ‘sample‘ – an identifier of a sample to which corresponding AMR belongs

• ‘dbeta‘ – equals to supplied ‘dbeta‘ parameter

See Also

simulateData for the generation of simulated test data sets, getAMR for identification of AMRs,
plotAMR for plotting AMRs, getUniverse for info on enrichment analysis, and ‘ramr‘ vignettes
for the description of usage and sample data.

Examples

data(ramr)
set.seed(1)
amrs.unique <-

simulateAMR(ramr.data, nsamples=4, regions.per.sample=2,
min.cpgs=5, merge.window=1000, dbeta=0.2)

amrs.nonunique <-
simulateAMR(ramr.data, nsamples=3, exclude.ranges=amrs.unique,

samples.per.region=2, min.cpgs=5, merge.window=1000)

simulateData 15

simulateData Template-based simulation of methylation data sets

Description

‘simulateData‘ generates aberration-free methylation data using an experimental data set as a tem-
plate, and further introduces methylation aberrations if ‘GRanges‘ object containing a set of aber-
rantly methylated regions was provided. The output can be used to evaluate performance of algo-
rithms for search of differentially (DMR) or aberrantly (AMR) methylated regions.

Usage

simulateData(
template.ranges,
nsamples,
amr.ranges = NULL,
sample.names = NULL,
compute = "beta+binom",
compute.estimate = c("mom", "amle", "nmle"),
compute.weights = c("equal", "logInvDist", "sqrtInvDist", "invDist"),
ncores = NULL,
verbose = TRUE

)

Arguments

template.ranges

A ‘GRanges‘ object with genomic locations and corresponding methylation beta
values included as metadata (the same object must be supplied to this and to the
‘simulateAMR‘ functions).

nsamples A single integer >= 1 indicating the number of samples to generate.

amr.ranges A ‘GRanges‘ object with genomic locations of methylation aberrations (epimu-
tations). If ‘NULL‘ (the default), no aberrations is introduced, and function
will return "smoothed" data set. If supplied, ‘GRanges‘ object must contain the
following metadata columns:

• ‘revmap‘ – integer list of ‘template.ranges‘ genomic locations that are in-
cluded in this AMR region

• ‘sample‘ – an identifier of a sample to which corresponding AMR belongs.
Must be among the supplied or auto generated ‘sample.names‘

• ‘dbeta‘ – absolute deviation to be introduced. Must be numeric within the
closed interval [0,1] or NA. When NA - the resulting beta value for the
corresponding genomic position will also be NA

Such an object can be obtained using simulateAMR method or manually.

sample.names A character vector with sample names. If ‘NULL‘ (the default), sample names
will be auto generated. When specified, the length of the ‘sample.names‘ vector
must be equal to the value of ‘nsamples‘.

compute A single string for the distribution to fit to the data. Currently accepts "beta+binom"
(the default) only, which stands for endpoint-inflated beta distribution. See De-
tails section and getAMR method description for additional explanations.

16 simulateData

compute.estimate

A single string for the method of parameter estimation of beta distribution. The
default ("mom") stands for the method of moments based on the unbiased es-
timator of variance and includes {0;1} endpoints in calculation of moments
(mean, unbiased variance). Other options are "amle" (approximation of max-
imum likelihood estimation) and "nmle" (numeric maximum likelihood esti-
mation) - both ignore {0;1} endpoints in calculations. More details on these
methods are given in getAMR method description.

compute.weights

A single string for the method to compute optional sample weights that are
used during estimation of beta distribution parameters. If default ("equal"), all
weights are equal. Otherwise, weight of a value equals to a natural logarithm
of inverse absolute distance of this value to the sample median ("logInvDist"),
a square root of inverse absolute distance of this value to the sample median
("sqrtInvDist"), or an inverse absolute distance of this value to the sample me-
dian ("invDist"). Using weighted parameter estimation allows to increase sen-
sitivity of outlier detection. More details on weighted parameter estimation are
given in getAMR method description.

ncores A single integer >= 1 for the number of OpenMP threads for parallel compu-
tation. By default (NULL), function will use half of available cores. When
the same random seed is set, results of this function are always identical (re-
producible), even when more than one core is used (at a cost of serial random
number generation).

verbose boolean to report progress and timings (default: TRUE).

Details

For every genomic location in the template data set (‘GRanges‘ object with genomic locations and
corresponding methylation beta values included as metadata) ‘simulateData‘ does the following:

• estimates parameters of beta distribution

• in the same input, calculates frequencies of zero and one values (endpoints; whenever present)

• uses estimated parameters of beta distribution and probabilities (observed frequencies) of
{0;1} values to generate ‘nsamples‘ random values by means of ‘stats::rbeta‘ function (for
beta values) and/or ‘stats::rbinom‘ function (for {0;1} endpoint values, according to their fre-
quencies and therefore probabilities).

This results in "smoothed" data set that has biologically relevant distribution of methylation val-
ues at every genomic location, but does not contain methylation aberrations. If the ‘amr.ranges‘
parameter points to a ‘GRanges‘ object with aberrations, every AMR is then introduced into the
"smoothed" data set as following: if mean methylation beta value for AMR region across all sam-
ples in the "smoothed" data set is above (below) 0.5 then all beta values for the sample defined
by the ‘sample‘ metadata column are decreased (increased) by the absolute value specified in the
‘dbeta‘ metadata column. Resulting data sets with (or without) AMR together with the ‘amr.ranges‘
set of true positive aberrations can be used as test data set to evaluate performance of algorithms for
search of differentially (DMR) or aberrantly (AMR) methylated regions.

Value

The output is a ‘GRanges‘ object with genomic ranges that are equal to the genomic ranges of the
provided template and metadata columns containing generated methylation beta values for ‘nsam-
ples‘ samples. If ‘amr.ranges‘ object was supplied, then randomly generated beta values will be
modified accordingly.

simulateData.obsolete 17

Note

NA values within metadata columns of ‘template.ranges‘ are silently dropped in all computations.
NA values will also not appear in the result of this function, unless parameters of beta distribu-
tion and/or probabilities of zeros or ones cannot be estimated (e.g., due to too many NA values in
‘template.ranges‘ metadata).

See Also

simulateAMR for the generation of random methylation aberrations, getAMR for identification of
AMRs, plotAMR for plotting AMRs, getUniverse for info on enrichment analysis, and ‘ramr‘
vignettes for the description of usage and sample data.

Examples

data(ramr)
set.seed(1)
amrs <-

simulateAMR(ramr.data, nsamples=10, regions.per.sample=3,
samples.per.region=1, min.cpgs=5, merge.window=1000)

noise <-
simulateAMR(ramr.data, nsamples=10, regions.per.sample=20,

exclude.ranges=amrs, min.cpgs=1, max.cpgs=1, merge.window=1)
noisy.data <-
simulateData(template.ranges=ramr.data, nsamples=10, amr.ranges=c(amrs,noise))

plotAMR(data.ranges=noisy.data, amr.ranges=amrs[1])

simulateData.obsolete [OBSOLETE] Template-based simulation of methylation data sets

Description

This function is fully functional but obsolete. It will remain a part of the package for consistency, as
it was used in ‘ramr‘ publication (doi:10.1093/bioinformatics/btab586). Please use faster and more
capable simulateData instead.

‘simulateData.obsolete‘ generates aberration-free methylation data using an experimental data set
as a template, and further introduces methylation aberrations if ‘GRanges‘ object containing a set
of aberrantly methylated regions was provided. The output can be used to evaluate performance of
algorithms for search of differentially (DMR) or aberrantly (AMR) methylated regions.

Usage

simulateData.obsolete(
template.ranges,
nsamples,
amr.ranges = NULL,
sample.names = NULL,
min.beta = 0.001,
max.beta = 0.999,
cores = max(1, parallel::detectCores() - 1),
verbose = TRUE

)

https://doi.org/10.1093/bioinformatics/btab586

18 simulateData.obsolete

Arguments

template.ranges

A ‘GRanges‘ object with genomic locations and corresponding beta values in-
cluded as metadata (same object must be supplied to this and to the ‘simu-
lateAMR‘ functions).

nsamples A single integer >= 1 indicating the number of samples to generate.

amr.ranges A ‘GRanges‘ object with genomic locations of (rare) methylation aberrations.
If ‘NULL‘ (the default), no aberrations is introduced, and function will return
"smoothed" data set. If supplied, ‘GRanges‘ object must contain the following
metadata columns:

• ‘revmap‘ – integer list of ‘template.ranges‘ genomic locations that are in-
cluded in this AMR region

• ‘sample‘ – an identifier of a sample to which corresponding AMR belongs.
Must be among the supplied or auto generated ‘sample.names‘

• ‘dbeta‘ – absolute deviation to be introduced. Must be numeric within the
range c(0,1) or NA. When NA - the resulting beta value for the correspond-
ing genomic position will also be NA

Such an object can be obtained using simulateAMR method or manually.

sample.names A character vector with sample names. If ‘NULL‘ (the default), sample names
will be computed as ‘paste0("sample", seq_len(nsamples))‘. When specified,
the length of the ‘sample.names‘ vector must be equal to the value of ‘nsamples‘.

min.beta A single numeric within the range c(0,1). All beta values in the generated data
set below this value will be assigned this value. The default: 0.001.

max.beta A single numeric within the range c(0,1). All beta values in the generated data
set above this value will be assigned this value. The default: 0.999.

cores A single integer >= 1. Number of processes for parallel computation (the de-
fault: all but one cores). Results of parallel processing are fully reproducible
when the same seed is used (thanks to doRNG).

verbose boolean to report progress and timings (default: TRUE).

Details

For every genomic location in the template data set (‘GRanges‘ object with genomic locations
and corresponding beta values included as metadata) ‘simulateData.obsolete‘ estimates the param-
eters of beta distribution by means of ‘EnvStats::ebeta‘ function, and then uses estimated param-
eters to generate ‘nsamples‘ random beta values by means of ‘stats::rbeta‘ function. This results
in "smoothed" data set that has biologically relevant distribution of beta values at every genomic
location, but does not contain methylation aberrations. If the ‘amr.ranges‘ parameter points to a
‘GRanges‘ object with aberrations, every AMR is then introduced into the "smoothed" data set as
following: if mean methylation beta value for AMR region across all samples in the "smoothed"
data set is above (below) 0.5 then all beta values for the sample defined by the ‘sample‘ metadata
column are decreased (increased) by the absolute value specified in the ‘dbeta‘ metadata column.
Resulting data sets with (or without) AMR together with the ‘amr.ranges‘ set of true positive aber-
rations can be used as test data set to evaluate performance of algorithms for search of differentially
(DMR) or aberrantly (AMR) methylated regions.

Value

The output is a ‘GRanges‘ object with genomic ranges that are equal to the genomic ranges of the
provided template and metadata columns containing generated methylation beta values for ‘nsam-

simulateData.obsolete 19

ples‘ samples. If ‘amr.ranges‘ object was supplied, then randomly generated beta values will be
modified accordingly.

See Also

simulateAMR for the generation of random methylation aberrations, getAMR for identification of
AMRs, plotAMR for plotting AMRs, getUniverse for info on enrichment analysis, and ‘ramr‘
vignettes for the description of usage and sample data.

Examples

data(ramr)
amrs <-

simulateAMR(ramr.data, nsamples=10, regions.per.sample=3,
samples.per.region=1, min.cpgs=5, merge.window=1000)

noise <-
simulateAMR(ramr.data, nsamples=10, regions.per.sample=20,

exclude.ranges=amrs, min.cpgs=1, max.cpgs=1, merge.window=1)
noisy.data <-
simulateData.obsolete(ramr.data, nsamples=10, amr.ranges=c(amrs,noise),

cores=2)
plotAMR(noisy.data, amr.ranges=amrs[1])

Index

∗ data
ramr.data, 12

∗ sets
ramr.data, 12

getAMR, 2, 7, 10, 11, 14–17, 19
getAMR.obsolete, 7
getUniverse, 7, 9, 9, 11, 14, 17, 19

plotAMR, 7, 9, 10, 10, 14, 17, 19

ramr.data, 12
ramr.samples (ramr.data), 12
ramr.tp.nonunique (ramr.data), 12
ramr.tp.unique (ramr.data), 12

simulateAMR, 7, 9–11, 13, 15, 17–19
simulateData, 7, 9–11, 14, 15, 17
simulateData.obsolete, 17

20

	getAMR
	getAMR.obsolete
	getUniverse
	plotAMR
	ramr.data
	simulateAMR
	simulateData
	simulateData.obsolete
	Index

