Package ‘bioassayR’

October 20, 2025
Type Package
Title Cross-target analysis of small molecule bioactivity
Version 1.47.0
Date 2024-10-21
Author Tyler Backman, Ronly Schlenk, Thomas Girke
Maintainer Thomas Girke <tgirke@citrus.ucr.edu>
Depends R (>=3.5.0), DBI (>= 0.3.1), RSQLite (>= 1.0.0), methods,
Matrix, rjson, BiocGenerics (>= 0.13.8)
Imports XML, ChemmineR

Suggests BiocStyle, RCurl, biomaRt, knitr, knitcitations,
knitrBootstrap, testthat, ggplot2, rmarkdown

Description bioassayR is a computational tool that enables simultaneous analysis of thou-
sands of bioassay experiments performed over a diverse set of compounds and biological tar-
gets. Unique features include support for large-scale cross-target analyses of both public and cus-
tom bioassays, generation of high throughput screening fingerprints (HTSFPs), and an op-
tional preloaded database that provides access to a substantial portion of publicly available bioac-
tivity data.

URL https://github.com/girke-lab/bioassayR

BugReports https://github.com/girke-lab/bioassayR/issues
License Artistic-2.0

biocViews ImmunoOncology, MicrotitrePlateAssay, CellBasedAssays,
Visualization, Infrastructure, Datalmport, Bioinformatics,
Proteomics, Metabolomics

LazyLoad yes

Collate AllClasses.R AllGenerics.R BioassayDB-accessors.R
bioassay-accessors.R loadingData.R queries.R
bioassaySet-accessors.R bayesian-cross-reactivity.R
similarity.R

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/bioassayR

git_branch devel

git_last_commit c4df10b

git_last commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-10-20

https://github.com/girke-lab/bioassayR
https://github.com/girke-lab/bioassayR/issues

2 activeAgainst

Contents
ACtIVEAZAINSE o o i e e e e e e e e e e e e e 2
activeTargets L 3
addBioassaylndex L e 4
addDataSource e 5
allCids 5
allTargets e e e 6
assaySetTargets 7
bioactivityFingerprint 8
bioassay-class L e 9
BioassayDB-class 11
bioassaySet-class e e e 12
connectBioassayDB 13
crossReactivityProbability o 14
disconnectBioassayDB L 16
dropBioassay 17
dropBioassaylndex 17
GELASSAY e e e e e e e 18
GELASSAYS .« o o e e e e e e e e e e e e 19
getBioassaySetByCids L 20
inactiveTargets 21
loadBioassay e e e e e e 22
loadldMapping e 22
newBioassayDB L 23
parsePubChemBioassay 24
perTargetMatrix e 25
queryBioassayDB oL 27
samplebioassay 28
scaleBioassaySet L e e 29
screenedAtLeast L. L L e e e e 30
SeleCtiVeAZAINSt e 31
targetSelectivity L L e e e e e 32
translateTargetld 33
trinarySimilarity oL e 34

Index 37

activeAgainst Show compounds active against a specified target
Description

Returns a data. frame of small molecule cids which show activity against a specified target. Each
row name represents a cid which shows activity, and the total screens and the percent active are
shown in their respective columns.

Usage

activeAgainst(database, target)

activeTargets 3

Arguments

database A BioassayDB database to query.

target A string or integer containing a target_id referring to a target of interest.
Value

A data.frame where the row names represent each compound showing activity against the speci-
fied target. The second column shows the number of distinct assays in which this cid was screened
against the target, and the first column shows the percentage of these which exhibited activity.

Author(s)
Tyler Backman

Examples

connect to a test database

extdata_dir <- system.file("extdata", package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqglite")
sampleDB <- connectBioassayDB(sampleDatabasePath)

get cids of compounds which show activity against target 116516899
myCids <- row.names(activeAgainst(sampleDB, "166897622"))

disconnect from database
disconnectBioassayDB(sampleDB)

activeTargets Show targets against which a small molecule is active

Description

Returns a data. frame of the targets, which a given small molecule (specified by cid) shows activity
against. For each target, a single row shows the total number of distinct screens it participated in,
and the fraction of those in which it exhibits activity.

Usage

activeTargets(database, cid)

Arguments

database A BioassayDB database to query.

cid A string or integer containing a cid referring to a small molecule.
Value

A data. frame where the row names represent each target the specified compound shows activity
against, and the columns show the total screens and the fraction in which the compound was active.

Author(s)

Tyler Backman

4 addBioassaylIndex

See Also

inactiveTargets

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

get targets that compound 2244 shows activity against
myTargets <- row.names(activeTargets(sampleDB, "2244"))

disconnect from database
disconnectBioassayDB(sampleDB)

addBioassayIndex Index a bioassayR database

Description

Indexing a bioassayR database before performing queries will drastically improve query perfor-
mance. However, it will also slow down loading large amounts of additional data. Therefore, we
recommend loading the majority of your data, using this function to index, and then performing
queries.

Usage

addBioassayIndex(database)

Arguments

database A BioassayDB database to be indexed.

Author(s)

Tyler Backman

Examples

create test database

library(bioassayR)

filename <- tempfile()

mydb <- newBioassayDB(filename, indexed=FALSE)

load any data at this point

add database index
addBioassayIndex(mydb)

perform queries here
close and delete test database

disconnectBioassayDB(mydb)
unlink(filename)

addDataSource 5

addDataSource Add a new data source to a bioassayR database

Description

This function adds a new data source (name/description and version) for tracking data within a
bioassayR database. This can be used later to identify the source of any specific activity data within
the database, or to limit analysis to data from specific source(s).

Usage

addDataSource(database, description, version)

Arguments
database A BioassayDB database to add a new data source to.
description A string containing a name or description of the new data source. This exact
value will be used as a key for querying and loading data from this source.
version A string with the version and/or date of the data source. This can be used to
track the date in which a non-version data source was mirrored.
Author(s)
Tyler Backman
Examples

create a test database

library(bioassayR)

filename <- tempfile()

mydb <- newBioassayDB(filename, indexed=FALSE)

add a new data source
addDataSource(mydb, description="bioassayR_sample”, version="1.0")

list data sources loaded
mydb

close and delete database
disconnectBioassayDB(mydb)

unlink(filename)
allCids List compound cids in a BioassayDB, bioassay, bioassaySet, or
target matrix (dgCMatrix) object
Description

Returns a vector of small molecule cids contained within a BioassayDB, bioassay, bioassaySet,
or target matrix (dgCMatrix) object. It can optionally only returned cids labeled as active.

6 allTargets

Usage

allCids(inputObject, activesOnly = FALSE)

Arguments

inputObject A BioassayDB, bioassay, bioassaySet, or target matrix (dgCMatrix) object
to query.

activesOnly logical. Should only active compounds be returned? Defaults to FALSE.

Value

A vector of distinct small molecule cids. No particular order is guranteed.

Author(s)

Tyler Backman

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

get all compound cids
myCids <- allCids(sampleDB)

get only active compound cids
activeCids <- allCids(sampleDB, activesOnly = TRUE)

disconnect from database
disconnectBioassayDB(sampleDB)

allTargets List distinct target(s) in a BioassayDB, bioassay, bioassaySet, or
target matrix (dgCMatrix) object

Description
Returns a vector of target ids contained within a BioassayDB, bioassay, bioassaySet, or target
matrix (dgCMatrix) object.

Usage

allTargets(inputObject)

Arguments

inputObject A BioassayDB, bioassay, bioassaySet, or target matrix (dgCMatrix) object
to query.

assaySetTargets 7

Value

A vector of distinct target ids. No particular order is guaranteed.

Author(s)

Tyler Backman

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

get all target ids
myTargets <- allTargets(sampleDB)

disconnect from database
disconnectBioassayDB(sampleDB)

assaySetTargets Return targets of assays in a bioassaySet object

Description

This takes a bioassaySet of multiple assays and returns a vector of the targets of each, with the
assay identifiers themselves (aids) as names. If a single assay contains multiple targets, these will
all be listed.

Usage

assaySetTargets(assays)

Arguments
assays A bioassaySet object with data from multiple assays, some of which may share
a common target.
Value

A character vector of the targets of each, with the assay identifiers themselves (aids) as names

Author(s)

Tyler William H Backman

Examples

bioactivityFingerprint

connect to a test database

extdata_dir <- system.file("extdata", package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqglite")
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve three assays
assays <- getAssays(sampleDB, c("673509","103","105"))

assays

get the targets for these assays
myTargets <- assaySetTargets(assays)

myTargets

disconnect from sample database
disconnectBioassayDB(sampleDB)

bioactivityFingerprint

Create an ChemmineR FPset object that contains bioactivity results
for a given set of compounds and targets.

Description

Returns a custom binary descriptor fingerprint for a given set of query cids and target compounds,
based on the activity data within a bioassaySet object.

Usage

bioactivityFingerprint(bioassaySet, targets = FALSE, summarizeReplicates = "activesFirst")

Arguments

bioassaySet

targets

A bioassaySet object to generate fingeprints from. For a given compound
set, this can be generated from a database using the getBioassaySetByCids
function.

An optional list of target id(s) to consider when creating the binary fingerprint.
If a listed target is not in the bioassaySet, or has no active scores it will still
be accepted, but create a fingerprint with all zeros for this location. The binary
order of this list is preserved, so that direct comparison and combination of
resulting FPset objects created with the same target list can be performed. If
omitted, the target list for the bioassaySet object will be used, as returned by
the allTargets function.

summarizeReplicates

Optionally allows users to choose how replicates (multiple assays sharing com-

mon compounds and targets) are resolved if they disagree. If ’activesFirst’ any

active score will take precedence over an inactive. If ‘'mode’ the resulting score

will be computed according to the statistical mode using as.numeric(names(which.max(table(x))
Users can also optionally pass a function here which (for each cid/target pair)

will receive a list of ’2’ (active) and ’1° (inactive) values, and can then return

any desired number as a summary to be included in the resulting table. For a

large matrix, the default option ’activesFirst’ offers the lowest computational

overhead.

bioassay-class 9

Value

The returned object is a standard ChemmineR FPset object, and can be used as described in the
ChemmineR documentation. The order and number of binary bits for each compound can be set
using the targets option, enabling the combination or comparison of multiple objects created with
the same target list. If a single compound has both active and inactive scores for the same target, it
will be resolved according to the confictResolver option.

Author(s)
Tyler William H Backman

See Also

Functions: getBioassaySetByCids, getAssays, perTargetMatrix

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve all targets in database
targetlList <- allTargets(sampleDB)

get an activity fingerprint object for selected CIDs
queryCids <- c("2244", "3715", "2662", "3033", "133021",
"44563999", "44564000", "44564001", "44564002")
myAssaySet <- getBioassaySetByCids(sampleDB, queryCids)
myFp <- bioactivityFingerprint(bioassaySet=myAssaySet)

disconnect from sample database
disconnectBioassayDB(sampleDB)

bioassay-class Class "bioassay”

Description
This class represents the data from a bioassay experiment, where a number of small molecules are
screened against a defined target (such as a protein or living organism).

Objects from the Class

Objects can be created by calls of the form new("bioassay”, ...).

Slots

aid: Object of class "character” containing the assay id. For assays sourced from NCBI Pub-
Chem, this should be a string containing the PubChem AID (assay identifier).

source_id: Object of class "character”. This should match the description for a data source
loaded via the addDataSource() function.

10 bioassay-class

assay_type: Object of class "character”. A string noting the type of bioactivity experiment,
such as “confirmatory” to represent a confirmatory assay.

organism: Object of class "character”. A string noting the scientific name of the assays target
organism.

scoring: Object of class "character”. A string noting the scoring method used for the bioactivity
experiment. For example, IC50 or EC50.

targets: Object of class "character”. A string or vector of strings containing the target iden-
tifier indicating the assay target. In the case of protein targeted assays sourced from NCBI
PubChem, this should be a genbank ID.

target_types: Object of class "character”. A string of text or vector of strings, representing (in
the same order) the target types for each target. For example “protein” or “cell.”

scores: Object of class "data.frame” containing the bioactivity data to be loaded. This must be
a 3 column data frame, with each row representing the bioactivity results of a single molecule.
The first column represents the compound id (cid), which must be a unique value for each
structurally distinct molecule. The second column is a binary value representing activity
(1=active, O=inactive, NA=inconclusive or untested) for the given assay. The last column
represents a score, scored by the method specified with the addBioassay () function. Missing
or non-applicable values in any column should be represented by a NA value.

Methods

aid signature(x = "bioassay"): ...

aid<- signature(x = "bioassay”): ...
assay_type signature(x = "bioassay”): ...
assay_type<- signature(x = "bioassay"): ...
organism signature(object = "bioassay"”): ...
organism<- signature(object = "bioassay"): ...
scores signature(x = "bioassay"): ...

scores<- signature(x = "bioassay”): ...
scoring signature(x = "bioassay"): ...
scoring<- signature(x = "bioassay”): ...
show signature(object = "bioassay"”): ...
source_id signature(x = "bioassay”): ...
source_id<- signature(x = "bioassay”): ...
target_types signature(x = "bioassay”): ...
target_types<- signature(x = "bioassay"): ...
targets signature(x = "bioassay”): ...

targets<- signature(x = "bioassay”): ...

Author(s)

Tyler Backman

See Also

Related classes: bioassaySet, bioAssayDB.

BioassayDB-class 11

Examples
showClass("bioassay”)

create a new bioassay object from sample data

data(samplebioassay)

myassay <- new("bioassay”,aid="1000", source_id="test", targets="116516899",
target_types="protein”, scores=samplebioassay)

myassay

BioassayDB-class Class "BioassayDB"

Description

This class holds a connection to a bioassayR sqlite database.

Objects from the Class

Objects can be created by calls of the form BioassayDB("datbasePath™).

Slots

database: Object of class "SQLiteConnection” ~~

Methods

queryBioassayDB signature(object = "BioassayDB"): ...

show signature(object = "BioassayDB"): ...

Author(s)

Tyler Backman

See Also

Related classes: bioassaySet, bioassay.

Examples

showClass("”"BioassayDB")

12

bioassaySet-class

bioassaySet-class Class "bioassaySet”

Description

This class stores a large number of bioactivity scores from multiple assays and experiments as a
single sparse matrix.

Objects from the Class

Objects can be created with several functions including getAssays and getBioassaySetByCids.

Slots

activity: Object of class "dgCMatrix" a sparse matrix of assays (rows) vs compounds (columns)
where O represents untested, NA represents inconclusive, 1 represents inactive, and 2 repre-
sents activity

scores: Object of class "dgCMatrix" numeric activity scores with the same dimensions as activity

targets: Object of class "dgCMatrix” a binary matrix of the targets (columns) for each aid (rows)
listed in the activity and scores matrix. A 1 represents a target for the given assay, and a 0
represents that the given target was not used in the assay.

sources: Object of class "data.frame" data sources for each assay. There must be three columns
titled ’source_id’, ’description’, and ’version.” Each row represents a data source for these data.
The ’source_id’ must be a numeric (integer) index that matches to those in the "source_id’ slot.

source_id: Object of class "integer"” the source_id for each assay as an integer. The length

should equal the number of rows in the activity matrix, with element names for each assay id
(aid).

assay_type: Object of class "character” the experiment type for each assay. The length should
equal the number of rows in the activity matrix, with element names for each assay id (aid).

organism: Object of class "character"” scientific name of each target species. The length should
equal the number of rows in the activity matrix, with element names for each assay id (aid).

scoring: Object of class "character” scoring method used in the scores matrix. The length
should equal the number of rows in the activity matrix, with element names for each assay id
(aid).

target_types: Object of class "character” type of target for each target id, where the names
and order match the columns in the target matrix. The length should equal the number of rows
in the activity matrix, with element names for each assay id (aid).

Methods

activity signature(x = "bioassaySet"): ...
activity<- signature(x = "bioassaySet"): ...
scores signature(x = "bioassaySet"”): ...
scores<- signature(x = "bioassaySet"): ...
targets signature(object = "bioassaySet"”): ...
targets<- signature(object = "bioassaySet"”): ...

sources signature(x = "bioassaySet"): ...

connectBioassayDB 13

sources<- signature(x = "bioassaySet"): ...
source_id signature(x = "bioassaySet"): ...
source_id<- signature(x = "bioassaySet"): ...
assay_type signature(object = "bioassaySet"”): ...
assay_type<- signature(x = "bioassaySet”): ...
organism signature(x = "bioassaySet"): ...
organism<- signature(x = "bioassaySet"): ...
scoring signature(x = "bioassaySet”): ...
scoring<- signature(x = "bioassaySet"): ...
target_types signature(x = "bioassaySet"”): ...

target_types<- signature(x = "bioassaySet"): ...

Author(s)
Tyler William H Backman

See Also

Related classes: bioassay, bioAssayDB.

Examples

showClass("bioassaySet")

connectBioassayDB Create a BioassayDB object connected to the specified database file

Description

This function returns a BioassayDB object for working with a pre-existing bioassayR database,
already located on the users filesystem. Users can download pre-built databases for use with this
feature from http://chemmine.ucr.edu/bioassayr

Usage

connectBioassayDB(databasePath, writeable = FALSE)

Arguments

databasePath Full path to the database file to be opened.

writeable logical. Should the database allow data to be modified and written to?
Value

BioassayDB for details see ?"BioassayDB-class"
Author(s)

Tyler Backman

http://chemmine.ucr.edu/bioassayr

14 crossReactivityProbability

Examples

create a test database

library(bioassayR)

filename <- tempfile()

mydb <- newBioassayDB(filename, indexed=FALSE)
disconnectBioassayDB(mydb)

connect to test database
mydb <- connectBioassayDB(filename)

close and delete database
disconnectBioassayDB(mydb)
unlink(filename)

crossReactivityProbability
Compute the probability that compounds in a compound vs target ma-
trix are promiscuous binders

Description

Queries a compound vs target sparse matrix as generated by the perTargetMatrix function, and
computes the probability P(theta > threshold) for each compound, where theta is the probability
that the compound would be active in any given new assay against a novel untested target. This code
implements the Bayesian Modeling of Cross-Reactive Compounds method described by Dancik, V.
et al. (see references). This method assumes that the number of observed active targets out of total
tested targets follows a binomial distribution. A beta conjugate prior distribution is calculated based
on the hit ratios (active/total tested) for a reference database.

Usage

crossReactivityProbability(inputMatrix,
threshold=0.25,
prior=list(hit_ratio_mean=0.0126, hit_ratio_sd=0.0375))
crossReactivityPrior(database, minTargets=20, category=FALSE, activesOnly=FALSE)

Arguments

inputMatrix A dgCMatrix sparse matrix as computed by the perTargetMatrix function
with the option useNumericScores = FALSE. The cross-reactivity probability
will be computed for each compound (column) based on the active and inactive
scores present. In most cases, the matrix should be generated with getBioassaySetByCids
rather than getAssays, so that it includes all relavent activity data for each com-
pound, rather than a selected set of assays.

threshold A numeric value between 0 and 1 reflecting the desired hit ratio cutoff for com-
puting the probability a compound is a promiscuous binder. This is the proba-
bility P(theta > threshold) if theta is the probability that the compound will
be a hit in a new assay. The default of 0.25 was used in Dancik, V. et al. (see
references).

crossReactivityProbability 15

prior

database
minTargets

category

activesOnly

Details

A list with elements hit_ratio_mean and hit_ratio_sd representing the
mean and standard deviation of hit ratios across a large reference database of
highly-screened compounds. This can be generated with crossReactivityPrior
and fed to crossReactivityProbability. Computing this for a large database
can take a very long time, so defaults are provided based on the April 6th 2016
version of the pre-built protein target only PubChem BioAssay database pro-
vided for use with bioassayR. Priors should be recomputed with appropriate
reference data if working with a new type of experimental data, i.e. in-vivo
rather than in-vitro assays.

A BioassayDB database to query, for calculating a prior probability distribution.

The minimum number of distinct screened targets for a compound to be included
in the prior probability distribution.

Include only once in prior hit ratio counts any targets which share a common an-
notation of this category (as used by the translateTargetId and loadIdMapping
functions). For example, with the PubChem BioAssay database one could use
"UniProt", "kClust", or "domains" to get selectivity by targets with unique UniProt
identifiers, distinct amino acid sequences, or Pfam domains respectively (the lat-
ter is also known as domain selectivity).

logical. Should only compounds with at least one active score be used in com-
puting prior? Defaults to FALSE.

This function models the hit-ratio theta (fraction of distinct targets which are active) for a given
compound with a standard beta-binomial bayesian model. The observed activity values for a com-
pound tested against N targets with n actives is assumed to follow a binomial distribution:

N _
p(n|theta) = (n) theta™(1 — theta)™ "

With a beta conjugate prior distribution where the parameters a and b (alpha and beta) are calculated
from the prior mean and standard deviation of hit ratios for a large number of highly screened
compounds as follows: mean = a/(a+b) and sd* = ab/((a+b)?(a+ b+ 1)). This function then
computes and returns the posterior probability P(theta > threshold) using the beta distribution

function pbeta.

Value

crossReactivityProbability returns an numeric vector containing the probability that the hit
ratio (active targets / total targets) is greater than value threshold for each compound in the
inputMatrix. crossReactivityPrior returns a list in the prior format described above.

Author(s)

Tyler Backman

References

Dancik, V. et al. Connecting Small Molecules with Similar Assay Performance Profiles Leads to
New Biological Hypotheses. J Biomol Screen 19, 771-781 (2014).

See Also

pbeta for the beta distribution function. perTargetMatrix targetSelectivity

16 disconnectBioassayDB

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve activity data for three compounds
assays <- getBioassaySetByCids(sampleDB, c("2244","3715","133021"))

collapse assays into perTargetMatrix
targetMatrix <- perTargetMatrix(assays)

compute P(theta > 0.25)
crossReactivityProbability(targetMatrix)

disconnect from sample database
disconnectBioassayDB(sampleDB)

disconnectBioassayDB Disconnect the database file from a BioassayDB object

Description

This function disconnects the underlying sqlite database from a BioassayDB object. This is a critical
step for writeable databases, but can be omitted for read only databases.

Usage

disconnectBioassayDB(database)

Arguments

database A codeBioassayDB object to be disconnected.

Author(s)

Tyler Backman

Examples

create a test database

library(bioassayR)

filename <- tempfile()

mydb <- newBioassayDB(filename, indexed=FALSE)

disconnect from database
mydb <- connectBioassayDB(filename)

delete database file
unlink(filename)

dropBioassay 17

dropBioassay Delete an assay from a bioassayR database

Description

Allows the user to delete all records from the database associated with a given assay identifier.

Usage

dropBioassay(database, aid)

Arguments
database A BioassayDB database to remove an assay from.
aid The assay identifier string (aid), matching an aid for an assay loaded into the
database.
Author(s)
Tyler Backman
Examples

create sample database and load with data

myDatabaseFilename <- tempfile()

mydb <- newBioassayDB(myDatabaseFilename, indexed=FALSE)

extdata_dir <- system.file("extdata”, package="bioassayR")

assayDescriptionFile <- file.path(extdata_dir, "exampleAssay.xml")
activityScoresFile <- file.path(extdata_dir, "exampleScores.csv")

myAssay <- parsePubChemBioassay("1000", activityScoresFile, assayDescriptionFile)
addDataSource(mydb, description="PubChem BioAssay", version="unknown")
loadBioassay(mydb, myAssay)

delete the loaded assay
dropBioassay(mydb, "1000")

disconnect from and delete sample database
disconnectBioassayDB(mydb)
unlink(myDatabaseFilename)

dropBioassayIndex Remove index from a bioassayR database

Description

Indexing a bioassayR database before performing queries will drastically improve query perfor-
mance. However, it will also slow down loading large amounts of additional data. Therefore, it may
be necessary to use this index to remove an index from a database before adding large quantities of
data. Afterwards, the index can be re-generated using the addBioassayIndex function.

18

Usage

dropBioassayIndex(database)

Arguments

database A BioassayDB database to have the index removed.

Author(s)

Tyler Backman

Examples

create test database

library(bioassayR)

filename <- tempfile()

mydb <- newBioassayDB(filename, indexed=TRUE)

remove database index
dropBioassayIndex(mydb)

load new data into database here

reactivate index
addBioassayIndex(mydb)

close and delete test database
disconnectBioassayDB(mydb)
unlink(filename)

getAssay

getAssay Retrieve a bioassay

Description

Retrieves a bioassay as a bioassay object from a bioassayR database by identifier.

Usage

getAssay(database, aid)

Arguments

database A BioassayDB database to query.

aid The assay identifier string (aid), matching an aid for an assay loaded into the

database.

Value

A bioassay object containing the requested assay.

getAssays 19

Author(s)

Tyler Backman

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve an assay
assay <- getAssay(sampleDB, "673509")
assay

disconnect from sample database
disconnectBioassayDB(sampleDB)

getAssays Retrieve multiple bioassays from a database

Description

Retrieves a list of aids as a single bioassaySet matrix object

Usage

getAssays(database, aids)

Arguments
database A BioassayDB database to query.
aids One or more assay identifier strings (aid), matching aid(s) for assays loaded into
the database.
Value

A bioassaySet object containing data from the specified assays.

Author(s)
Tyler William H Backman

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve three assays
assays <- getAssays(sampleDB, c("673509","103","105"))
assays

20 getBioassaySetByCids

disconnect from sample database
disconnectBioassayDB(sampleDB)

getBioassaySetByCids Create bioassaySet sparse matrix object with activity data only for
specified compounds

Description

Takes a list of compounds, and creates a bioassaySet sparse matrix object with the activity data
for these compounds only, not including activity data from other compounds in the same assays.

Usage

getBioassaySetByCids(database, cids)

Arguments

database A BioassayDB database to query.

cids One or more compounds IDs of interest.
Value

A bioassaySet object containing data from the specified cids.

Author(s)

Tyler William H Backman

Examples

connect to a test database

extdata_dir <- system.file("extdata", package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqglite")
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve activity data on 3 compounds
activitySet <- getBioassaySetByCids(sampleDB, c("2244","3715","237"))
activitySet

disconnect from sample database
disconnectBioassayDB(sampleDB)

inactiveTargets 21

inactiveTargets Takes a single cid and returns a table of the proteins it has been found
inactive against.

Description

Returns a data. frame of all targets a single cid (compound) has been found inactive against, and
the number of times it has been found inactive in distinct assay experiments. If a compound has
been found both active and inactive in different assays, it will be listed among these results.

Usage

inactiveTargets(database, cid)

Arguments

database A BioassayDB database to query.

cid A string or integer containing a cid referring to a small molecule.
Value

A data. frame where the row names represent each target the specified compound shows inactivity
against, and the column shows the number of assays in which it was found to be inactive.

Author(s)

Tyler Backman

See Also

activeTargets

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

get targets that compound 2244 shows inactivity against
myCidInactiveTargets <- row.names(inactiveTargets(sampleDB, "2244"))

disconnect from database
disconnectBioassayDB(sampleDB)

22 loadldMapping

loadBioassay Add an assay to the database

Description

Loads the results of a bioassay experiment (stored as a bioassay object) into the specified database.
The data source specified in the bioassay object be added to the database with addDataSource
before loading. If the assay identifier (aid) is already present in the database, an error is returned
and no additional data is loaded.

Usage

loadBioassay(database, bioassay)

Arguments

database A BioassayDB database to load the data into.

bioassay A bioassay object containing the data to load.

Author(s)

Tyler Backman

Examples

create sample database
myDatabaseFilename <- tempfile()
mydb <- newBioassayDB(myDatabaseFilename, indexed=FALSE)

parse example assay data

extdata_dir <- system.file("extdata", package="bioassayR")

assayDescriptionFile <- file.path(extdata_dir, "exampleAssay.xml")
activityScoresFile <- file.path(extdata_dir, "exampleScores.csv")

myAssay <- parsePubChemBioassay("”1000", activityScoresFile, assayDescriptionFile)

load bioassay into database
addDataSource(mydb, description="PubChem BioAssay", version="unknown")
loadBioassay(mydb, myAssay)

disconnect from and delete sample database
disconnectBioassayDB(mydb)
unlink(myDatabaseFilename)

loadIdMapping Load a target identifier mapping into a bioassayR database

Description

Loads an identifier mapping for a bioassay target (stored in the database as an NCBI GI number) to
another protein target naming system. Common uses include UniProt identifiers, similarity clusters,
and common names.

newBioassayDB 23

Usage

loadIdMapping(database, target, category, identifier)

Arguments
database A writable BioassayDB database to insert data into.
target A single protein target NCBI GI number.
category The specified identifier type of the data being loaded, such as *UniProt’.
identifier A character object with the new identifier. This should be length one, and the
function should be re-ran to add multiple identifiers.
Author(s)
Tyler Backman
References

http://www.ncbi.nlm.nih.gov/protein NCBI Protein Database http://www.uniprot.org UniProt Pro-
tein Database

See Also

translateTargetId

Examples

create sample database
myDatabaseFilename <- tempfile()
mydb <- newBioassayDB(myDatabaseFilename, indexed=FALSE)

load a sample translation from GI 6686268 to UniProt P11712
loadIdMapping(mydb, "6686268", "UniProt", "P11712")

get UniProt identifier(s) for GI Number 6686268
UniProtIds <- translateTargetId(mydb, "6686268", "UniProt")
UniProtlIds

disconnect from and delete sample database
disconnectBioassayDB(mydb)
unlink(myDatabaseFilename)

newBioassayDB Create a new bioassayR database

Description
This function creates a new bioassayR database at the specified filesystem location, and returns a
BioassayDB object connected to the new database.

Usage

newBioassayDB(databasePath, writeable = TRUE, indexed = FALSE)

24 parsePubChemBioassay

Arguments

databasePath Full path to the database file to be created.
writeable logical. Should the database allow data to be modified and written to?

indexed logical. Should a performance enhancing index be created? The default is false,
as typically an index is added only after initial data is loaded. Data loading is
much slower into an already indexed database.

Author(s)

Tyler Backman

Examples

get a temporary filename
library(bioassayR)
filename <- tempfile()

create a new bioassayR database
mydb <- newBioassayDB(filename, indexed=FALSE)

close and delete database
disconnectBioassayDB(mydb)
unlink(filename)

parsePubChemBioassay Parse PubChem Bioassay Data

Description

Parses a PubChem Bioassay experimental result from two required files (a csv file and an XML
description) into a bioassay object.

Usage
parsePubChemBioassay(aid, csvFile, xmlFile, duplicates = "drop”,
missingCid = "drop"”, scoreRegex = "inhibition|ic50|ki|gi50|ec50|ed50|1c50")
Arguments
aid The assay identifier (aid) for the assay to be parsed.
csvFile A CSV file for a given assay, as downloaded from PubChem Bioassay.
xmlFile An XML description file for a given assay, as downloaded from PubChem Bioas-
say.
duplicates Specifies how duplicate CIDs in the same assay are treated. If drop’ is specified,
only the first of each duplicated cid is kept and a warning is returned. If "FALSE’
processing will stop with an error if duplicates are present. If "TRUE’ duplicates
will be included without warning, which may cause erroneous results with other
bioassayR functions that assume a unique cid list for each assay.
missingCid A value of either *drop’ or a logical value of FALSE. If "FALSE’ processing will

stop with an error for any input compounds with an empty cid string. If *drop’
is specified, a warning will be issued and these compounds will be skipped.

perTargetMatrix 25

scoreRegex A regular expression (perl compatible, case insensitive) to be matched to the
column names in the CSV header, to identify relavent score rows. If any rows
match this regex, the first matching row will be used in place of the "PUB-
CHEM_ACTIVITY_SCORE’ and it’s row name will be stored as the assays
scoring method. The default will identify most PubChem Bioassays which con-
tain protein target inhibition data. If a matching row contains all empty or non-
numeric results, the next matching row is automatically used.

Value

A bioassay object containing the loaded data.

Author(s)

Tyler Backman

References

http://pubchem.ncbi.nlm.nih.gov NCBI PubChem

Examples

get sample data locations

extdata_dir <- system.file("extdata”, package="bioassayR")
assayDescriptionFile <- file.path(extdata_dir, "exampleAssay.xml")
activityScoresFile <- file.path(extdata_dir, "exampleScores.csv")

parse files
myAssay <- parsePubChemBioassay("”1000", activityScoresFile, assayDescriptionFile)

myAssay
perTargetMatrix Collapse a bioassaySet object from multiple assays by combining
assays with a common target
Description

Creates a sparseMatrix object which has an activity value for each distinct target identifier rather
than each distinct assay. Users can optionally choose how replicates are resolved. By default
active scores always take preference over inactives: if any assay for a given target vs compound
combination shows active, this combination will be marked active in the resulting object. Either
binary activity categories or scalar numeric scores can be used. When used with numeric data, this
will create a Z-score compound vs. target matrix similar to High Throughput Screening Fingerprints
(HTSFPs). This function is not designed for single assays with multiple targets, and if they are
present only one of the targets will be considered.

Usage

perTargetMatrix(assays, inactives = TRUE, assayTargets = FALSE,
targetOrder = FALSE, summarizeReplicates = "activesFirst”,
useNumericScores = FALSE)

26 perTargetMatrix

Arguments
assays A bioassaySet object with data from multiple assays, some of which may share
a common target. If used with useNumericScores = TRUE this should be the
output of scaleBioassaySet if a Z-score matrix is desired.
inactives A logical value. Include both active and inactive scores. If FALSE only ac-

tive scores are returned. This is only used if useNumericScores = FALSE, with
numeric scores inactives are always considered.

assayTargets Provide a custom merge table of target identifiers for each assay. For example,
if you have clustered the targets of many assays into bins you can here merge
by common clusters instead of distinct targets. This must be vector of class
character with names that correspond to your assay ids (aids) and values that
correspond to desired targets or clusteres in the resulting matrix. Names and
targets should be represented as a character, even if they are numeric names.
Note that if an assay contains multiple targets, only the first is used.

targetOrder An optional character vector of desired target names in order. This will be-
come the row names in the resulting sparse matrix in exact order, making it
possible to coherently bind together sparse matricies of different compounds. If
a target is omitted from this list it will be dropped in the result, and if an extra
target is included it will show up with all ’0’ (untested) entries.

summarizeReplicates
Optionally allows users to choose how replicates (multiple assays sharing com-
mon compounds and targets) are resolved if they disagree. If ’activesFirst’ any
active score will take precedence over an inactive. If 'mode’ the resulting score
will be computed according to the statistical mode using as.numeric(names(which.max(table(x))
Users can also optionally pass a function here which (for each cid/target pair)
will receive a vector of 2’ (active) and * 1’ (inactive) values (if useNumericScores
= TRUE), and can then return any desired number as a summary to be included in
the resulting table. For a large matrix, the default option ’activesFirst’ offers the
lowest computational overhead. When used with useNumericScores = TRUE
the option activesFirst” will keep only the replicate with the greatest absolute
value. To average across all replicates, one can pass the R function mean.

useNumericScores
A logical value. Use numeric score rather than binary data to create a scalar
compound vs. target matrix. When used with the output of scaleBioassaySet
this creates a Z-score compound vs. target matrix. NaN values are replaced with
zeros, as these usually represent assays summarized with scaleBioassaySet
where all compounds had an identical value. NA values are excluded, as these
usually represent compounds that have no raw activity score. Warning: Be care-
ful using this feature, as it can average/merge together assays scored by incom-
patible methods. You should confirm that the assays you are summarizing are
scored and summarized in a way that makes sense.

Value

When used with useNumericScores = FALSE a sparseMatrix which contains a value of 2 for each
target vs compound combination which shows activity in at least one parent assay, a value of 1 for in-
active combinations, and a value of zero for untested or ambiguous values. Note that this is different
from older versions of bioassayR (1.6 and older) which used to return a value of 1 for actives and did
not have the option to process inactives. When used with useNumericScores = TRUE the raw nu-
meric scores are returned, with replicates summarized as specified with the summarizeReplicates
option.

queryBioassayDB 27

Author(s)
Tyler William H Backman

See Also

Functions: scaleBioassaySet, getAssays, bioactivityFingerprint

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

option 1: retrieve all data for three compounds
assays <- getBioassaySetByCids(sampleDB, c("2244","3715","133021"))
assays

option 2: retrieve all data for three assays
assays <- getAssays(sampleDB, c("673509","103","105"))
assays

collapse assays into perTargetMatrix
targetMatrix <- perTargetMatrix(assays)
targetMatrix

disconnect from sample database
disconnectBioassayDB(sampleDB)

queryBioassayDB Perform a SQL query on a bioassayR database

Description
Provides extreme query flexibility by allowing the user to perform any SQLite query on a bioassayR
database. This allows for analysis beyond that provided by the built in query functions.

Usage

queryBioassayDB(object, query)

Arguments
object A BioassayDB object referring to a bioassayR database.
query A string containing a valid SQLite query (see SQLite documentation for more
details).
Value

A data. frame containing the results of the specified query.

28 samplebioassay

Author(s)

Tyler Backman

References

http://www.sqlite.org provides a complete reference for SQLite syntax that can be used with this
function

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

inspect the structure of the database before forming a query
queryBioassayDB(sampleDB, "SELECT * FROM sqlite_master WHERE type='table'")

find all activity data for compound cid 2244
queryBioassayDB(sampleDB, "SELECT * FROM activity WHERE cid = '2244'")

disconnect from database
disconnectBioassayDB(sampleDB)

samplebioassay Sample activity data for use with bioassayR

Description
This is sample bioactivity data, taken from assay identifier (aid) 1000 in the NCBI PubChem Bioas-
say database. These data are provided for testing the bioassayR library.

Usage

data(samplebioassay)

Format
A data frame with activity scores for 4 distinct compounds.

cid unique compound identifer
activity l=active, O=inactive, NA=other

score activity scores

Source

http://pubchem.ncbi.nlm.nih.gov NCBI PubChem

References

http://pubchem.ncbi.nlm.nih.gov NCBI Pubchem

scaleBioassaySet 29

Examples

create a new bioassay object from these sample data

data(samplebioassay)

myassay <- new("bioassay"”,aid="1000", source_id="PubChem BioAssay"”, targets="116516899",
target_types="protein"”, scores=samplebioassay)

myassay
scaleBioassaySet Centers and standardizes the numeric activity scores for a
bioassaySet object (creates Z-scores)
Description

Converts the numeric activity scores for a bioassaySet object into per-assay Z-scores. Untested
’0” values are not considered in computing the value, only actives and inactives. In essence, this
is a special version of the R base scale function, which ignores missing entries in a sparse matrix
instead of using them as zeros. A primary purpose of this function is to pass scaled results to
perTargetMatrix, in order to compute a numeric Z-score compound vs. target matrix.

Usage

scaleBioassaySet(bioassaySet, center=TRUE, scale=TRUE)

Arguments
bioassaySet A bioassaySet object with data from multiple assays. This should be created
with getAssays rather than getBioassaySetByCids, as the former includes the
full assay data whereas the latter omits scores for compounds other than those
specified, and therefore will not compute a coherent Z-score.
center A logical value. If center is TRUE then centering is done by subtracting the
assay means (omitting inconclusive NAs) from their corresponding scores, and
if center is FALSE, no centering is done.
scale A logical value. Scaling is done by dividing the (centered) per-assay scores by
their standard deviations if center is TRUE, and the root mean square otherwise.
If scale is FALSE, no scaling is done.
Value

A bioassaySet object with standardized numeric scores, that can be accessed with scores(bioassaySet).

Author(s)

Tyler William H Backman

See Also

Functions: getAssays, perTargetMatrix

30 screenedAtLeast

Examples

connect to a test database

extdata_dir <- system.file("extdata", package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqglite")
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve three assays
assays <- getAssays(sampleDB, c("347221","53211","624349"))

disconnect from sample database
disconnectBioassayDB(sampleDB)

compute and return standardized scores
scaledAssays <- scaleBioassaySet(assays)

inspect scaled and unscaled scores
scores(assays)
scores(scaledAssays)

NOTE: this example only returns non-NA Z-scores if tried with
real data, not the test database used here

screenedAtlLeast Return all compounds in the database screened at least ‘'minTargets’
times.

Description

Returns all compound cids screened against at least *'minTargets’ distinct target identifiers. For a
very large database (such as PubChem Bioassay) this function may take a long time to run.

Usage

screenedAtLeast(database, minTargets, inconclusives=TRUE)

Arguments
database A BioassayDB database to query.
minTargets The minimum number of distinct targets for each returned cid.

inconclusives Logical. If TRUE (the default) screening results with inconclusive (NA) are counted
towards minTargets. If FALSE only active and inactive results are counted.

Value

Returns a character vector of all CIDs meeting the specified criteria.

Author(s)

Tyler Backman

selectiveAgainst 31

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

get all CIDS screened against at least 2 distinct targets
highlyScreened <- screenedAtlLeast(sampleDB, 2)
highlyScreened

get all CIDS screened against at least 2 distinct targets with conclusive results
highlyScreened <- screenedAtLeast(sampleDB, 2, inconclusives=FALSE)
highlyScreened

disconnect from database
disconnectBioassayDB(sampleDB)

selectiveAgainst Identify small molecules with selective binding against a target of in-
terest

Description

Allows the user to find compounds in the database that have been screened against a large number
of distinct targets, but show high binding selectivity for a specific target of interest.

Usage

selectiveAgainst(database, target, maxCompounds = 10, minimumTargets = 10)

Arguments
database A BioassayDB database to query.
target A string or integer containing a target_id referring to a target of interest.

maxCompounds An integer representing the number of resulting compounds to return.

minimumTargets An integer representing the minimum number of distinct targets a compound
must have been screened against to be included in the results.

Value

A data. frame where the row names represent each compound showing binding specificity against
the specified target. The first column shows the number of distinct targets each compound shows ac-
tivity against, and the second column shows the total number of distinct targets it has been screened
against.

Author(s)

Tyler Backman

32 targetSelectivity

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqlite"”)
sampleDB <- connectBioassayDB(sampleDatabasePath)

find target selective compounds active against a protein of interest
selectiveAgainst(sampleDB, target="166897622", maxCompounds=10,minimumTargets=20)

disconnect from database
disconnectBioassayDB(sampleDB)

targetSelectivity Returns the target selectivity for a specified list of compounds (cids).

Description

Queries a BioassayDB database and returns the target selectivity of the specified cids.

Usage
targetSelectivity(database, cids, scoring = "total",
category=FALSE, multiTarget="keepOne")
Arguments
database A BioassayDB database to query.
cids A string or integer vector containing query cids referring to a small molecules.
scoring Must be one of two optional scoring methods "total" or "fraction". Fraction
returns the target selectivity for each compound as the fraction of screened dis-
tinct targets that showed activity in at least one assay. Total returns the total
number of active distinct targets for each compound, and does not consider in-
active targets in the calculation. If fractional activity is requested, active values
take precedence over inactives: if a target is both active and inactive in different
assays it will be regarded as active.
category Include only once in selectivity counts any targets which share a common anno-
tation of this category (as used by the translateTargetId and loadIdMapping
functions). For example, with the PubChem BioAssay database one could use
"UniProt", "kClust", or "domains" to get selectivity by targets with unique UniProt
identifiers, distinct amino acid sequences, or Pfam domains respectively (the lat-
ter is also known as domain selectivity).
multiTarget Decides how selectivity is counted with regard to multi-target assays. If "drop”
these assays are excluded entirely. If "keepOne” only the first target in the
database is considered. If "all” they are counted separately towards the total.
Value

Returns an numeric vector containing the target selectivity for each query compound. Returned
entires are named by their corresponding cid.

translateTargetld 33

Author(s)

Tyler Backman

See Also

translateTargetId loadIdMapping

Examples

connect to a test database

extdata_dir <- system.file("extdata”, package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqglite")
sampleDB <- connectBioassayDB(sampleDatabasePath)

make a vector with compounds of interest
compoundsOfInterest <- c(2244, 2662, 3033)

get "total” active targets for each compound of interest
targetSelectivity(sampleDB, compoundsOfInterest, scoring="total")

get fraction of active targets for each compound of interest
targetSelectivity(sampleDB, compoundsOfInterest, scoring="fraction")

disconnect from database
disconnectBioassayDB(sampleDB)

translateTargetId Translate a protein target identifier to another identifier system

Description

Returns a character vector of the protein target identifiers using the specified category (classifica-
tion system). This is most often used to translate NCBI Protein GI numbers (as provided with the
pre-build PubChem Bioassay database) into UniProt identifiers.

Usage

translateTargetId(database, target, category, fromCategory = "GI")

Arguments
database A BioassayDB database to query.
target A protein target identifier to query (as set by the category option, with a default
of "GI").
category The specified identifier type to return, such as *UniProt’.

fromCategory The identifier type of the query (default "GI").

Value

A character vector of the protein target identifiers of the category specified for the target specified.
An NA is returned if no matching values exist in the database.

34 trinarySimilarity

Author(s)

Tyler Backman

References

http://www.ncbi.nlm.nih.gov/protein NCBI Protein Database http://www.uniprot.org UniProt Pro-
tein Database

See Also

loadIdMapping

Examples

create sample database
myDatabaseFilename <- tempfile()
mydb <- newBioassayDB(myDatabaseFilename, indexed=FALSE)

load a sample translation from GI 6686268 to UniProt P11712
loadIdMapping(mydb, "6686268", "UniProt”, "P11712")

get UniProt identifier(s) for GI Number 6686268
UniProtIds <- translateTargetId(mydb, "6686268", "UniProt")
UniProtlIds

get GI identifier(s) for UniProt ID P11712
GIs <- translateTargetId(mydb, "P11712", "GI", "UniProt")
GIs

disconnect from and delete sample database
disconnectBioassayDB(mydb)
unlink(myDatabaseFilename)

trinarySimilarity Computes the tanimoto similarity coefficient between the bioactivity
profiles of two compounds, each represented as a column in a com-
pound vs. target sparse matrix

Description

This computes tanimoto similarity coefficients between bioactivity profiles in a sparse matrix aware
way, where only commonly tested targets are considered. The computation is trinary in that each
compound is a column in a compound vs target matrix with three possible values (2=active, 1=in-
active, O=untested or inconclusive) as generated by the perTargetMatrix function. A comparison
will return a value of NA unless one of the two minimum thresholds is satisfied, either a minimum
number of shared screened targets, or a minimum number of shared active targets as performed in
Dancik, V. et al. (see references).

Usage

trinarySimilarity(queryMatrix, targetMatrix,
minSharedScreenedTargets = 12, minSharedActiveTargets = 3)

trinarySimilarity 35

Arguments

queryMatrix This is a compound vs. target sparse matrix representing the bioactivity pro-
files for one compounds across one or more assays or targets. The format
must be a dgCMatrix sparse matrix as computed by the perTargetMatrix
function with the option useNumericScores = FALSE. This should be a single
column representing the bioactivity profile for a single compound. This can
be extracted from a larger compound vs. target sparse matrix with queryMa-
trix[,colNumber,drop=FALSE] where colNumber is the desired compound col-
umn number.

targetMatrix This is a compound vs. target sparse matrix representing the bioactivity profiles
for one or more compounds across one or more assays or targets. The format
must be dgCMatrix sparse matrix as computed by the perTargetMatrix func-
tion with the option useNumericScores = FALSE. Similarity will be computed
between the query and each column of this matrix individually.

minSharedScreenedTargets
A numeric value specifying the minimum number of shared screened targets
needed for a meaningful similarity computation. If both this threshold and
minSharedActiveTargets are unsatisfied, the returned result will be NA instead
of a computed value. The default of 12 was determined taken from Dancik, V.
et al. (see references) as experimentally determined to result in meaningful pre-
dictions.

minSharedActiveTargets
A numeric value specifying the minimum number of shared active targets needed
for a meaningful similarity computation. If both this threshold and minSharedScreenedTargets
are unsatisfied, the returned result will be NA instead of a computed value. The
default of 3 was determined taken from Dancik, V. et al. (see references) as
experimentally determined to result in meaningful predictions.

Value

A numeric vector where each element represents the tanimoto similarity between the queryMatrix
and a given row in the targetMatrix where only the shared set of commonly screened targets is
considered. If both the minSharedScreenedTargets and minSharedActiveTargets thresholds
are unsatisfied, an NA will be returned for the given similarity value. An NA will also be returned if
the tanimoto coefficient is undefined due to a zero in the denominator, which occurs when neither
compound was found active against any of the commonly screened targets.

Author(s)

Tyler Backman

References

Tanimoto similarity coefficient: Tanimoto TT (1957) IBM Internal Report 17th Nov see also Jaccard
P (1901) Bulletin del la Societe Vaudoisedes Sciences Naturelles 37, 241-272.

Dancik, V. et al. Connecting Small Molecules with Similar Assay Performance Profiles Leads to
New Biological Hypotheses. J Biomol Screen 19, 771-781 (2014).

See Also

perTargetMatrix getBioassaySetByCids bioactivityFingerprint

36 trinarySimilarity

Examples

connect to a test database

extdata_dir <- system.file("extdata", package="bioassayR")
sampleDatabasePath <- file.path(extdata_dir, "sampleDatabase.sqglite")
sampleDB <- connectBioassayDB(sampleDatabasePath)

retrieve activity data for three compounds
assays <- getBioassaySetByCids(sampleDB, c("2244","3715","133021"))

collapse assays into perTargetMatrix
targetMatrix <- perTargetMatrix(assays)

compute similarity between first column and all columns
queryMatrix <- targetMatrix[,1,drop=FALSE]
trinarySimilarity(queryMatrix, targetMatrix)

disconnect from sample database
disconnectBioassayDB(sampleDB)

Index

* classes
bioassay-class, 9
BioassayDB-class, 11
bioassaySet-class, 12

+ datasets
samplebioassay, 28

x utilities
activeAgainst, 2
activeTargets, 3
addBioassaylIndex, 4
addDataSource, 5
allCids, 5
allTargets, 6
assaySetTargets, 7
bioactivityFingerprint, 8
connectBioassayDB, 13
crossReactivityProbability, 14
disconnectBioassayDB, 16
dropBioassay, 17
dropBioassayIndex, 17
getAssay, 18
getAssays, 19
getBioassaySetByCids, 20
inactiveTargets, 21
loadBioassay, 22
loadIdMapping, 22
newBioassayDB, 23
parsePubChemBioassay, 24
perTargetMatrix, 25
queryBioassayDB, 27
scaleBioassaySet, 29
screenedAtLeast, 30
selectiveAgainst, 31
targetSelectivity, 32
translateTargetlId, 33
trinarySimilarity, 34

activeAgainst, 2

activeTargets, 3, 2/

activity (bioassaySet-class), 12

activity,bioassaySet-method
(bioassaySet-class), 12

activity<- (bioassaySet-class), 12

37

activity<-,bioassaySet-method
(biocassaySet-class), 12

addBioassayIndex, 4

addDataSource, 5

aid (bioassay-class), 9

aid,bioassay-method (bioassay-class), 9

aid<- (bioassay-class), 9

aid<-,bioassay-method (bioassay-class),
9

allCids, 5

allTargets, 6

assay_type (bioassay-class), 9

assay_type,bioassay-method
(biocassay-class), 9

assay_type,bioassaySet-method
(bioassaySet-class), 12

assay_type<- (bioassay-class), 9

assay_type<-,bioassay-method
(biocassay-class), 9

assay_type<-,bioassaySet-method
(biocassaySet-class), 12

assaySetTargets, 7

bioactivityFingerprint, 8, 35
bioassay (bioassay-class), 9
bioassay-class, 9
BioassayDB-class, 11
bioassaySet-class, 12

connectBioassayDB, 13

crossReactivityPrior
(crossReactivityProbability),
14

crossReactivityProbability, 14

disconnectBioassayDB, 16
dropBioassay, 17
dropBioassayIndex, 17

getAssay, 18
getAssays, 19
getBioassaySetByCids, 20, 35

inactiveTargets, 4, 21

38

loadBioassay, 22
loadIdMapping, 22, 33, 34

newBioassayDB, 23

organism (bioassay-class), 9
organism,bioassay-method
(bioassay-class), 9
organism,bioassaySet-method
(bioassaySet-class), 12
organism<- (bioassay-class), 9
organism<-,bioassay-method
(bioassay-class), 9
organism<-,bioassaySet-method
(bioassaySet-class), 12

parsePubChemBioassay, 24
pbeta, 15
perTargetMatrix, 15, 25, 35

queryBioassayDB, 27
queryBioassayDB,BioassayDB-method
(BioassayDB-class), 11

samplebioassay, 28
scaleBioassaySet, 29
scores (bioassay-class), 9
scores,bioassay-method
(bioassay-class), 9
scores,bioassaySet-method
(bioassaySet-class), 12
scores<- (bioassay-class), 9
scores<-,bioassay-method
(bioassay-class), 9
scores<-,bioassaySet-method
(bioassaySet-class), 12
scoring (biocassay-class), 9
scoring,bioassay-method
(bioassay-class), 9
scoring,bioassaySet-method
(bioassaySet-class), 12
scoring<- (bioassay-class), 9
scoring<-,bioassay-method
(bioassay-class), 9
scoring<-,bioassaySet-method
(bioassaySet-class), 12
screenedAtLeast, 30
selectiveAgainst, 31
show (bioassay-class), 9

show,bioassay-method (bioassay-class), 9

show,BioassayDB-method
(BioassayDB-class), 11

show, bioassaySet-method
(bioassaySet-class), 12

INDEX

source_id (bioassay-class), 9
source_id,bioassay-method
(bioassay-class), 9
source_id,bioassaySet-method
(bioassaySet-class), 12
source_id<- (bioassay-class), 9
source_id<-,bioassay-method
(bioassay-class), 9
source_id<-,bioassaySet-method
(bioassaySet-class), 12
sources (bioassaySet-class), 12
sources,bioassaySet-method
(biocassaySet-class), 12
sources<- (bioassaySet-class), 12
sources<-,bioassaySet-method
(bioassaySet-class), 12

target_types (bioassay-class), 9
target_types,bioassay-method
(bioassay-class), 9
target_types,bioassaySet-method
(biocassaySet-class), 12
target_types<- (bioassay-class), 9
target_types<-,bioassay-method
(bioassay-class), 9
target_types<-,bioassaySet-method
(biocassaySet-class), 12
targets (bioassay-class), 9
targets,bioassay-method
(bioassay-class), 9
targets,bioassaySet-method
(biocassaySet-class), 12
targets<- (bioassay-class), 9
targets<-,bioassay-method
(bioassay-class), 9
targets<-,bioassaySet-method
(biocassaySet-class), 12
targetSelectivity, 15, 32
translateTargetld, 23, 33, 33
trinarySimilarity, 34

	activeAgainst
	activeTargets
	addBioassayIndex
	addDataSource
	allCids
	allTargets
	assaySetTargets
	bioactivityFingerprint
	bioassay-class
	BioassayDB-class
	bioassaySet-class
	connectBioassayDB
	crossReactivityProbability
	disconnectBioassayDB
	dropBioassay
	dropBioassayIndex
	getAssay
	getAssays
	getBioassaySetByCids
	inactiveTargets
	loadBioassay
	loadIdMapping
	newBioassayDB
	parsePubChemBioassay
	perTargetMatrix
	queryBioassayDB
	samplebioassay
	scaleBioassaySet
	screenedAtLeast
	selectiveAgainst
	targetSelectivity
	translateTargetId
	trinarySimilarity
	Index

