Package ‘alabaster.matrix’

October 15, 2025

Title Load and Save Artifacts from File
Version 1.9.0

Date 2025-03-04

License MIT + file LICENSE

Description
Save matrices, arrays and similar objects into file artifacts, and load them back into memory.
This is a more portable alternative to serialization of such objects into RDS files.
Each artifact is associated with metadata for further interpretation;
downstream applications can enrich this metadata with context-specific properties.

Depends alabaster.base

Imports methods, BiocGenerics, S4 Vectors, DelayedArray (>= 0.33.3),
S4Arrays, SparseArray (>= 1.5.22), rthdf5 (>=2.47.1),
HDF5Array, Matrix, Repp

Suggests testthat, knitr, BiocStyle, chihaya, BiocSingular,
ResidualMatrix

LinkingTo Rcpp

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

biocViews Datalmport, DataRepresentation
git_url https://git.bioconductor.org/packages/alabaster.matrix
git_branch devel

git_last_commit 03c06a3

git_last commit_date 2025-04-15
Repository Bioconductor 3.22
Date/Publication 2025-10-15

Author Aaron Lun [aut, cre]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

Contents

AmalgamatedArray e e e e
createRawArraySeed

2 AmalgamatedArray

DelayedMask 4
preserveDelayedOperations e 5
readAITay e e e e e 6
readDelayedArray L e 7
readSparseMatrix L 8
recycleHdfSFiles 9
ReloadedArraySeed 10
SAVEATITAY '+« v v v v v e 11
saveDelayedArray e 12
saveSparseMatriX 14
storeDelayedObject L 15
WrapperArraySeed 18
writeSparseMatrix e e e 18

Index 21

AmalgamatedArray Amalgamated array class
Description

Implements an amalgamated array, equivalent to a delayed combination of DelayedArray objects. It
allows stageObject to save a combination of multiple matrices without actually aggregating their
data into a single file.

Constructors

AmalgamatedArraySeed(. .., along=1) accepts any number of named array-like objects and re-
turns a AmalgamatedArraySeed. Each object corresponds to a block and should be named accord-
ingly; names should be unique and non-empty. The along argument specifies the dimension in
which matrices should be combined - for matrices, this is 1 for rows, 2 for columns.

AmalgamatedArray(..., along=1) accepts any number of named array-like objects and returns a
AmalgamatedArray. Alternatively, a single AmalgamatedArraySeed may be provided in

Functions

componentNames(x) will return a character vector of names of component arrays in a Amalga-
matedArray(Seed) object x.

extractComponents(x) will return a named list of array-like objects, corresponding to the com-
ponent arrays used to construct the AmalgamatedArray(Seed) object x.

stageObject(x, dir, path, child = FALSE) will save the AmalgamatedArray x and its compo-
nents into the path inside dir. Each component array is staged into its own subdirectory inside
path.

Comments on usage

The AmalgamatedArraySeed is closely related to (and in fact, is a subclass of) the Delayed Abind
class. This means that we can leverage many of the DelayedArray methods for handling the de-
layed bind. In theory, we could just use a DelayedAbind directly and save it with chihaya in
stageObject (via preserveDelayedOperations(TRUE)). However, this provides fewer opportu-
nities for tracking and manipulating the samples. It also saves the per-sample matrices into a single
file, which eliminates possibilities for per-file deduplication and linking, e.g., with recycleHdf5Files (TRUE).

createRawArraySeed 3

Author(s)

Aaron Lun

Examples

first <- Matrix::rsparsematrix(10, 10, 0.1)

second <- Matrix::rsparsematrix(10, 20, 0.1)

mat <- AmalgamatedArray(list(foo = first, bar = second), along=2)
mat

componentNames (mat)
out <- extractComponents(mat)
lapply(out, dim)

createRawArraySeed Array loading utilities

Description

Utilities for loading an array saved by stageObject.

Usage

.createRawArraySeed(info, project, names = TRUE)

.extractArrayDimnames(path, group, ndim)

Arguments
info A named list of metadata for this array.
project Any argument accepted by the acquisition functions, see ?acquireFile. By
default, this should be a string containing the path to a staging directory.
names Logical scalar indicating whether the seed should be annotated with dimnames
(if available).
path String containing the path to the file containing said array.
group String containing the name of the group with the dimnames.
ndim Integer scalar specifying the number of dimensions.
Details

For . createArraySeed, the array should be one of:

e hdf5_dense_array
* hdf5_sparse_matrix
* hdf5_delayed_array

e amalgamated_array

4 DelayedMask

For delayed arrays, the file may contain a seed array with the "custom alabaster local array”
type. This should have a path dataset containing a relative path to another array in the same
project, which is loaded and used as the seed for this delayed array. Callers can overwrite this
behavior by setting "custom alabaster local array” in the knownArrays from chihaya before
calling .createRawArraySeed.

For .extractArrayDimnames, path is expected to be a HDFS5 file with a group specified by group.
Each child of this group is a string dataset named after a (0-indexed) dimension, containing the
names for that dimension.

Value

.createRawArraySeed returns a seed that can be used in the DelayedArray constructor.

.extractArrayDimnames returns a list of character vectors or NULL, containing the dimnames.

Author(s)

Aaron Lun

Examples

Staging an array as an example:

dir <- tempfile()

dir.create(dir)

mat <- array(rpois(10000, 10), c(50, 20, 10))
meta <- stageObject(mat, dir, "whee")

Loading it back as a DelayedArray seed:
.createRawArraySeed(meta, project=dir)

DelayedMask Delayed masking

Description

Delayed masking of missing values, based on replacement of placeholder values with NA. This
allows missingness to be encoded in frameworks without the same concept of NA as R.

Usage

DelayedMask(x, placeholder)

Arguments

X An existing DelayedArray seed.
placeholder Placeholder value to replace with NA. This should be of the same type as type (x).

preserveDelayedOperations 5

Details

If is.na(placeholder) is true for double-precision x, masking is performed for all values of x
where is.na is true. This includes both NaNs and NAs; no attempt is made to distinguish between
the NaN payloads.

Currently, an error is raised for any integer x that produces non-missing values of -2231 without
a placeholder of NA_integer_. This is because R cannot distinguish the integer -2731 from an
integer-type NA.

Value

A DelayedMask object, to be wrapped in a DelayedArray.

Author(s)

Aaron Lun

Examples

original <- DelayedArray(matrix(rpois(40, lambda=2), ncol=5))

original
masked <- DelayedMask(original, 0)
DelayedArray(masked)

preserveDelayedOperations
Preserve delayed operations during staging

Description

Preserve delayed operations via chihaya when staging a DelayedArray with stageObject.

Usage

preserveDelayedOperations(preserve)

Arguments

preserve Whether to preserve delayed operations using the chihaya specification.

Details

By default, any DelayedArray in stageObject will be saved as a new dense array or sparse matrix.
However, if this option is enabled, DelayedArrays will instead be saved in the chihaya specification,
where the delayed operations are themselves stored in the HDFS5 file (see https://artifactdb.
github.io/chihaya/ for details).

The chihaya specification is more complicated to parse but can be helpful in reducing disk usage.
One simple example is to avoid sparsity-breaking or integer-to-float operations by storing their
delayed representations in the file. If the seed matrix is derived from some immutable reference
location, advanced users can even store links to that location instead of duplicating the seed data.

https://artifactdb.github.io/chihaya/
https://artifactdb.github.io/chihaya/

6 readArray

Value

Logical scalar indicating whether delayed operations are to be preserved by the DelayedArray
method. If preserve is supplied, it is used to set this scalar, and the previous value of the scalar is
invisibly returned.

Author(s)

Aaron Lun

Examples

preserveDelayedOperations()

old <- preserveDelayedOperations(TRUE)
preserveDelayedOperations()
preserveDelayedOperations(old)

readArray Read a dense array from disk

Description

Read a dense high-dimensional array from its on-disk representation. This is usually not directly
called by users, but is instead called by dispatch in readObject.

Usage
readArray(path, metadata, ...)
Arguments
path String containing a path to a directory, itself created by the saveObject method
for a dense array.
metadata Named list of metadata for this object, see readObject for more details.
Further arguments, ignored.
Value

A dense file-backed ReloadedArray.

Author(s)

Aaron Lun

See Also

"saveObject,array-method”, to create the directory and its contents.

readDelayedArray 7

Examples

arr <- array(rpois(10000, 10), c(50, 20, 10))
dimnames(arr) <- list(
paste@("GENE_", seq_len(nrow(arr))),
letters[1:201],
NULL

)

dir <- tempfile()
saveObject(arr, dir)
readObject(dir)

readDelayedArray Read a delayed array from disk

Description

Read a delayed high-dimensional array from its on-disk representation. This is usually not directly
called by users, but is instead called by dispatch in readObject.

Usage
readDelayedArray(path, metadata, delayed_array.reload.args = list(), ...)
Arguments
path String containing a path to a directory, itself created by the saveObject method
for a delayed array.
metadata Named list of metadata for this object, see readObject for more details.

delayed_array.reload.args
Named list of arguments to be passed to reloadDelayedObject.

Further arguments, ignored.

Value

A multi-dimensional array-like object.

Author(s)

Aaron Lun

See Also

"saveObject,DelayedArray-method”, to create the directory and its contents.

reloadDelayedObject, for the methods to reload each delayed operation.

8 readSparseMatrix

Examples

arr <- array(rpois(10000, 10), c(50, 20, 10))
dimnames(arr) <- list(
paste@("GENE_", seq_len(nrow(arr))),

letters[1:20],
NULL

)

dir <- tempfile()
saveObject(arr, dir)
readObject(dir)

readSparseMatrix Read a sparse matrix from disk

Description

Read a sparse matrix from its on-disk representation. This is usually not directly called by users,
but is instead called by dispatch in readObject.

Usage
readSparseMatrix(path, metadata, ...)
Arguments
path String containing a path to a directory, itself created by the saveObject method
for a spars matrix.
metadata Named list of metadata for this object, see readObject for more details.
Further arguments, ignored.
Value

A sparse ReloadedMatrix object.

Author(s)

Aaron Lun

See Also

"saveObject, sparseMatrix-method”, to create the directory and its contents.

Examples

mat <- Matrix::rsparsematrix(100, 200, density=0.2)
rownames(mat) <- paste@("GENE_", seq_len(nrow(mat)))
dir <- tempfile()

saveObject(mat, dir)

readObject(dir)

recycleHdf5Files 9

recycleHdf5Files Recycle existing HDFS files

Description

Re-use existing files in HDF5-backed arrays rather than reserializing them in stageObject.

Usage

recycleHdf5Files(recycle)

Arguments

recycle Whether to recycle existing files for HDF5-backed DelayedArrays.

Details

If this options is enabled, stageObject will attempt to link/copy existing files for any HDF5-backed
DelayedArray instances - most specifically, HDF5Array objects and H5SparseMatrix objects using
the 10X format. This avoids re-serialization of the data for faster staging. It also allows advanced
users to add their own customizations into the HDFS5 file during staging, as long as they do not
interfere with loadArray.

By default, this option is disabled as the properties of the existing file are not known in the general
case. In particular, the file might contain other groups/datasets that are irrelevant, and use up extra
disk space if copied; or confidential, and should not be stored in the staging directory. Users should
only enable this option if they have full control over the generation and contents of the backing
HDFS files.

Also note that any dimnames on x will be ignored during recycling.

Value

Logical scalar indicating whether HDFS files are to be reused. If recycle is supplied, it is used to
set this scalar, and the previous value of the scalar is invisibly returned.

Author(s)

Aaron Lun

Examples

recycleHdf5Files()

old <- recycleHdf5Files(TRUE)
recycleHdf5Files()
recycleHdf5Files(old)

10 ReloadedArraySeed

ReloadedArraySeed Reloaded alabaster array

Description

An array that was reloaded from disk by the readObject function. This allows methods to refer
to the existing on-disk representation by inspecting the path. For example, saveObject can just
copy/link to the files instead of repeating the saving process.

Usage
ReloadedArraySeed(path, seed = NULL, ...)
ReloadedArray(path, seed = NULL, ...)
Arguments
path String containing a path to the directory with the on-disk array representation.
Alternatively an existing ReloadedArraySeed, which is returned without modi-
fication.
seed Contents of the loaded array, e.g., as an ordinary R array, a DelayedArray or a
sparse matrix. If NULL, this is obtained by calling readObject.
Further arguments to pass to readObject when seed=NULL.
Details

The ReloadedArraySeed is a DelayedUnarylsoOp subclass that will just forward all operations to
the underlying seed. Its main purpose is to track the path that was originally used to generate seed,
which enables optimizations for methods that need to operate on the files.

One obvious optimization is the specialization of saveObject on ReloadedArray instances. Instead
of loading the array data back into the R session and saving it again, the saveObject method can just
link or copy the existing files. This behavior is controlled by the ReloadedArray.reuse.files=
option in the saveObject method, which can be any of the choices for action=1in cloneDirectory.
It may also be "none" to ignore existing files and just save the contents by calling "saveObject,DelayedArray-method”

Value

For the constructors, an instance of the ReloadedArraySeed or ReloadedArray.

Examples

arr <- array(rpois(10000, 10), c(50, 20, 10))
dir <- tempfile()

saveObject(arr, dir)

obj <- readArray(dir)

obj

DelayedArray: : showtree(obj)

saveArray 11
saveArray Save a multi-dimensional array to disk
Description
Save a high-dimensional array to its on-disk representations.
Usage
S4 method for signature 'array'
saveObject(
X ’
path,
array.dedup.session = NULL,
array.dedup.action = "link",
array.character.vls = FALSE,
)
S4 method for signature 'denseMatrix'
saveObject(
X ’
path,
array.dedup.session = NULL,
array.dedup.action = "link",
)
Arguments
X An integer, numeric, logical or character array. Alternatively, any of the dense-
Matrix subclasses from the Matrix package.
path String containing the path to a directory in which to save x.

array.dedup.session

A session object created by createDedupSession, specifying which objects

should be deduplicated if the same x is encountered multiple times.

array.dedup.action

String specifying how deduplication should occur, see options for the action=

argument in cloneDirectory.
array.character.vls

Logical scalar indicating whether to save character arrays in the custom vari-
able length string (VLS) array format. If NULL, this is determined based on a

comparison of the expected storage against a fixed length array.

Further arguments, currently ignored.

Details

When saveObject is called multiple times on the same x, this method can avoid re-saving the
array if a user supplies a deduplication session in array.dedup.session=. Instead, the method
will link or copy (depending on the choice of array.dedup.action=) the files produced by the

12 saveDelayedArray

first saveObject call to the new path=. This saves time and reduces disk usage, and is particu-
larly useful when saving complex data structures like a SummarizedExperiment. For example, if
we have a SummarizedExperiment that contains multiple copies of the same array, we can pass a
array.dedup.session= to the saveObject call on the SummarizedExperiment. This will instruct
the internal saveObject calls to only write the array to disk once and subsequently make copies or
links for all duplicates of that array. The same approach can be applied to deduplicate seeds in a
DelayedArray, see ?"storeDelayedObject” for details.

Value

x is saved to path and NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

readArray, to read the directory contents back into the R session.

Examples

mat <- array(rpois(10000, 10), c(50, 20, 10))
dimnames(mat) <- list(
paste@("GENE_", seq_len(nrow(mat))),
letters[1:20],
NULL
)

dir <- tempfile()
saveObject(mat, dir)
list.files(dir)

saveDelayedArray Save DelayedArrays to disk

Description

Save DelayedArray objects to their on-disk representation.

Usage

S4 method for signature 'DelayedArray'’
saveObject(
X,
path,
DelayedArray.dispatch.pristine = TRUE,
DelayedArray.preserve.ops = FALSE,
DelayedArray.force.external = FALSE,
DelayedArray.store.args = list(),
array.dedup.session = NULL,
array.dedup.action = NULL,

saveDelayedArray 13

)
Arguments
X A DelayedArray object.
path String containing a path to a directory in which to save x.

DelayedArray.dispatch.pristine
Logical scalar indicating whether to call the saveObject methods of seeds of
pristine arrays.

DelayedArray.preserve.ops
Logical scalar indicating whether delayed operations should be preserved on-
disk.

DelayedArray.force.external
Logical scalar indicating to save the seeds of x as external arrays. This is passed
directly to storeDelayedObject as the save.external.array= argument, see
?storeDelayedObject for details.

DelayedArray.store.args
More named arguments to pass to storeDelayedObject.

array.dedup.session, array.dedup.action
Arguments controlling deduplication of x, see ?"saveObject, array-method”
for details. If x is not a duplicate of an existing object, these arguments will be
passed to further methods as described for

Further arguments passed to storeDelayedObject as external.save.args,
if the delayed operations are to be preserved; otherwise, they are passed to
saveObject,array-method or saveObject, sparseMatrix-method.

Details

Supplying array.dedup.session= by itself is only guaranteed to deduplicate x itself and may not
deduplicate its seeds. Users should combine this with DelayedArray.force.external=TRUE to
force seeds to be saved via saveObject, which exposes the seeds to the deduplication machinery in
their respective saveObject methods. Check out ?"”storeDelayedObject” for more details.

Value

x is saved to path and NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

storeDelayedObject, for the methods to save each delayed operation.

Examples

mat <- Matrix::rsparsematrix(100, 200, density=0.2)
rownames(mat) <- paste@("GENE_", seq_len(nrow(mat)))
dmat <- DelayedArray::DelayedArray(mat) * 1

dir <- tempfile()

14 saveSparseMatrix

saveObject(dmat, dir, delayed.preserve.ops=TRUE)
list.files(dir)

saveSparseMatrix Save a sparse matrix to disk

Description

Save a sparse matrix to its on-disk representations.

Usage
S4 method for signature 'sparseMatrix'
saveObject(
X,
path,
array.dedup.session = NULL,
array.dedup.action = "link",
)
S4 method for signature 'SVT_SparseMatrix'
saveObject(
X ’
path,
array.dedup.session = NULL,
array.dedup.action = "link"”,
)
Arguments
X A sparse matrix of some kind, typically from either the Matrix or SparseArray
packages.
path String containing the path to a directory in which to save x.

array.dedup.session, array.dedup.action
Arguments controlling deduplication of x, see ?"saveObject, array-method”
for details.

Further arguments, currently ignored.

Value

x is saved to path and NULL is invisibly returned.

Author(s)

Aaron Lun

See Also

readSparseMatrix, to read the directory contents back into the R session.

storeDelayedObject

Examples

15

mat <- Matrix::rsparsematrix(100, 200, density=0.2)

rownames(mat) <- paste@("GENE_",

dir <- tempfile()
saveObject(mat, dir)
list.files(dir)

seq_len(nrow(mat)))

storeDelayedObject

Store/reload a DelayedArray

Description

Store or reload the delayed operations or array-like seeds of a DelayedArray in an existing HDF5

file.

Usage

storeDelayedObject(x, handle, name, ...)

reloadDelayedObject(handle, name, version

reloadDelayedObjectFunctionRegistry(type

registerReloadDelayedObjectFunction(

type = c("operation”, "array"),

subtype,

fun,

existing = c("old", "new"”, "error")
)
S4 method for signature 'array'
storeDelayedObject(

X,

handle,

name,

version = package_version("1.1"),

save.external.array = FALSE,

)
S4 method for signature 'ANY'
storeDelayedObject(

X,

handle,

name,

version = package_version("1.1"),

external.save.args = list(),
external.dedup.session = NULL,
external.dedup.action = NULL,

= package_version("1.1"), ...)

= c("operation”, "array"))

16

)

storeDelayedObject

altStoreDelayedObjectFunction(store)

altStoreDelayedObject(...)

altReloadDelayedObjectFunction(reload)

altReloadDelayedObject(...)

Arguments

X
handle

name

version

type
subtype

fun

existing

Any of the delayed operation/array classes from DelayedArray.

An rhdf5 handle of a HDF5 file to save into (for storeDelayedObject) or load
from (for reloadDelayedObject).

String containing the name of the group in file to save into (for storeDelayedObject)
or load from (for reloadDelayedObject).

For storeDelayedObject and reloadDelayedObject, additional arguments to
be passed to specific methods.

For altStoreDelayedObject and altReloadDelayedObject, arguments to be
passed to the alternative functions.

Package version of the chihaya format to use when storing or reloading delayed
objects. When reloading, the version should be retrieved from the attributes of
the outermost group, typically by readDelayedArray.

String specifying the type of delayed object, i.e., operation or array. This corre-
sponds to delayed_type type in the chihaya attributes.

String specifying the subtype of the delayed object, This corresponds to delayed_array
or delayed_operation type (depending on type) in the chihaya attributes.

Function to reload a delayed object. This should accept the same arguments as
reloadDelayedObject and should return a delayed array (if type="array")
or operation (otherwise). It may also be NULL to delete an existing entry in the
registry.

Logical scalar indicating the action to take if a function has already been regis-
tered for type and subtype - keep the old or new function, or throw an error.

save.external.array

Logical scalar indicating whether to save an array-like seed as an external seed,
even if a dedicated storeDelayedObject method is available.

external.save.args

Named list of further arguments to pass to altSaveObject when saving an ex-
ternal seed.

external.dedup.session

Deprecated, set external.save.args$array.dedup.session instead.

external.dedup.action

store

reload

Deprecated, set external.save.args$array.dedup.action instead.

Function (typically a generic) to store delayed objects to file. This should accept
the same arguments as storeDelayedObject.

Function to reload delayed objects from file. This should accept the same argu-
ments as reloadDelayedObject.

storeDelayedObject 17

Value

For storeDelayedObject and altStoreDelayedObject, the contents of x are saved to file, and
NULL is invisibly returned.

For reloadDelayedObject and altReloadDelayedObject, a delayed operation or Delayed Array
is returned.

For altStoreDelayedObjectFunction, the current store function is returned if store is missing.
Otherwise, store is set as the current store function and the previous store function is returned.

For altReloadDelayedObjectFunction, the current reload function is returned if reload is miss-
ing. Otherwise, reload is set as the current reload function and the previous reload function is
returned.

Customization

Developers can easily extend alabaster.matrix to new delayed objects by writing new methods for
storeDelayedObject. Methods should save the contents of the delayed object to the HDFS5 file in
the chihaya format. Each new store method typically requires a corresponding reloading function
to be registered via registerReloadDelayedObjectFunction, so that reloadDelayedObject
knows how to reconstitute the object from file.

Application developers can customize the process of storing/reloading delayed objects by specify-
ing alternative functions in altReloadDelayedObjectFunction and altStoreDelayedObjectFunction.
For example, if we want to preserve all delayed objects except for DelayedSubset, we could replace
storeDelayedObject with an altStoreDelayedObject that realizes any DelayedSubset instance
into an ordinary matrix. This is analogous to the overrides for altReadObject and altSaveObject.

Extension developers (i.e., those who write new methods for storeDelayedObject or new func-

tions for reloadDelayedObject) should generally use altStoreDelayedObject and altReloadDelayedObject
in their method/funcion bodies. This ensures that any custom overrides specified by application de-

velopers are still respected in the extensions to alabaster.matrix.

External seeds

Whenever storeDelayedObject encounters a delayed operation or array-like seed for which it has
no methods, the ANY method will save the delayed object as an “external seed”. The array is saved
via altSaveObject into a seeds directory next to the file associated with handle. A reference to
this external location is then stored in the name group inside handle.

Users can force this behavior for all array-like seeds by specifying save.external.array=TRUE.
This instructs storeDelayedObject to save everything as external seeds, including those arrays for
which it has methods. Doing so can be beneficial to enable deduplication, e.g., when two delayed
arrays perform different operations on the same underlying seed. By saving the seeds externally,
file management systems can identify the redundancy to save storage space.

Advanced users can explicitly deduplicate external seeds by setting both save.external.array=TRUE
and supplying array.dedup.session= in external.save.args=. The array.dedup.session
object is filled up with unique seeds as storeDelayedObject is called on various DelayedArrays
(see ?"saveObject,array-method” for details). Whenever a duplicate seed is encountered, it is
not saved again, but is instead linked or copied from the file path associated with the identical ex-
ternal seed. For example, a new session can be created when saving a SummarizedExperiment to
deduplicate seeds across its assays.

When external seeds are encountered by reloadDelayedObject, they are loaded as ReloadedAr-
rays (or some variant thereof) by altReadObject. Users can forcibly realize the reloaded seed
into memory by passing custom. takane.reload=TRUE in . .. for the reloadDelayedObject call.
This is occasionally helpful for providing a more faithful roundtrip from file back into memory.

18 writeSparseMatrix

Author(s)

Aaron Lun

See Also

saveObject,DelayedArray-method and readDelayedArray, where these methods are used.

https://artifactdb.github.io/chihaya/, for the file format specification of delayed objects.

Examples

library(DelayedArray)
X <- DelayedArray(matrix(runif(100), ncol=20))
Y <- cbind(X, DelayedArray::ConstantArray(value=50, c(5, 10)))

library(rhdf5)
temp <- tempfile()
dir.create(temp)

fpath <- file.path(temp, "foo.h5")

fhandle <- H5Fcreate(fpath)
storeDelayedObject(Y@seed, fhandle, "YAY")
rhdf5: :h51s(fhandle)

H5Fclose(fhandle)

fhandle <- H5Fopen(fpath, "H5F_ACC_RDONLY")
reloadDelayedObject(fhandle, "YAY")
H5Fclose(fhandle)

WrapperArraySeed DelayedArray wrapper seed

Description

Deprecated, use DelayedUnaryIsoOp instead.

writeSparseMatrix Write a sparse matrix

Description

Writes a sparse matrix to file in a compressed sparse format.

https://artifactdb.github.io/chihaya/

writeSparseMatrix 19

Usage

writeSparseMatrix(
X,
file,
name,
chunk = 10000,
column = TRUE,

tenx = FALSE,
guess.integer = TRUE
)
Arguments
X A sparse matrix of some sort. This includes sparse DelayedMatrix objects.
file String containing a path to the HDFS5 file. The file is created if it is not already
present.
name String containing the name of the group to store x.
chunk Integer scalar specifying the chunk size for the indices and values.
column Logical scalar indicating whether to store as compressed sparse column format.
tenx Logical scalar indicating whether to use the 10X compressed sparse column
format.

guess.integer Logical scalar specifying whether to guess an appropriate integer type from x.

Details
This writes a sparse matrix to file in various formats:

e column=TRUE and tenx=FALSE uses HSAD’s csr_matrix format.

* column=FALSE and tenx=FALSE uses HSAD’s csc_matrix format.

e tenx=TRUE uses 10X Genomics’ HDF5 matrix format.
For the first two formats, the apparent transposition is deliberate, because columns in R are inter-
preted as rows in HSAD. This allows us to retain consistency the interpretation of samples (columns

in R, rows in H5AD) and features (vice versa). Constructors for classes like HSSparseMatrix will
automatically transpose so no extra work is required.

If guess. integer=TRUE, we attempt to save x’s values into the smallest type that will accommodate
all of its values. If x only contains unsigned integers, we will attempt to save either 8-, 16- or 32-bit
unsigned integers. If x contains signed integers, we will fall back to 32-bit signed integers. For all
other values, we will fall back to double-precision floating point values.

We attempt to save x’s indices to unsigned 16-bit integers if the relevant dimension of x is small
enough. Otherwise we will save it as an unsigned 32-bit integer.

Value

A NULL invisibly. The contents of x are written to name in file.

Author(s)

Aaron Lun

20

Examples

library(Matrix)

X <- rsparsematrix(100, 20, 0.5)

tmp <- tempfile(fileext=".h5")

writeSparseMatrix(x, tmp, "csc_matrix")
writeSparseMatrix(x, tmp, "csr_matrix"”, column=FALSE)
writeSparseMatrix(x, tmp, "tenx_matrix”, tenx = TRUE)

rhdf5: :h51s(tmp)
library(HDF5Array)
H5SparseMatrix(tmp, "csc_matrix")
H5SparseMatrix(tmp, "csr_matrix")
H5SparseMatrix(tmp, "tenx_matrix")

writeSparseMatrix

Index

.createRawArraySeed
(createRawArraySeed), 3

.extractArrayDimnames
(createRawArraySeed), 3

acquireFile, 3
altReadObject, 17
altReloadDelayedObject
(storeDelayedObject), 15
altReloadDelayedObjectFunction
(storeDelayedObject), 15
altSaveObject, 16, 17
altStoreDelayedObject
(storeDelayedObject), 15
altStoreDelayedObjectFunction
(storeDelayedObject), 15
AmalgamatedArray, 2
AmalgamatedArray-class
(AmalgamatedArray), 2
AmalgamatedArraySeed
(AmalgamatedArray), 2
AmalgamatedArraySeed-class
(AmalgamatedArray), 2
AmalgamatedMatrix-class
(AmalgamatedArray), 2

chunkdim,DelayedMask-method
(DelayedMask), 4
cloneDirectory, 10, 11

coerce,AmalgamatedArray,AmalgamatedMatrix-met

(AmalgamatedArray), 2

DelayedArray, 4, 5, 10,12, 13,15, 17

DelayedArray,AmalgamatedArraySeed-method
(AmalgamatedArray), 2

DelayedArray,ReloadedArraySeed-method
(ReloadedArraySeed), 10

DelayedMask, 4

DelayedMask-class (DelayedMask), 4

DelayedMatrix, 719

DelayedSubset, 17

DelayedUnaryIsoOp, 10, 18

denseMatrix, /1

dim,DelayedMask-method (DelayedMask), 4

dimnames,DelayedMask-method
(DelayedMask), 4

extract_array,DelayedMask-method
(DelayedMask), 4

extract_sparse_array,DelayedMask-method
(DelayedMask), 4

extractComponents (AmalgamatedArray), 2

H5SparseMatrix, 9, 19
HDF5Array, 9

is.na, 5
is_sparse,DelayedMask-method
(DelayedMask), 4

loadArray, 9

#o%dArray(readArray),6
gadWrapperArray(WrapperArraySeed),18

coerce,AmalgamatedMatrix, AmalgamatedArray-method,ixclass AmalgamatedArray-method

(AmalgamatedArray), 2
coerce,ReloadedArray,ReloadedMatrix-method

(ReloadedArraySeed), 10
coerce,ReloadedMatrix,ReloadedArray-method

(ReloadedArraySeed), 10
componentNames (AmalgamatedArray), 2
createDedupSession, 11
createExternalSeedDedupSession

(storeDelayedObject), 15
createRawArraySeed, 3

DelayedAbind, 2

21

(AmalgamatedArray), 2
matrixClass,ReloadedArray-method
(ReloadedArraySeed), 10

path,DelayedMask-method (DelayedMask), 4

path,ReloadedArraySeed-method
(ReloadedArraySeed), 10

preserveDelayedOperations, 2, 5

readArray, 6, 12
readDelayedArray, 7, 18
readObject, 6-8, 10

22

readSparseMatrix, 8, 14
recycleHdf5Files, 2,9
registerReloadDelayedObjectFunction
(storeDelayedObject), 15
reloadDelayedObject, 7
reloadDelayedObject
(storeDelayedObject), 15
reloadDelayedObjectFunctionRegistry
(storeDelayedObject), 15
ReloadedArray, 6, 10, 17
ReloadedArray (ReloadedArraySeed), 10
ReloadedArray-class
(ReloadedArraySeed), 10
ReloadedArraySeed, 10, 10
ReloadedArraySeed-class
(ReloadedArraySeed), 10
ReloadedMatrix, 8
ReloadedMatrix-class
(ReloadedArraySeed), 10

saveArray, 11
saveDelayedArray, 12
saveObject, 6-8, 10, 13
saveObject,array-method (saveArray), 11
saveObject,DelayedArray-method
(saveDelayedArray), 12
saveObject,denseMatrix-method
(saveArray), 11
saveObject,ReloadedArray-method
(ReloadedArraySeed), 10
saveObject, sparseMatrix-method
(saveSparseMatrix), 14
saveObject,SVT_SparseMatrix-method
(saveSparseMatrix), 14
saveSparseMatrix, 14
stageObject, 2, 3,5, 9
stageObject,AmalgamatedArray-method
(AmalgamatedArray), 2
stageObject,array-method (saveArray), 11
stageObject,DelayedArray-method
(saveDelayedArray), 12
stageObject,DelayedMatrix-method
(saveDelayedArray), 12
stageObject,Matrix-method (saveArray),
11
storeDelayedObject, 12, 13, 15,17
storeDelayedObject,ANY-method
(storeDelayedObject), 15
storeDelayedObject,array-method
(storeDelayedObject), 15

storeDelayedObject,ConstantArraySeed-method

(storeDelayedObject), 15

INDEX

storeDelayedObject,DelayedAbind-method
(storeDelayedObject), 15
storeDelayedObject,DelayedAperm-method
(storeDelayedObject), 15
storeDelayedObject,DelayedNaryIsoOp-method
(storeDelayedObject), 15
storeDelayedObject,DelayedSetDimnames-method
(storeDelayedObject), 15
storeDelayedObject,DelayedSubassign-method
(storeDelayedObject), 15
storeDelayedObject,DelayedSubset-method
(storeDelayedObject), 15
storeDelayedObject,DelayedUnaryIsoOpStack-method
(storeDelayedObject), 15
storeDelayedObject,DelayedUnaryIsoOpWithArgs-method
(storeDelayedObject), 15
storeDelayedObject,denseMatrix-method
(storeDelayedObject), 15
storeDelayedObject, sparseMatrix-method
(storeDelayedObject), 15
storeDelayedObject,SVT_SparseMatrix-method
(storeDelayedObject), 15

type, 4

WrapperArray (WrapperArraySeed), 18

WrapperArray-class (WrapperArraySeed),
18

WrapperArraySeed, 18

WrapperArraySeed-class
(WrapperArraySeed), 18

writeSparseMatrix, 18

	AmalgamatedArray
	createRawArraySeed
	DelayedMask
	preserveDelayedOperations
	readArray
	readDelayedArray
	readSparseMatrix
	recycleHdf5Files
	ReloadedArraySeed
	saveArray
	saveDelayedArray
	saveSparseMatrix
	storeDelayedObject
	WrapperArraySeed
	writeSparseMatrix
	Index

