
Package ‘TSAR’
October 15, 2025

Type Package

Title Thermal Shift Analysis in R

Version 1.7.0

Year 2023

Description This package automates analysis workflow for Thermal Shift
Analysis (TSA) data. Processing, analyzing, and visualizing data through
both shiny applications and command lines. Package aims to simplify

data analysis and offer front to end workflow, from raw data to
multiple trial analysis.

License AGPL-3

Encoding UTF-8

LazyData false

Testthat true

RoxygenNote 7.2.3

Imports dplyr (>= 1.0.7), ggplot2 (>= 3.3.5), ggpubr (>= 0.4.0),
magrittr (>= 2.0.3), mgcv (>= 1.8.38), readxl (>= 1.4.0),
stringr (>= 1.4.0), tidyr (>= 1.1.4), utils (>= 4.3.1), shiny
(>= 1.7.4.1), plotly (>= 4.10.2), shinyjs (>= 2.1.0), jsonlite
(>= 1.8.7), rhandsontable (>= 0.3.8), openxlsx (>= 4.2.5.2),
shinyWidgets (>= 0.7.6), minpack.lm (>= 1.2.3)

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

biocViews Software, ShinyApps, Visualization, qPCR

DataRaw data/qPCR_data1.rda

DataRaw2 data/qPCR_data2.rda

DataRaw3 data/Well_Information.rda

DataRaw4 data/Well_Information_Template.rda

DataRawr data/example_tsar_data.rda

Depends R (>= 4.3.0)

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/TSAR

git_branch devel

git_last_commit e202d4e

1

2 Contents

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-10-14

Author Xinlin Gao [aut, cre] (ORCID: <https://orcid.org/0009-0002-2518-235X>),
William M. McFadden [aut, fnd] (ORCID:

<https://orcid.org/0000-0001-6911-2172>),
Stefan G. Sarafianos [fnd, aut, ths] (ORCID:

<https://orcid.org/0000-0002-5840-154X>)

Maintainer Xinlin Gao <candygao2015@outlook.com>

Contents
analyze_norm . 3
condition_IDs . 3
example_tsar_data . 4
gam_analysis . 5
get_legend . 6
graph_tsar . 7
join_well_info . 7
merge_norm . 9
merge_TSA . 10
model_boltzmann . 11
model_fit . 12
model_gam . 13
normalize . 14
normalize_fluorescence . 15
qPCR_data1 . 16
qPCR_data2 . 16
read_analysis . 17
read_raw_data . 19
read_tsar . 20
remove_raw . 21
rescale . 22
run_boltzmann . 23
screen . 23
Tm_difference . 24
Tm_est . 25
TSA_average . 26
TSA_boxplot . 27
TSA_compare_plot . 28
TSA_ligands . 29
TSA_proteins . 30
TSA_Tms . 31
TSA_wells_plot . 32
view_deriv . 33
view_model . 34
weed_raw . 34
well_IDs . 35
well_information . 36
well_information_template . 37
write_tsar . 38

https://orcid.org/0009-0002-2518-235X
https://orcid.org/0000-0001-6911-2172
https://orcid.org/0000-0002-5840-154X

analyze_norm 3

Index 39

analyze_norm Analyze to Normalize

Description

The analyze_norm function allows users to process analysis through an UI interface. Function
wraps together all functions with in TSA_analysis family and read_write_analysis family.

Usage

analyze_norm(raw_data)

Arguments

raw_data The raw data for analysis.

Value

shiny application

See Also

gam_analysis, read_tsar, write_tsar, join_well_info

Examples

if (interactive()) {
data("qPCR_data1")
shiny::runApp(analyze_norm(qPCR_data1))

}

condition_IDs TSAR Condition IDs

Description

This function is used to extract information of the condition IDs from a loaded TSA Analysis Data
file. Condition IDs are automatically generated by the read_analysis function in the automated
workflow. This returns either a character vector of unique IDs present or a numeric value of the
number of unique IDs.

Usage

condition_IDs(analysis_data, n = FALSE)

4 example_tsar_data

Arguments

analysis_data a data frame that is unmerged and generated by TSAR::read_analysis() or a
merged TSA data frame generated by TSAR::merge_TSA(). Data frames re-
quire a column named ’condition_ID’.

n logical value; n = FALSE by default. When TRUE, a numeric value of unique
IDs is returned. When FALSE, a character vector of unique IDs are returned.

Value

Either a character vector of condition_IDs or a numeric value.

See Also

merge_TSA and read_analysis for preparing input.

Other TSA Summary Functions: TSA_ligands(), TSA_proteins(), well_IDs()

Examples

data("example_tsar_data")
condition_IDs(example_tsar_data)

example_tsar_data Example tsar_data file

Description

Dataset Description: This is an example dataset of the tsar_data strucutre. The data frame contains
well ID, conditions, and experimental details.

Usage

data(example_tsar_data)

Format

A data frame with the following columns:

Well Well position

Temperature Temperature in degrees

Fluorescence Fluorescence reading

Normalized Normalized value

norm_deriv Calculated first derivative

Tm Tm value

Protein Protein information

Ligand Ligand information

ExperimentFileName Experiment file name

well_ID Well ID

condition_ID Condition ID

gam_analysis 5

Value

example tsar_data in data frame

Source

experimentally obtained

gam_analysis Analysis of all 96 wells through gam modeling

Description

Function pipeline that combines separated functions and iterate through each well to estimate the
Tm.

Usage

gam_analysis(
raw_data,
keep = TRUE,
fit = FALSE,
smoothed = FALSE,
boltzmann = FALSE,
fluo_col = NA,
selections = c("Well.Position", "Temperature", "Fluorescence", "Normalized")

)

Arguments

raw_data data frame; raw data frame

keep Boolean; set to keep = TRUE by default to return normalized data and fitted data

fit Boolean; set to fit = FALSE by default, fit = TRUE returns access to information
of each model fit. Not accessible in shiny.

smoothed Boolean; set to smoothed = FALSE by default, if data is already smoothed, set
smoothed to true

boltzmann Boolean; set to boltzmann = FALSE by default. Set to boltzmann = TRUE if a
botlzmann fit is preferred.

fluo_col integer; the Fluorescence variable column id (e.g. fluo = 5 when 5th column of
data frame is the Fluorescence value) if fluorescence variable is named exactly
as "Fluorescence", fluo does not need to be specified.

selections list of characters; the variables in raw data user intends to keep. It is set, by de-
fault, to c("Well.Position","Temperature", "Fluorescence", "Normalized").

Value

List of data frames, list of three data frame outputs, Tm estimation by well, data set, fit of model by
well.

6 get_legend

See Also

Other tsa_analysis: Tm_est()

Examples

data("qPCR_data1")
gam_analysis(qPCR_data1,

smoothed = TRUE, boltzmann = FALSE, fluo_col = 5,
selections = c(

"Well.Position", "Temperature", "Fluorescence",
"Normalized"

)
)
model <- gam_analysis(qPCR_data1, smoothed = FALSE, boltzmann = TRUE)

get_legend Extract ggplot2 legend

Description

Function enables separation of legends from plots within the TSAR package.

Usage

get_legend(input_plot)

Arguments

input_plot a ggplot2 object

Value

two ggplots, one containing the legend and another containing all else.

See Also

Other TSA Plots: TSA_boxplot(), TSA_compare_plot(), TSA_wells_plot(), graph_tsar(),
view_deriv()

Examples

data("example_tsar_data")
boxplot <- TSA_boxplot(example_tsar_data,

color_by = "Protein",
label_by = "Ligand", separate_legend = FALSE

)
get_legend(boxplot)

graph_tsar 7

graph_tsar Graph tsar_data

Description

Function allows users to graph out tsar_data, building boxplot, compare plots, and curves by con-
dition. Input of data as parameter is optional. graph_tsar wraps together all graphing functions and
relative helper functions.

Usage

graph_tsar(tsar_data = data.frame())

Arguments

tsar_data tsar data outputted by merge_norm or merge_tsa. Parameter is optional. If no
data is passed, access the merge panel to merge norm_data into tsar_data.

Value

prompts separate app window for user interaction, does not return specific value; generates boxplot
and compare plots according to user input

See Also

TSA_boxplot, TSA_compare_plot, condition_IDs, well_IDs, merge_norm, TSA_Tms, Tm_difference

Other TSA Plots: TSA_boxplot(), TSA_compare_plot(), TSA_wells_plot(), get_legend(),
view_deriv()

Examples

if (interactive()) {
data("example_tsar_data")
shiny::runApp(graph_tsar(example_tsar_data))

}

join_well_info Well information input function

Description

Reads in the ligand and protein information and joins them accordingly to the big data frame for
graphing purposes.

8 join_well_info

Usage

join_well_info(
file_path,
file = NULL,
analysis_file,
skips = 0,
nrows = 96,
type

)

Arguments

file_path string; file path to read in the file

file object; use file to override the need of file_path if information is already read in

analysis_file data frame; data frame containing smoothed fluorescence data and tm values

skips integer; number indicating the number of headers present in input file, default
set to 0 when file input is "by_well" If the input follows the excel template, this
parameter does not apply.

nrows integer; number indicating the number of rows the data is. Default set to 96 as-
suming analysis on 96 well plate. Parameter is only applicable when file input is
"by_well". If inputting by excel template, this parameter does not apply, please
ignore.

type string; variable specifies the type of input read in. type = "by_well" requires in-
put of csv or txt files of three variables: Well, Protein, Ligand. type = "by_template"
requires input of excel file following the template format provided

Value

outputs data frame joining data information with well information

See Also

Other read_write_analysis: read_tsar(), write_tsar()

Examples

data("qPCR_data1")
result <- gam_analysis(qPCR_data1, smoothed = TRUE, fluo = 5)
data("well_information")
join_well_info(

file_path = NULL, file = well_information,
read_tsar(result, output_content = 2), type = "by_template"

)

merge_norm 9

merge_norm Merge and format norm_data into tsar_data

Description

This function merges data of experiment replicates across different dates. It merges and produces
information variables used to group wells of same set up.

Usage

merge_norm(data, name, date)

Arguments

data list, a character vector specifying the file paths of the data files or data frame
objects of analysis data set. For example, given data frames named "data1" and
"data2", specify parameter as data = list(data1, data2).

name list, character vector specifying the experiment names.

date list, character vector specifying the dates. Does not require any date format
restrictions.

Details

This function merges and normalizes test data from multiple files. The lengths of the data, name,
and date vectors must match, otherwise an error is thrown.

Value

data frame in the format of tsar_data

See Also

Other TSAR Formatting: TSA_Tms(), TSA_average(), Tm_difference(), merge_TSA(), normalize_fluorescence(),
rescale()

Examples

data("qPCR_data1")
result <- gam_analysis(qPCR_data1, smoothed = TRUE, fluo = 5)
data("well_information")
norm_data <- join_well_info(

file_path = NULL, file = well_information,
read_tsar(result, output_content = 2), type = "by_template"

)
norm_data <- na.omit(norm_data)
data("qPCR_data2")
result2 <- gam_analysis(qPCR_data1, smoothed = TRUE, fluo = 5)
norm_data2 <- join_well_info(

file_path = NULL, file = well_information,
read_tsar(result2, output_content = 2), type = "by_template"

)
norm_data2 <- na.omit(norm_data2)

10 merge_TSA

tsar_data <- merge_norm(
data = list(norm_data, norm_data2),
name = c("Thermal Shift_162.eds.csv", "Thermal Shift_168.eds.csv"),
date = c("20230203", "20230209")

)

merge_TSA Merge TSA Raw Data and Analysis Files

Description

This function is used to load both the Raw Data and the Analysis Results which are returned by
the TSA software. Both output files have unique information regarding the experiment, and these
need reunited for downstream analysis. Automatically generated Well IDs are use to merge similar
data within the same experiment from the different files. Both Raw Data and the Analysis Results
files must be specified. The returned, merged results from this function are required for downstream
analysis as the format is set up for the automated workflow.

Usage

merge_TSA(analysis_file_path, raw_data_path, protein = NA, ligand = NA)

Arguments

raw_data_path, analysis_file_path
a character string or vector of character strings; the path or the name of the
file which the ’RawData’ or "AnalysisData’ are to be read from. Raw data and
Analysis Data are to be loaded as a pair of results from the same experiment.
When loading multiple files, the index/position of the pairs are merged where the
first file specified by raw_data_path is to be merged with the first file specified
by analysis_file_path. The same is done for the second, third, .. etc.
Either a .txt or .csv file; file type can vary between file pairs.

raw_data_path path must contain the term RawData and analysis_file_path must
contain the term AnalysisResults as the TSA software automatically assigns this
when exporting data. Data is loaded from the read_raw_data and read_analysis
functions within this merge_TSA function.

protein can be used to select for an individual or multiple protein(s) as a character string
matching protein names assigned in the TSA software. NA by default.

ligand can be used to select for an individual or multiple ligand(s) as a character string
matching ligand names assigned in the TSA software. NA by default.

Value

A data frame of merged TSA data.

model_boltzmann 11

IDs

The TSAR package relies on matching conditions and file names for each well and for each set
of conditions between multiple files output by the TSA software. Conditions are assigned to indi-
vidual wells within the TSA software; these assigned values are detected by read_analysis and
read_raw_data then are converted into IDs. Ensure your labeling of values within the TSA soft-
ware is consistent so that similar values can be merged - typos or varying terms will be treated as
distinct values within TSAR unless the values are manually specified by the user. Automatically
generated well IDs within a TSA file can be found using the well_IDs function; condition IDs can
be found using the condition_IDs function.

Condition IDs are generated only in the read_analysis, see that function’s documentation for
more details. Condition IDs are assigned to raw data in the merge_TSA function.

Well IDs are similar to Condition IDs, as they are generated from columns in TSA output. Well
IDs are used to match the analysis and raw data files for the same experiment, as both files contain
unique, useful information for each well. The well ID includes the .eds file name saved from the
PCR machine to match equivalent wells between files of the same experiment. Each well on all
plates should have a unique well ID. If you wish to change or specify the file name used for the well
ID, a new name can be manually assigned with the "manual_file" argument.

See Also

read_raw_data and read_analysis for loading data.

Other TSAR Formatting: TSA_Tms(), TSA_average(), Tm_difference(), merge_norm(), normalize_fluorescence(),
rescale()

Examples

note: example does not contain example data to run
merge_TSA(analysis_file_path, raw_data_path)

model_boltzmann Boltzmann Modeling on TSA data

Description

Function finds fitted fluorescence values by imposing Boltzmann function.

Usage

model_boltzmann(norm_data)

Arguments

norm_data data frame input, preferably normalized using normalize.

12 model_fit

Value

dtaa frame containing gam model fitted values

See Also

Other data_preprocess: model_fit(), model_gam(), normalize(), remove_raw(), run_boltzmann(),
screen(), view_model(), weed_raw()

Examples

data("qPCR_data1")
A01 <- subset(qPCR_data1, Well.Position == "A01")
A01 <- normalize(A01)
model_boltzmann(A01)

model_fit Refit and calculate derivative function

Description

Model_fit calculates derivatives by refitting model onto data. Only runs on data of a single well.

Usage

model_fit(norm_data, model, smoothed)

Arguments

norm_data data frame; the raw data set input

model fitted model containing fitted values

smoothed inform whether data already contains a smoothed model; Input the column name
of the smoothed data to override values of gam model fitting. For example,
existing "Fluorescence" column contains data already smoothed, set smoothed
= "Flourescence" to calculate derivative function upon the called smoothed
data.

Value

data frame; with calculated derivative columns

See Also

Other data_preprocess: model_boltzmann(), model_gam(), normalize(), remove_raw(), run_boltzmann(),
screen(), view_model(), weed_raw()

model_gam 13

Examples

data("qPCR_data1")
test <- subset(qPCR_data1, Well.Position == "A01")
test <- normalize(test, fluo = 5, selected = c(

"Well.Position", "Temperature",
"Fluorescence", "Normalized"

))
gammodel <- model_gam(test, x = test$Temperature, y = test$Normalized)
model_fit(test, model = gammodel)
if data come smoothed, run ...
model_fit(test, smoothed = "Fluorescence")

model_gam Generalized Addidtive Modeling on TSA data

Description

Function finds fitted fluorescence values by imposing generalized additive model on fluorescence
data by temperature. Model assumes method = "GACV.Cp" and sets to formula = y ~ s(x, bs =
"ad"). Function inherits function from gam package, gam().

Usage

model_gam(norm_data, x, y)

Arguments

norm_data data frame input of only one well’s reading, preferably normalized using normalize.

x temperature column

y normalized fluorescence column

Value

data frame containing gam model fitted values

See Also

Other data_preprocess: model_boltzmann(), model_fit(), normalize(), remove_raw(), run_boltzmann(),
screen(), view_model(), weed_raw()

Examples

data("qPCR_data1")
test <- subset(qPCR_data1, Well.Position == "A01")
test <- normalize(test, fluo = 5, selected = c(

"Well.Position", "Temperature",
"Fluorescence", "Normalized"

))
model_gam(test, x = test$Temperature, y = test$Normalized)

14 normalize

normalize Normalize Fluorescence

Description

normalize() reads in raw_data. This function normalizes data by standardizing them according to
maximum and minimum fluorescence per well, with maximum set to 1 and minimum set to 0. It
also reformats data types by checking for potential error. i.e. a string specifying 100,000 will be
read in as number, 100000, without issue. Function is applicable only to data of a single well, do
not call on an entire data frame of all 96 well data. It is intended for single well screening purposes.

Usage

normalize(
raw_data,
fluo = NA,
selected = c("Well.Position", "Temperature", "Fluorescence", "Normalized")

)

Arguments

raw_data data frame; raw dataset input, should be of only one well. If multiple wells
need to be normalized, use gam_analysis() for 96 well application. If only
preliminary screening is needed, use screen().

fluo integer; the Fluorescence variable column id (e.g. fluo = 5 when 5th column
of the data frame is the Fluorescence value) if fluorescence variable is named
exactly as "Fluorescence", fluo does not need to be specified. i.e. fluo is set to
NA by default, suggesting the variable is named "Fluorescence".

selected list of character strings; variables from the original data set users intend to keep.
Variable default set to c("Well.Position", "Temperature", "Fluorescence", "Nor-
malized") if not otherwise specified. If data frame variables are named differ-
ently, user needs to specify what column variables to keep.

Value

cleaned up data framed with selected columns

See Also

Other data_preprocess: model_boltzmann(), model_fit(), model_gam(), remove_raw(), run_boltzmann(),
screen(), view_model(), weed_raw()

Examples

data("qPCR_data1")
test <- subset(qPCR_data1, Well.Position == "A01")
normalize(test)

normalize_fluorescence 15

normalize_fluorescence

Normalize Fluorescence Curve

Description

This function will take the TSA data and normalize the arbitrary fluorescence measurements based
on the specified method. Each well, determined by a unique well ID, is normalized independently.
All measurements can be normalized to the minimum or maximum value. Alternatively, setting
by = "rescale" (the default) will cause all values to be normalized between the minimum and
maximum values, with the maximum = 1 and the minimum = 0 and all other values normalized in-
between. Finally, the user can supply a single value or vector of values to normalize the data to. The
returned data frame will be the input tsa data frame with a new column named "RFU" containing
the normalized TSA data.

Usage

normalize_fluorescence(tsa_data = tsa_data, by = "rescale", control_vect = NA)

Arguments

tsa_data a data frame that is unmerged and generated by TSAR::read_raw_data() or a
merged TSA data frame generated by TSAR::merge_TSA(). Data frames re-
quire a column named "Fluorescence" containing numeric values for normaliz-
ing.

by character string; either c("rescale", "min", "max", "control"). by = "rescale"
by default, scaling Fluorescence values in-between the minimum and maximum
observation. Each well can be normalized to either the minimum or maximum
value with by = "min" or by = "max", respectively. To normalize all values to a
numeric value or vector, set by = "control".

control_vect numeric vector to normalize the column "Fluorescence" to. An individual num-
ber will normalize all measurements to be normalized to it. The vector will need
to align with tsa_data$Fluorescence. Ensure by = "control", else the supplied
vector will be ignored.

Value

a data frame identical to the tsa_data input with a new column named "RFU" containing the nor-
malized values

See Also

read_raw_data and merge_TSA for loading data.

Other TSAR Formatting: TSA_Tms(), TSA_average(), Tm_difference(), merge_TSA(), merge_norm(),
rescale()

Examples

examples not ran without example dataset
raw_data <- read_raw_data(raw_data_path)
normalize_fluorescence(raw_data, by == "control)

16 qPCR_data2

qPCR_data1 qPCR_data1 Dataset

Description

Dataset Description: This dataset contains qPCR data for the CA121 protein and common vitamins.
It provides fluorescence measurements obtained using QuantStudio3. Dataset is experimentally
obtained by author of this package.

Usage

data(qPCR_data1)

Format

A data frame with the following columns:

Well Well Count, not required for user

Well.Position Well Label, i.e. A01; required input

Reading reading count in time series, not required for user

Temperature temperature reading, required input

Fluorescence fluorescence reading, required input

Value

qPCR_data1 data frame

Source

experimentally obtained

qPCR_data2 qPCR_data2 Dataset

Description

Dataset Description: This dataset contains qPCR data for the CA121 protein and common vitamins.
It provides fluorescence measurements obtained using QuantStudio3. A different experiemnt trial
containing data of similar property as data, qPCR_data1. Dataset is experimentally obtained by
author of this package.

Usage

data(qPCR_data2)

read_analysis 17

Format

A data frame with the following columns:

Well Well Count, not required for user

Well.Position Well Label, i.e. A01; required input

Reading reading count in time series, not required for user

Temperature temperature reading, required input

Fluorescence fluorescence reading, required input

Value

qPCR_data2 data frame

read_analysis Read TSA Analysis Data

Description

Open TSA Analysis files. This function is used to load data output from the thermal shift software
analysis tab. Can be either .txt or .csv file with a path / file name including the string "Analysis-
Results" due to its automatic naming from the software. The values assigned to wells within the
TSA software are automatically extracted from the loaded file; values must be assigned within the
TSA software for the automated workflow (See IDs Section Below). Note: Wells that do not have
an Analysis Group assigned are removed. The TSA software automatically assigns all wells to
Analysis Group 1 by default, and can be changed but not removed by the software.

Usage

read_analysis(
path,
type = "derivative",
conditions = c("Protein", "Ligand"),
manual_conditions = NA,
manual_wells = NA,
skip_flags = FALSE,
manual_file = NA

)

Arguments

path a character string; the path or the name of the file which the ’AnalysisResults’
data are to be read from. Either a .txt or .csv file. The path must contain the term
AnalysisResults as the TSA software automatically assigns this when exporting
data.

type either c("boltzmann", "derivative"); type = "derivative") by default. Deter-
mines what model of Tm estimation to load from the TSA software. Loads
Tms as ’Tm B’ when type = "boltzmann"); loads Tms as ’Tm D’ when type
= "derivative").

18 read_analysis

conditions A character vector of condition types assigned within the TSA software to load.
conditions = c("Protein", "Ligand") by default. These conditions are used
to generate the IDs discussed.

manual_conditions, manual_wells
NA by default, enabling automated analysis. A character vector of Condition
IDs and Well IDs to manually assign each row of the read data.

skip_flags logical value; type = FALSE by default. When type = TRUE, wells that have flags
reported by TSA software are removed.

manual_file NA by default. User can specify .eds for merging if needed for Well IDs if
needed with a character string.

Value

A data frame of TSA analysis data.

IDs

The TSAR package relies on matching conditions and file names for each well and for each set
of conditions between multiple files output by the TSA software. Conditions are assigned to indi-
vidual wells within the TSA software; these assigned values are detected by read_analysis and
read_raw_data then are converted into IDs. Ensure your labeling of values within the TSA soft-
ware is consistent so that similar values can be merged - typos or varying terms will be treated as
distinct values within TSAR unless the values are manually specified by the user. Automatically
generated well IDs within a TSA file can be found using the well_IDs function; condition IDs can
be found using the condition_IDs function.

Condition IDs are generated from columns in TSA output specified by the ’conditions’ argument.
Protein and Ligand values, the default conditions within the TSA software, are the values used to
create these IDs. You can manually specify the condition categories from the TSA software, in-
cluding user-made conditions. Condition IDs are used to match equivalent observations between
technical and biological replicates. Wells with identical condition IDs, specified by the ’conditions’
argument, will be aggregated in down-stream analysis; user-specified conditions must remain con-
sistent in use and order to create compatible IDs between TSA files from the same experiment and
between replicates.

Well IDs are similar to Condition IDs, as they are generated from columns in TSA output that are
specified by the ’conditions’ argument. Well IDs are used to match the analysis and raw data files
for the same experiment, as both files contain unique, useful information for each well. In addition
to the condition ID, the well ID includes the .eds file name saved from the PCR machine to match
equivalent wells between files of the same experiment. Each well on all plates should have a unique
well ID. If you wish to change or specify the file name used for the well ID, a new name can be
manually assigned with the "manual_file" argument.

The user may manually assign condition IDs using the ’manual_conditions’ argument rather than
using the automatically generated IDs. The same is true for well IDs, which can be manually
assigned with ’manual_wells’. This is not suggested, as there may be issues with matching if
well/conditions are not properly matching. This gives the potential for errors in downstream appli-
cations as well.

read_raw_data 19

See Also

read_raw_data for loading accompanying data. merge_TSA for joining Analysis Results and Raw
Data files from the TSA software.

Other Read TSA Data: read_raw_data()

Examples

path <- "~/Desktop/analysis_data"
note: example does not contain example data to run
read_analysis(path)

read_raw_data Read TSA Raw Data

Description

Open TSA Raw Data files. This function is used to load data output from the thermal shift software
Raw Data tab. Can be either .txt or .csv file with a path / file name including the string "Raw-
Data" due to its automatic naming from the software. The values assigned to wells within the TSA
software are automatically extracted from the loaded file; values must be assigned within the TSA
software for the automated workflow (See IDs Section Below).

Usage

read_raw_data(path, manual_file = NA, type = "fluorescence")

Arguments

path a character string; the path or the name of the file which the ’RawData’ data
are to be read from. Either a .txt or .csv file. The path must contain the term
RawData as the TSA software automatically assigns this when exporting data.

manual_file NA by default. User can specify .eds for merging if needed for Well IDs with a
character string.

type either c("boltzmann", "derivative", "fluorescence"); type = "fluorescence")
by default. Determines what data track to load. When type = "fluorescence"),
the arbitrary fluorescence of the TSA dye is loaded; this is the primary data. Al-
ternately, derivatives van be loaded: Loads data as boltzman estimated tracks
when type = "boltzmann"); loads the 2nd derivative of emissions when type
= "derivative").

Value

A data frame of TSA raw data.

20 read_tsar

IDs

The TSAR package relies on matching conditions and file names for each well and for each set
of conditions between multiple files output by the TSA software. Conditions are assigned to indi-
vidual wells within the TSA software; these assigned values are detected by read_analysis and
read_raw_data then are converted into IDs. Ensure your labeling of values within the TSA soft-
ware is consistent so that similar values can be merged - typos or varying terms will be treated as
distinct values within TSAR unless the values are manually specified by the user. Automatically
generated well IDs within a TSA file can be found using the well_IDs function; condition IDs can
be found using the condition_IDs function.

Condition IDs are generated only in the read_analysis, see that function’s documentation for
more details. Condition IDs are assigned to raw data in the merge_TSA function.

Well IDs are similar to Condition IDs, as they are generated from columns in TSA output. Well
IDs are used to match the analysis and raw data files for the same experiment, as both files contain
unique, useful information for each well. The well ID includes the .eds file name saved from the
PCR machine to match equivalent wells between files of the same experiment. Each well on all
plates should have a unique well ID. If you wish to change or specify the file name used for the well
ID, a new name can be manually assigned with the "manual_file" argument.

See Also

read_analysis for loading accompanying data. merge_TSA for joining Analysis Results and Raw
Data files from the TSA software.

Other Read TSA Data: read_analysis()

Examples

path <- "~/Desktop/raw_data"
note: example does not contain example data to run
read_raw_data(path)

read_tsar Read analysis result

Description

reads previous pipeline output lists from gam_analysis() and organizes them into separate data
frames.

Usage

read_tsar(gam_result, output_content)

remove_raw 21

Arguments

gam_result list; input uses resulting output of gam_analysis() function

output_content integer; output_content = 0 returns only the tm value by wells output_content
= 1 returns data table with fitted values output_content = 2 returns the combi-
nation of 0 and 1

Value

output files with select dataset

See Also

Other read_write_analysis: join_well_info(), write_tsar()

Examples

data("qPCR_data1")
result <- gam_analysis(qPCR_data1,

smoothed = TRUE, fluo_col = 5,
selections = c(

"Well.Position", "Temperature", "Fluorescence", "Normalized"
)

)
read_tsar(result, output_content = 0)
output_data <- read_tsar(result, output_content = 2)

remove_raw Remove selected raw curves

Description

Removes selected curves with specified wells and range.

Usage

remove_raw(raw_data, removerange = NULL, removelist = NULL)

Arguments

raw_data dataframe; to be processed data

removerange list type input identifying range of wells to select. For example, if removing all
12 wells from row D to H is needed, one can specify the row letters and column
numbers like this: removerange = c("D", "H", "1", "12")

removelist use this parameter to remove selected Wells with full Well names. For example,
removelist = c('A01', 'D11')

Value

dataframe; data frame with specified well removed

22 rescale

See Also

Other data_preprocess: model_boltzmann(), model_fit(), model_gam(), normalize(), run_boltzmann(),
screen(), view_model(), weed_raw()

Examples

data("qPCR_data1")
remove_raw(qPCR_data1, removelist = c("A01", "D11"))

rescale Rescale values between minimum and maximum.

Description

For a vector of numeric values, the minimum and maximum values are determined and each value
of the vector is rescaled between 0 and 1. Values near 0 are close to the minimum, values near 1 are
close to the max. This function is utilized by other TSAR functions.

Usage

rescale(x)

Arguments

x a numeric vector to be rescaled

Value

A numeric vector of rescaled values.

See Also

Other TSAR Formatting: TSA_Tms(), TSA_average(), Tm_difference(), merge_TSA(), merge_norm(),
normalize_fluorescence()

Examples

x <- c(0, 1, 3)
rescale(x)

run_boltzmann 23

run_boltzmann Run Boltzmann Modeling

Description

Function runs function model_boltzmann() and raises warning when modeling generates error or
warnings.

Usage

run_boltzmann(norm_data)

Arguments

norm_data data frame input, preferably normalized using normalize.

Value

data frame containing gam model fitted values

See Also

Other data_preprocess: model_boltzmann(), model_fit(), model_gam(), normalize(), remove_raw(),
screen(), view_model(), weed_raw()

Examples

data("qPCR_data1")
A01 <- subset(qPCR_data1, Well.Position == "A01")
A01 <- normalize(A01)
run_boltzmann(A01)

screen Screen raw curves

Description

screens multiple wells of data and prepares to assist identification of corrupted wells and odd out
behaviors

Usage

screen(raw_data, checkrange = NULL, checklist = NULL)

Arguments

raw_data input raw_data
checkrange list type input identifying range of wells to select. For example, if viewing first

8 wells from row A to C is needed, one can specify the row letters and column
numbers like this: checkrange = c("A", "C", "1", "8")

checklist use this parameter to view selected Wells with full Well names. For example,
checklist = c('A01', 'D11')

24 Tm_difference

Value

returns a ggplot graph colors by well IDs

See Also

Other data_preprocess: model_boltzmann(), model_fit(), model_gam(), normalize(), remove_raw(),
run_boltzmann(), view_model(), weed_raw()

Examples

data("qPCR_data1")
screen(qPCR_data1, checkrange = c("A", "C", "1", "12"))

Tm_difference Calculate Tm difference for all conditions

Description

From a specified control condition, the change in Tm is calculated for each condition in the tsa_data.
Specifically, Tm = condition − control. Individual Tm values are averaged by condition, see
TSA_average for details. To see all conditions use condition_IDs(tsa_data).

Usage

Tm_difference(tsa_data, control_condition)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(). If y =
'RFU', tsa_data must also be generated by TSAR::normalize_fluorescence. The
Temperature column will be rounded and the average & sd of each rounded
temperature is calculated.

control_condition

character string matching a Condition ID. Must be equal to a value within tsa_data$condition_ID.
See unique condition IDs with condition_IDs.

Value

a data frame of reformatted data with the TSA_average data and the Tm.

See Also

merge_TSA for preparing data. TSA_average for more information on the output data. condition_IDs
to get unique Condition IDs within the input. TSA_boxplot for application.

Other TSAR Formatting: TSA_Tms(), TSA_average(), merge_TSA(), merge_norm(), normalize_fluorescence(),
rescale()

Tm_est 25

Examples

data("example_tsar_data")
control <- condition_IDs(example_tsar_data)[1]
Tm_difference(example_tsar_data, control_condition = control)

Tm_est Find inflection point function

Description

Looks for Tm temperature values by finding the inflection point in the fluorescence data. The
inflection point is approximated by locating the maximum first derivative stored in "norm_deriv"
column.

Usage

Tm_est(norm_data, min, max)

Arguments

norm_data data frame; data frame input containing derivative values can only be data frames
for one well; finding inflections points across multiple wells require iteration
through individual wells

min restricts finding to be above the given minimum temperature

max restricts finding to be below the given maximum temperature parameter min and
max can be used to remove messy or undesired data for better accuracy in tm
estimation; removing data is before fitting the model is more recommended than
removing here

Value

integer; tm estimation

See Also

Other tsa_analysis: gam_analysis()

Examples

data("qPCR_data1")
test <- subset(qPCR_data1, Well.Position == "A01")
test <- normalize(test, fluo = 5, selected = c(

"Well.Position", "Temperature",
"Fluorescence", "Normalized"

))
gammodel <- model_gam(test, x = test$Temperature, y = test$Normalized)
fit <- model_fit(test, model = gammodel)
Tm_est(fit)

26 TSA_average

TSA_average Average TSA Curves

Description

This function will take either Fluorescence or Normalized Fluorescence curves from the submitted
data frame and find the average (mean) and standard deviation (sd) for each temperature measured
in the TSA curve. Mean and sd are smoothened by default to generate cleaner curves. The function
gam from the mgcv package is used for regression to smoothen lines. Smoothing can be turned
off and the true average for each point can be given, however, plots will look messier. The qPCR
machine may return temperatures with many decimal places, and TSAR only merges identical val-
ues, therefore rounding is necessary. Data is rounded to one decimal place to improve regression
smoothing.

Note: All submitted data is averaged, regardless of condition or well ID. If you wish to average
by condition, you will need to sort the data frame and run this function on subsets.

Usage

TSA_average(
tsa_data,
y = "Fluorescence",
digits = 1,
avg_smooth = TRUE,
sd_smooth = TRUE

)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(). If y =
'RFU', tsa_data must also be generated by TSAR::normalize_fluorescence. The
Temperature column will be rounded and the average & sd of each rounded
temperature is calculated.

y character string; c(’Fluorescence’, ’RFU’). When y = 'Fluorescence', the orig-
inal Fluorescence data from TSAR::read_raw_data() is averaged. When y =
'RFU', the average is calculated by the rescaled fluorescence.

digits an integer; digits = 1 by default. The number of decimal places to round tem-
perature to for averaging.

avg_smooth, sd_smooth
logical; TRUE by default. Decides if the average (avg_smooth) or standard
deviation (sd_smooth) will be smoothened by regression via mgcv::gam()

Value

a data frame of each temperature measured with the average, sd, and n(# of averaged values) cal-
culated. Depending on avg_smooth and sd_smooth, the smoothened lines for the maximum and
mimimum sd and the average will also be returned.

TSA_boxplot 27

See Also

merge_TSA and merge_TSA for preparing data.

Other TSAR Formatting: TSA_Tms(), Tm_difference(), merge_TSA(), merge_norm(), normalize_fluorescence(),
rescale()

Examples

data("example_tsar_data")
TSA_average(example_tsar_data,

y = "Fluorescence", digits = 1,
avg_smooth = TRUE, sd_smooth = TRUE

)

TSA_boxplot TSA Box Plot

Description

Generates a box and whiskers plot for each condition specified. This is used to compare Tm values
between the data set. See Tm_difference for details.

Usage

TSA_boxplot(
tsa_data,
control_condition = NA,
color_by = "Protein",
label_by = "Ligand",
separate_legend = TRUE

)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(). If y =
'RFU', tsa_data must also be generated by TSAR::normalize_fluorescence. The
Temperature column will be rounded and the average & sd of each rounded
temperature is calculated.

control_condition

Either a condition_ID or NA; NA by default. When a valid Condition ID is
provided, a vertical line appears at the average Tm for the specified condition.
When NA, this is skipped.

color_by character string, either c("Ligand", "Protein"). The condition category to color
the boxes within the box plot for comparison. This is represented in the legend.
Set to NA to skip.

label_by character string, either c("Ligand", "Protein"). The condition category to group
the boxes within the box plot. This is represented in the axis. Set to NA to skip.

separate_legend

logical; separate_legend = TRUE by default. When TRUE, the ggplot2 legend
is separated from the TSA curve. This is to help with readability. One ggplot is
returned when FALSE.

28 TSA_compare_plot

Value

by default, two ggplots are returned: one TSA curve and one key. When separate_legend = FALSE
one ggplot is returned.

See Also

merge_TSA for preparing data. See Tm_difference and get_legend for details on function param-
eters.

Other TSA Plots: TSA_compare_plot(), TSA_wells_plot(), get_legend(), graph_tsar(), view_deriv()

Examples

data("example_tsar_data")
TSA_boxplot(example_tsar_data,

color_by = "Protein",
label_by = "Ligand", separate_legend = FALSE

)

TSA_compare_plot Compare TSA curves to control

Description

Generate a number of plots based on the input data to compare the average and standard devi-
ation (sd) of each unique condition to a specified control condition. To see all conditions use
condition_IDs(tsa_data).

Usage

TSA_compare_plot(
tsa_data,
control_condition,
y = "Fluorescence",
show_Tm = FALSE,
title_by = "both",
digits = 1

)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(). If y =
'RFU', tsa_data must also be generated by TSAR::normalize_fluorescence. The
Temperature column will be rounded and the average & sd of each rounded
temperature is calculated.

control_condition

character string matching a Condition ID. Must be equal to a value within tsa_data$condition_ID.
See unique condition IDs with condition_IDs.

y character string; c(’Fluorescence’, ’RFU’). When y = 'Fluorescence', the orig-
inal Fluorescence data from TSAR::read_raw_data() is averaged. When y =
'RFU', the average is calculated by the rescaled fluorescence.

TSA_ligands 29

show_Tm logical; show_Tm = FALSE by default. When TRUE, the Tm is displayed on the
plot. When FALSE, the Tm is not added to the plot.

title_by character string; c("ligand", "protein", "both"). Automatically names the plots
by the specified condition category.

digits integer; the number of decimal places to round for change in Tm calculations
displayed in the subtitle of each plot..

Value

Generates a number of ggplot objects equal to the number of unique Condition IDs present in the
input data.

See Also

merge_TSA and normalize_fluorescence for preparing data. See TSA_average and get_legend
for details on function parameters. See TSA_wells_plot for individual curves of the averaged
conditions shown.

Other TSA Plots: TSA_boxplot(), TSA_wells_plot(), get_legend(), graph_tsar(), view_deriv()

Examples

data("example_tsar_data")
TSA_compare_plot(example_tsar_data,

y = "RFU",
control_condition = "CA FL_DMSO"

)

TSA_ligands TSA Ligands

Description

This function is used to extract information from a data frame of TSA data. The Ligand values
should be assigned in the TSA software.

Usage

TSA_ligands(tsa_data, n = FALSE)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(), or an un-
merged data frame read by TSAR::read_analysis() or TSAR::read_raw_data().
The data frame must have a column named ’Ligand’.

n logical value; n = FALSE by default. When TRUE, a numeric value describing
the number of unique ligand names is returned. When FALSE, a character vector
of unique IDs are returned.

Value

Either a character vector of unique well_IDs or a numeric value.

30 TSA_proteins

See Also

merge_TSA, read_raw_data, and read_analysis for preparing input.

Other TSA Summary Functions: TSA_proteins(), condition_IDs(), well_IDs()

Examples

data("example_tsar_data")
TSA_ligands(example_tsar_data)

TSA_proteins TSA Proteins

Description

This function is used to extract information from a data frame of TSA data. The Protein values
should be assigned in the TSA software.

Usage

TSA_proteins(tsa_data, n = FALSE)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(), or an un-
merged data frame read by TSAR::read_analysis() or TSAR::read_raw_data().
The data frame must have a column named ’Protein’.

n logical value; n = FALSE by default. When TRUE, a numeric value describing
the number of unique protein names is returned. When FALSE, a character
vector of unique IDs are returned.

Value

Either a character vector of unique well_IDs or a numeric value.

See Also

merge_TSA, read_raw_data, and read_analysis for preparing input.

Other TSA Summary Functions: TSA_ligands(), condition_IDs(), well_IDs()

Examples

data("example_tsar_data")
TSA_proteins(example_tsar_data)

TSA_Tms 31

TSA_Tms Reformat TSA data into TSA Tms

Description

This function is used to output calculated Tm data from TSA analysis. The input data frame will
be transformed into a new format that is helpful for user reading and automated analysis. The Tm
values can be listed as a data frame of individual wells or the Tms from identical conditions can
be averaged. When condition_average is TRUE (the default), samples with identical condition IDs
will be aggregated and the average / standard deviation will be calculated where appropriate. To
analyze multiple TSA experiments, use merge_TSA() to make a single data frame for analysis.

Usage

TSA_Tms(analysis_data, condition_average = TRUE)

Arguments

analysis_data a data frame that is unmerged and generated by TSAR::read_analysis() or a
merged TSA data frame generated by TSAR::merge_TSA(). Data frames re-
quire a column named ’condition_ID’ for averaging.

condition_average

logical value; n = TRUE by default. When TRUE, the average Tm is calculated
by matched condition IDs within the data frame. When FALSE, each well is
reported as a unique value with the corresponding Tm.

Value

A data frame of Tm values.

See Also

merge_TSA, read_raw_data, and read_analysis for preparing input.

Other TSAR Formatting: TSA_average(), Tm_difference(), merge_TSA(), merge_norm(), normalize_fluorescence(),
rescale()

Examples

data("example_tsar_data")
TSA_Tms(example_tsar_data)

32 TSA_wells_plot

TSA_wells_plot TSA Well Curves Plot

Description

Generates the individual curves for each well in the merged tsa data input. Options to create an
average and standard deviation sd of the plot in addition to the individual curves. The average and
sd will be smoothened by linear regression; see TSA_average for details.

Usage

TSA_wells_plot(
tsa_data,
y = "RFU",
show_Tm = TRUE,
Tm_label_nudge = 7.5,
show_average = TRUE,
plot_title = NA,
plot_subtitle = NA,
smooth = TRUE,
separate_legend = TRUE

)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(). If y =
'RFU', tsa_data must also be generated by TSAR::normalize_fluorescence. The
Temperature column will be rounded and the average & sd of each rounded
temperature is calculated.

y character string; c(’Fluorescence’, ’RFU’). When y = 'Fluorescence', the orig-
inal Fluorescence data from TSAR::read_raw_data() is averaged. When y =
'RFU', the average is calculated by the rescaled fluorescence.

show_Tm logical; show_Tm = TRUE by default. When TRUE, the Tm is displayed on the
plot. When FALSE, the Tm is not added to the plot.

Tm_label_nudge numeric; Tm_label_nudge = 7.5 the direction in the x direction to move the Tm
label. This is used prevent the label from covering data. Ignored if show_Tm =
FALSE.

show_average logical; show_average = TRUE by default. When TRUE, the average is and sd is
plotted as generated by merge_TSA.

plot_title, plot_subtitle
characer string, NA by default. User-specified plots to overright automatic nam-
ing.

smooth logical; smooth = TRUE by default. When TRUE, linear regression by gam is
used to make clean lines on the plot. See TSA_average for more details. When
FALSE, individual points are plotted (slows down rendering).

separate_legend

logical; separate_legend = TRUE by default. When TRUE, the ggplot2 legend
is separated from the TSA curve. This is to help with readability. One ggplot is
returned when FALSE.

view_deriv 33

Value

by default, two ggplots are returned: one TSA curve and one key. When separate_legend = FALSE
one ggplot is returned.

See Also

merge_TSA and normalize_fluorescence for preparing data. See TSA_average and get_legend
for details on function parameters.

Other TSA Plots: TSA_boxplot(), TSA_compare_plot(), get_legend(), graph_tsar(), view_deriv()

Examples

data("example_tsar_data")
check <- subset(example_tsar_data, condition_ID == "CA FL_PyxINE HCl")
TSA_wells_plot(check, separate_legend = FALSE)

view_deriv View Derivative Curves

Description

Function reviews data by well and output a graph of the all derivatives wanted. Function called
within graph_tsar function but also runnable outside.

Usage

view_deriv(tsar_data, frame_by = "Well")

Arguments

tsar_data dataset input, analyzed must have norm_deriv as a variable; dataset qualifying
norm_data or tsar_data both fulfills this parameter, although tsar_data is more
recommended given more data options.

frame_by builds plotly by specified frame variable. To graph by a concentration gradient,
well position, or other specified variable, simple specify frame_by = "condition_ID".
To view all derivative curves without frames, set to frame_by = FALSE, else it is
defaulted to frame by well labels.

Value

plotly object of derivative curves

See Also

Other TSA Plots: TSA_boxplot(), TSA_compare_plot(), TSA_wells_plot(), get_legend(),
graph_tsar()

Examples

data("example_tsar_data")
view_deriv(example_tsar_data, frame_by = "condition_ID")

34 weed_raw

view_model View Model

Description

Function reviews data by well and output a graph of the fit and a graph of derivative. Function
called within analyze_norm function.

Usage

view_model(raw_data)

Arguments

raw_data dataset input, not processing needed

Value

list of two ggplot graphs

See Also

Other data_preprocess: model_boltzmann(), model_fit(), model_gam(), normalize(), remove_raw(),
run_boltzmann(), screen(), weed_raw()

Examples

data("qPCR_data1")
test <- subset(qPCR_data1, Well.Position == "A01")
test <- normalize(test)
gammodel <- model_gam(test, x = test$Temperature, y = test$Normalized)
test <- model_fit(test, model = gammodel)
view_model(test)

weed_raw Weed raw data for corrupt curves

Description

The weed_raw function allows users to interact with a screening graph and select curves to weed
out before entering analysis. Function wraps together screen and remove_raw.

Usage

weed_raw(raw_data, checkrange = NULL, checklist = NULL)

well_IDs 35

Arguments

raw_data The raw data for screening.

checkrange list type input identifying range of wells to select. For example, if viewing first
8 wells from row A to C is needed, one can specify the row letters and column
numbers like this: checkrange = c("A", "C", "1", "8")

checklist use this parameter to view selected Wells with full Well names. For example,
checklist = c('A01', 'D11')

Value

prompts separate app window for user interaction, does not return specific value

See Also

screen and remove_raw

Other data_preprocess: model_boltzmann(), model_fit(), model_gam(), normalize(), remove_raw(),
run_boltzmann(), screen(), view_model()

Examples

data("qPCR_data1")
if (interactive()) {

runApp(weed_raw(qPCR_data1, checkrange = c("A", "B", "1", "12")))
}

well_IDs TSAR Well IDs

Description

This function is used to extract information of the well IDs from a merged TSA data frame. Well
IDs are automatically generated by the read_analysis and read_raw_data functions in the automated
workflow. This function returns either a character vector of unique IDs present or a numeric value
of the number of unique IDs.

Usage

well_IDs(tsa_data, n = FALSE)

Arguments

tsa_data a data frame that is merged and generated by TSAR::merge_TSA(), or an un-
merged data frame read by TSAR::read_analysis() or TSAR::read_raw_data().
Data frames require a column named ’well_ID’.

n logical value; n = FALSE by default. When TRUE, a numeric value of unique
IDs is returned. When FALSE, a character vector of unique IDs are returned.

Value

Either a character vector of unique well IDs or a numeric value.

36 well_information

See Also

merge_TSA, read_raw_data, and read_analysis for preparing input.

Other TSA Summary Functions: TSA_ligands(), TSA_proteins(), condition_IDs()

Examples

data("example_tsar_data")
well_IDs(example_tsar_data)

well_information example well information Data

Description

Dataset Description: This file is a readin using well_information_template. File contains the con-
ditions of well, specifying protein and ligand content in well. All experimental setup and relevant
information are determined and manually put in by the author of this package.

Usage

data(well_information)

Format

A data frame with the following columns:

...1 n/a

Protein...2 Protein in Well 1

Ligand...3 Ligand in Well 1

Protein...4 Protein in Well 2

Ligand...5 Ligand in Well 2

Protein...6 Protein in Well 3

Ligand...7 Ligand in Well 3

Protein...8 Protein in Well 4

Ligand...9 Ligand in Well 4

Protein...10 Protein in Well 5

Ligand...11 Ligand in Well 5

Protein...12 Protein in Well 6

Ligand...13 Ligand in Well 6

Protein...14 Protein in Well 7

Ligand...15 Ligand in Well 7

Protein...16 Protein in Well 8

Ligand...17 Ligand in Well 8

Protein...18 Protein in Well 9

Ligand...19 Ligand in Well 9

well_information_template 37

Protein...20 Protein in Well 10

Ligand...21 Ligand in Well 10

Protein...22 Protein in Well 11

Ligand...23 Ligand in Well 11

Protein...24 Protein in Well 12

Ligand...25 Ligand in Well 12

Value

well information data frame

well_information_template

Well Information Template

Description

Dataset Description: Template specifies the way condition information will be read in as, specifying
protein and ligand content in well.

Usage

data(well_information_template)

Format

A data frame with the following columns:

...1 n/a

Protein...2 Protein in Well 1

Ligand...3 Ligand in Well 1

Protein...4 Protein in Well 2

Ligand...5 Ligand in Well 2

Protein...6 Protein in Well 3

Ligand...7 Ligand in Well 3

Protein...8 Protein in Well 4

Ligand...9 Ligand in Well 4

Protein...10 Protein in Well 5

Ligand...11 Ligand in Well 5

Protein...12 Protein in Well 6

Ligand...13 Ligand in Well 6

Protein...14 Protein in Well 7

Ligand...15 Ligand in Well 7

Protein...16 Protein in Well 8

Ligand...17 Ligand in Well 8

38 write_tsar

Protein...18 Protein in Well 9
Ligand...19 Ligand in Well 9
Protein...20 Protein in Well 10
Ligand...21 Ligand in Well 10
Protein...22 Protein in Well 11
Ligand...23 Ligand in Well 11
Protein...24 Protein in Well 12
Ligand...25 Ligand in Well 12

Value

well information template in data frame

write_tsar write output files

Description

writes output into csv or txt files

Usage

write_tsar(data, name, file = "txt")

Arguments

data input data frame
name string, name file to be saved as. Final name will be appended "tsar_output"
file file = "txt" writes txt output files; file = "csv" writes csv output files; de-

fault set to file = "txt"

Value

file output on the working directory where data was read in

See Also

Other read_write_analysis: join_well_info(), read_tsar()

Examples

data("qPCR_data1")
result <- gam_analysis(qPCR_data1,

smoothed = TRUE, fluo_col = 5,
selections = c(

"Well.Position", "Temperature", "Fluorescence", "Normalized"
)

)
output_data <- read_tsar(result, output_content = 2)
example does not run, will build excessive file in package
write_tsar(output_data, name = "2022_03_18_test", file = "txt")

Index

∗ Read TSA Data
read_analysis, 17
read_raw_data, 19

∗ TSA Plots
get_legend, 6
graph_tsar, 7
TSA_boxplot, 27
TSA_compare_plot, 28
TSA_wells_plot, 32
view_deriv, 33

∗ TSA Summary Functions
condition_IDs, 3
TSA_ligands, 29
TSA_proteins, 30
well_IDs, 35

∗ TSAR Formatting
merge_norm, 9
merge_TSA, 10
normalize_fluorescence, 15
rescale, 22
Tm_difference, 24
TSA_average, 26
TSA_Tms, 31

∗ data_preprocess
model_boltzmann, 11
model_fit, 12
model_gam, 13
normalize, 14
remove_raw, 21
run_boltzmann, 23
screen, 23
view_model, 34
weed_raw, 34

∗ dataset
example_tsar_data, 4
qPCR_data1, 16
qPCR_data2, 16
well_information, 36
well_information_template, 37

∗ read_write_analysis
join_well_info, 7
read_tsar, 20
write_tsar, 38

∗ tsa_analysis
gam_analysis, 5
Tm_est, 25

analyze_norm, 3

condition_IDs, 3, 7, 11, 18, 20, 24, 28, 30, 36

example_tsar_data, 4

gam, 13, 26, 32
gam_analysis, 3, 5, 14, 20, 21, 25
get_legend, 6, 7, 28, 29, 33
graph_tsar, 6, 7, 28, 29, 33

join_well_info, 3, 7, 21, 38

merge_norm, 7, 9, 11, 15, 22, 24, 27, 31
merge_TSA, 4, 9, 10, 11, 15, 19, 20, 22, 24,

27–33, 36
model_boltzmann, 11, 12–14, 22–24, 34, 35
model_fit, 12, 12, 13, 14, 22–24, 34, 35
model_gam, 12, 13, 14, 22–24, 34, 35

normalize, 11–13, 14, 22–24, 34, 35
normalize_fluorescence, 9, 11, 15, 22, 24,

27, 29, 31, 33

qPCR_data1, 16
qPCR_data2, 16

read_analysis, 4, 10, 11, 17, 18, 20, 30, 31,
36

read_raw_data, 10, 11, 15, 18, 19, 19, 20, 30,
31, 36

read_tsar, 3, 8, 20, 38
remove_raw, 12–14, 21, 23, 24, 34, 35
rescale, 9, 11, 15, 22, 24, 27, 31
run_boltzmann, 12–14, 22, 23, 24, 34, 35

screen, 12–14, 22, 23, 23, 34, 35

Tm_difference, 7, 9, 11, 15, 22, 24, 27, 28, 31
Tm_est, 6, 25
TSA_average, 9, 11, 15, 22, 24, 26, 29, 31–33
TSA_boxplot, 6, 7, 24, 27, 29, 33

39

40 INDEX

TSA_compare_plot, 6, 7, 28, 28, 33
TSA_ligands, 4, 29, 30, 36
TSA_proteins, 4, 30, 30, 36
TSA_Tms, 7, 9, 11, 15, 22, 24, 27, 31
TSA_wells_plot, 6, 7, 28, 29, 32, 33

view_deriv, 6, 7, 28, 29, 33, 33
view_model, 12–14, 22–24, 34, 35

weed_raw, 12–14, 22–24, 34, 34
well_IDs, 4, 7, 11, 18, 20, 30, 35
well_information, 36
well_information_template, 37
write_tsar, 3, 8, 21, 38

	analyze_norm
	condition_IDs
	example_tsar_data
	gam_analysis
	get_legend
	graph_tsar
	join_well_info
	merge_norm
	merge_TSA
	model_boltzmann
	model_fit
	model_gam
	normalize
	normalize_fluorescence
	qPCR_data1
	qPCR_data2
	read_analysis
	read_raw_data
	read_tsar
	remove_raw
	rescale
	run_boltzmann
	screen
	Tm_difference
	Tm_est
	TSA_average
	TSA_boxplot
	TSA_compare_plot
	TSA_ligands
	TSA_proteins
	TSA_Tms
	TSA_wells_plot
	view_deriv
	view_model
	weed_raw
	well_IDs
	well_information
	well_information_template
	write_tsar
	Index

