alevinQC 1.2.0
The purpose of the alevinQC package is to generate a summary QC report based on the output of an alevin (Srivastava et al. 2018) run. The QC report can be generated as a html or pdf file, or launched as a shiny application.
alevinQC can be installed using the BiocManager CRAN package.
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("alevinQC")After installation, load the package into the R session.
library(alevinQC)Note that in order to process output from Salmon v0.14 or later, you need Alevin v1.1 or later.
For more information about running alevin, we refer to the
documentation. When
invoked, alevin generates several output files in the specified output
directory. alevinQC assumes that this structure is retained, and
will return an error if it isn’t - thus, it is not recommended to move or
rename the output files from alevin. alevinQC assumes that the
following files (in the indicated structure) are available in the provided
baseDir (note that currently, in order to generate the full set of files,
alevin must be invoked with the --dumpFeatures flag).
baseDir
  |--alevin
  |    |--featureDump.txt
  |    |--filtered_cb_frequency.txt
  |    |--MappedUmi.txt
  |    |--quants_mat_cols.txt
  |    |--quants_mat_rows.txt
  |    |--quants_mat.gz
  |    |--raw_cb_frequency.txt
  |    |--whitelist.txt
  |--aux_info
  |    |--meta_info.json
  |--cmd_info.jsonThe report generation functions (see below) will check that all the required
files are available in the provided base directory. However, you can also call
the function checkAlevinInputFiles() to run the check manually. If one or more
files are missing, the function will raise an error indicating the missing
file(s).
baseDir <- system.file("extdata/alevin_example_v0.14", package = "alevinQC")
checkAlevinInputFiles(baseDir = baseDir)
#> [1] "v0.14"The alevinQCReport() function generates the QC report from the alevin output.
Depending on the file extension of the outputFile argument, and the value of
outputFormat, the function can generate either an html report or a pdf report.
outputDir <- tempdir()
alevinQCReport(baseDir = baseDir, sampleId = "testSample", 
               outputFile = "alevinReport.html", 
               outputFormat = "html_document",
               outputDir = outputDir, forceOverwrite = TRUE)In addition to static reports, alevinQC can also generate a shiny application, containing the same summary figures as the pdf and html reports.
app <- alevinQCShiny(baseDir = baseDir, sampleId = "testSample")Once created, the app can be launched using the runApp() function from the
shiny package.
shiny::runApp(app)The individual plots included in the QC reports can also be independently generated. To do so, we must first read the alevin output into an R object.
alevin <- readAlevinQC(baseDir = baseDir)The resulting list contains three entries:
cbTable: a data.frame with various inferred characteristics of the
individual cell barcodessummaryTables: a list of data.frames with summary information about the
full data set, the initial set of whitelisted cells and the final set of
whitelisted cells, respectivelyversionTable: a matrix with information about the invokation of alevinhead(alevin$cbTable)
#>                 CB originalFreq ranking collapsedFreq nbrMappedUMI
#> 1 GACTGCGAGGGCATGT       121577       1        123419       104128
#> 2 GGTGCGTAGGCTACGA       110467       2        111987        93608
#> 3 ATGAGGGAGTAGTGCG       106446       3        108173        88481
#> 4 ACTGTCCTCATGCTCC       104794       4        106085        81879
#> 5 CGAACATTCTGATACG       104616       5        106072        84395
#> 6 ACTGTCCCATATGGTC        99208       6        100776        81066
#>   totalUMICount mappingRate dedupRate  MeanByMax nbrGenesAboveZero
#> 1         73312    0.843695  0.295943 0.00735194              7512
#> 2         66002    0.835883  0.294911 0.00783094              7522
#> 3         62196    0.817958  0.297069 0.00832595              7081
#> 4         57082    0.771824  0.302849 0.00619664              6956
#> 5         58547    0.795639  0.306274 0.00743685              7347
#> 6         56534    0.804418  0.302618 0.00947029              6841
#>   nbrGenesAboveMean ArborescenceCount inFinalWhiteList inFirstWhiteList
#> 1              1237           1.42034             TRUE             TRUE
#> 2              1238           1.41826             TRUE             TRUE
#> 3              1151           1.42262             TRUE             TRUE
#> 4               957           1.43441             TRUE             TRUE
#> 5              1238           1.44149             TRUE             TRUE
#> 6              1068           1.43393             TRUE             TRUEknitr::kable(alevin$summaryTables$fullDataset)| Total number of processed reads | 7197662 | 
| Number of reads with Ns | 35362 | 
| Number of reads with valid cell barcode (no Ns) | 7162300 | 
| Number of noisy CB reads | 1003624 | 
| Number of noisy UMI reads | 266 | 
| Total number of observed cell barcodes | 188613 | 
knitr::kable(alevin$summaryTables$initialWhitelist)| Number of barcodes in initial whitelist | 100 | 
| Fraction reads in initial whitelist barcodes | 84.64% | 
| Mean number of reads per cell (initial whitelist) | 60620 | 
| Median number of reads per cell (initial whitelist) | 58132 | 
| Median number of detected genes per cell (initial whitelist) | 5268 | 
| Median UMI count per cell (initial whitelist) | 31353 | 
knitr::kable(alevin$summaryTables$finalWhitelist)| Number of barcodes in final whitelist | 95 | 
| Fraction reads in final whitelist barcodes | 82.39% | 
| Mean number of reads per cell (final whitelist) | 62118 | 
| Median number of reads per cell (final whitelist) | 58725 | 
| Median number of detected genes per cell (final whitelist) | 5343 | 
| Median UMI count per cell (final whitelist) | 32028 | 
knitr::kable(alevin$versionTable)| Start time | Thu May 30 13:06:55 2019 | 
| Salmon version | 0.14.0 | 
| Index | /mnt/scratch5/avi/alevin/data/mohu/salmon_index | 
| R1file | /mnt/scratch5/avi/alevin/data/10x/v2/mohu/100/all_bcs.fq | 
| R2file | /mnt/scratch5/avi/alevin/data/10x/v2/mohu/100/all_reads.fq | 
| tgMap | /mnt/scratch5/avi/alevin/data/mohu/gtf/txp2gene.tsv | 
The plots can now be generated using the dedicated plotting functions provided with alevinQC (see the help file for the respective function for more information).
plotAlevinKneeRaw(alevin$cbTable)plotAlevinBarcodeCollapse(alevin$cbTable)plotAlevinQuant(alevin$cbTable)plotAlevinKneeNbrGenes(alevin$cbTable)sessionInfo()
#> R version 3.6.1 (2019-07-05)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 18.04.3 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] alevinQC_1.2.0   BiocStyle_2.14.0
#> 
#> loaded via a namespace (and not attached):
#>  [1] Rcpp_1.0.2           highr_0.8            later_1.0.0         
#>  [4] pillar_1.4.2         compiler_3.6.1       BiocManager_1.30.9  
#>  [7] RColorBrewer_1.1-2   plyr_1.8.4           tools_3.6.1         
#> [10] digest_0.6.22        evaluate_0.14        tibble_2.1.3        
#> [13] gtable_0.3.0         pkgconfig_2.0.3      rlang_0.4.1         
#> [16] shiny_1.4.0          GGally_1.4.0         crosstalk_1.0.0     
#> [19] yaml_2.2.0           xfun_0.10            fastmap_1.0.1       
#> [22] dplyr_0.8.3          stringr_1.4.0        knitr_1.25          
#> [25] htmlwidgets_1.5.1    shinydashboard_0.7.1 cowplot_1.0.0       
#> [28] DT_0.9               grid_3.6.1           tidyselect_0.2.5    
#> [31] reshape_0.8.8        glue_1.3.1           R6_2.4.0            
#> [34] rmarkdown_1.16       bookdown_0.14        purrr_0.3.3         
#> [37] ggplot2_3.2.1        magrittr_1.5         promises_1.1.0      
#> [40] scales_1.0.0         htmltools_0.4.0      tximport_1.14.0     
#> [43] assertthat_0.2.1     xtable_1.8-4         mime_0.7            
#> [46] colorspace_1.4-1     httpuv_1.5.2         labeling_0.3        
#> [49] stringi_1.4.3        lazyeval_0.2.2       munsell_0.5.0       
#> [52] rjson_0.2.20         crayon_1.3.4Srivastava, Avi, Laraib Malik, Tom Sean Smith, Ian Sudbery, and Rob Patro. 2018. “Alevin Efficiently Estimates Accurate Gene Abundances from dscRNA-seq Data.” bioRxiv Doi:10.1101/335000.