\name{BPCA_initmodel}
\alias{BPCA_initmodel}
\title{Initialize BPCA model}
\usage{BPCA_initmodel(y, components)}
\description{Model initialization for Bayesian PCA. This function is NOT
inteded to be run separately!}
\details{The function calculates the initial Eigenvectors by use of SVD
from the complete rows.  The data structure M is created and
initial values are  assigned.}
\value{List containing
\item{rows}{Row number of input matrix}
\item{cols}{Column number of input matrix}
\item{comps}{Number of components to use}
\item{yest}{(working variable) current estimate of complete data}
\item{row_miss}{(Array) Indizes of rows containing missing values}
\item{row_nomiss}{(Array) Indices of complete rows (such with no
missing values)}
\item{nans}{Matrix of same size as input data. TRUE if \code{input == NA},
false otherwise}
\item{mean}{Column wise data mean}
\item{PA}{ (d x k) Estimated principal axes (eigenvectors,
loadings) The matrix ROWS are the vectors}
\item{tau}{Estimated precision of the residual error}
\item{scores}{ Estimated scores}
Further elements are: galpha0, balpha0, alpha, gmu0, btau0, gtau0,
SigW. These are working variables or constants.}
\author{Wolfram Stacklies}
\arguments{\item{y}{numeric matrix containing missing values. Missing values
are denoted as 'NA'}
\item{components}{Number of components used for estimation}}