\name{get.model.parameters}
\alias{get.model.parameters}
\title{get.model.parameters}
\description{Retrieve the mixture model parameters of the NetResponse
algorithm for a given subnetwork.}
\usage{
get.model.parameters(model, subnet.id, level = NULL)
}
\arguments{
\item{model}{Result from NetResponse (detect.responses function).}
\item{ subnet.id }{Subnet identifier. A natural number which
specifies one of the subnetworks within the 'model' object.}
\item{level}{ Agglomeration level to investigate. The agglomerative
algorithm grows the subnetworks step-by-step. This option can be
used to select a specific step during the learning process. Will
be included in the next version. }
}
\value{
A list with the following elements:
\item{mu}{ Centroids for the mixture components. Components x nodes.}
\item{sd}{ Standard deviations for the mixture components. A vector
over the nodes for each component, implying the diagonal covariance
matrix of the model (i.e. diag(std^2)). Components x nodes}
\item{w}{Vector of component weights.}
\item{nodes}{List of nodes in the subnetwork.}
\item{K}{Number of mixture components.}
}
\details{Only the non-empty components are returned. Note: the original data matrix needs to be provided for function call separately.}
\references{Leo Lahti et al.: Global modeling of transcriptional responses in interaction networks. Bioinformatics (2010).}
\author{Leo Lahti <leo.lahti@iki.fi>}
\examples{
# Load toy data
data( toydata ) # Load toy data set
D <- toydata$emat # Response matrix (for example, gene expression)
model <- toydata$model # Pre-calculated model
# Get model parameters for a given subnet
# (Gaussian mixture: mean, covariance diagonal, mixture proportions)
get.model.parameters(model, subnet.id = 1)
}
\keyword{utilities}